Способ радиолокации и радиолокатор с доплеровским передатчиком для его реализации

Изобретение относится к области радиолокации и предназначено для использования в радиолокационных станциях (РЛС) с доплеровским передатчиком, а также в специфических следящих системах. Достигаемый технический результат - увеличение дальности действия, повышение помехозащищенности и точности измерения текущих координат и параметров, исключение возможности разведки структуры зондирующего сигнала при существенном упрощении схемы радиолокатора и соответствующем снижении объема оборудования и его стоимости. Указанный результат достигается за счет того, что в способе радиолокации, предусматривающем формирование передатчиком зондирующего сигнала, излучение антенной данного зондирующего сигнала, прием отраженного от цели сигнала, преобразование частоты отраженного от цели сигнала в первом преобразователе, ко второму входу которого подают сигнал с эталона частоты, при этом сигнал с первого преобразователя поступает на вход второго преобразователя, ко второму входу которого подают сигнал с эталона частоты, во втором преобразователе производят преобразование входного сигнала в выходной сигнал, который направляют в передатчик, а затем в антенну для передачи его в качестве зондирующего сигнала, после чего замкнутой петлей обратной связи мгновенное изменение частоты доплера передатчика компенсируется соответствующим изменением частоты передатчика, в результате чего происходит замыкание системной петли обратной связи, образованной передатчиком, в котором управляют частотой его излучения. Указанный результат достигается также за счет того, что радиолокатор с доплеровским передатчиком, реализующий способ, содержит антенну, антенный переключатель, приемник, по меньшей мере, первый и второй преобразователи, эталон частоты, схему поиска и электронный ключ, выполненный с возможностью подключения входа передатчика к выходу второго преобразователя или выходу схемы поиска. Перечисленные средства определенным образом соединены между собой. 2 н. и 3 з.п. ф-лы, 6 ил.

 

Предлагаемое изобретение относится к области радиолокации и предназначено для использования в радиолокационных станциях (РЛС) с доплеровским передатчиком, а также в специфических следящих системах.

В настоящее время известны различные способы радиолокации с радиолокаторами с доплеровскими передатчиками, а также радиолокаторы для их реализации, однако они обладают недостаточной точностью и надежностью измерений, имеют достаточно сложные схемы их реализации, в которых используется достаточно дорогое оборудование.

Основным отличием и особенностью предлагаемого способа радиолокации, от известных в настоящее время способов радиолокации, является то, что в данном способе радиолокатор работает на постоянной частоте.

Так, известна РЛС, содержащая передатчик ЧМ-сигнала, передающую антенну, приемник ЧМ-сигнала, отраженного от цели сигнала с усилителем, АЦП, процессор, осуществляющий преобразование время/частота, и соединенное с ним устройство управления [патент США №5972223, МКИ G01S 13/34].

Недостатком данной РЛС является недостаточная дальность действия.

Известен также радиолокатор для измерения малых расстояний до объекта, содержащий параллельно соединенные приемную антенну, смеситель, первый фильтр нижних частот и усилитель-ограничитель, а также последовательно соединенные СВЧ-генератор, управляемый по частоте напряжением, направленный ответвитель, передающую антену, преобразователь частота-напряжение и измеритель высоты с переменной шкалой, а также усилитель с автоматической регулировкой усиления, первую и вторую логическую схему И, первый и второй счетчики числа импульсов, а также цифровой сумматор [заявка РФ ИЗ №94037470, МПК G01S 13/34].

В данном радиолокаторе повышена точность и надежность измерения малых расстояний до объекта, но он обладает большей дальностью действия.

Наиболее близкими к данному изобретению по технической сущности являются способ сопровождения цели и устройство моноимпульсной РЛС, реализующей данный способ по патенту РФ на ИЗ №2338219, МПК G01S 13/44, выбранные в качестве прототипа.

В данном способе сопровождения цели после квадратурно-фазового детектирования суммарных и разностных сигналов производится подавление видеочастот, где априорно отсутствует сдвинутый на доплеровскую частоту сигнал цели (зеркальных видеочастот). Подавление происходит за счет пропускания квадратур входного видеосигнала через соответствующие фазосдвигающие цепи с единичным усилением, фазочастотные характеристики которых в рабочем диапазоне частот имеют сдвиг относительно друг друга 90 град., и суммирования полученных сигналов.

Моноимпульсная РЛС, реализующая данный способ, содержит антенную моноимпульсную систему, первый вход-выход которой соединен со вторым входом-выходом антенного переключателя, возбудитель, квадратурно-фазовые детекторы суммарного и разностного каналов, синхронизатор, передатчик, соединенный с антенным переключателем, последовательно соединенные формирователь модулированного сигнала, формирователь опорного сигнала, и бортовую вычислительную машину.

В данном способе и устройстве обеспечена возможность слежения как за сигналом цели, так и за шумовым источником помех при одновременном повышении потенциала радиолокации по сигналу цели за счет подавления на видеочастоте зеркальной шумовой полосы, однако данные способ и устройство не обеспечивают достаточной дальности действия РЛС, достаточной помехозащищенности, и точности измерения текущих координат и параметров.

Технической задачей предложенного изобретения является создание такого способа радиолокации и радиолокатора с доплеровским передатчиком для его реализации, в котором была бы значительно увеличена его дальность действия, повышены помехозащищенность и точность измерения текущих координат и параметров, исключена возможность разведки структуры зондирующего сигнала, при существенном упрощении схемы радиолокатора и соответствующим снижении объема оборудования и его стоимости.

Поставленная техническая задача достигается за счет того, что в способе радиолокации, предусматривающем формирование передатчиком зондирующего сигнала с частотой f0, излучение антенной данного зондирующего сигнала, прием антенной входного, отраженного от цели сигнала с частотой f0+fД, усиление данного входного сигнала, сначала производят преобразование частоты f0+fД отраженного от цели сигнала в первом преобразователе, ко второму входу которого подают постоянно с эталона частоты сигнал с частотой f0, при этом первый преобразователь преобразует частоту входного сигнала, и формирует сигнал с частотой f0+fД-f0; то есть сигнал с частотой fД, который поступает на первый вход второго преобразователя, ко второму входу которого подают постоянно с эталона частоты сигнал с частотой f0, во втором преобразователе производят преобразование входящего сигнала с частотой fД в выходящий сигнал с частотой f0-fД, который направляют в передатчик, а затем в антенну для передачи его в качестве зондирующего сигнала с частотой f0-fД, после чего происходит непрерывное поддержание равенства частот f Д = | f Д | замкнутой петлей системы, при котором мгновенное изменение частоты доплера передатчика Δf компенсируется соответствующим изменением частоты передатчика, в результате чего происходит замыкание системной петли обратной связи, образованной передатчиком, в котором управляют частотой его излучения.

Предпочтительно, чтобы в способе радиолокации производили формирование передатчиком зондирующего сигнала с частотой f0, меняющейся по линейному закону в пределах всего доплеровского диапазона частот.

Поставленная техническая задача предложенного изобретения достигается за счет того, что радиолокатор с доплеровским передатчиком, реализующий способ, содержит антенну, вход-выход которой подключен к входу-выходу антенного переключателя, вход которого подключен к выходу передатчика, а выход соединен с входом приемника, имеет, по меньшей мере, первый и второй преобразователи, соединенные последовательно с приемником, эталон частоты, выход которого подключен ко второму входу первого преобразователя, и ко второму входу второго преобразователя, схема поиска и электронный ключ, выполненный с возможностью подключения входа передатчика к выходу второго преобразователя, или выходу схемы поиска, вход которой подключен к выходу приемника и первому входу первого преобразователя, первый выход которого подключен к первому входу второго преобразователя.

Предпочтительно, чтобы радиолокатор содержал фильтр и усилитель, соединенные последовательно, каждый из преобразователей был снабжен перемножителем и фильтром, соединенными последовательно, а передатчик имел усилитель.

В предпочтительном варианте в радиолокаторе приемник содержит фильтр и усилитель, каждый из преобразователей снабжен фильтром и перемножителем, а передатчик имеет усилитель.

В предпочтительном и практически реализуемом варианте, с новой структурой зондирующих сигналов -PN MSK, радиолокатор с доплеровским передатчиком снабжен генератором случайных комбинаций (ГСК), синхронизатором с памятью, первый вход которого подключен к выходу генератора случайных комбинаций (ГСК), преселектором, квадратором и каналом обнаружения, включенными последовательно между антенным переключателем и приемником, выход которого через последовательно соединенные фильтр и детектор, которые представляют собой формирователь корреляционных максимумов, подключен к первому входу вычислительного средства, второй и третий входы которого подключены ко вторым выходам первого и второго преобразователей, а четвертый вход вычислительного средства подключен к входу схемы поиска и каналу обнаружения, при этом передатчик снабжен модулятором ПСП сигналов, первый вход которого подключен к выходу синхронизатора, второй вход подключен к выходу электронного ключа, а выход модулятора ПСП сигналов подключен к входу усилителя передатчика, канал обнаружения содержит первый сумматор, две параллельно подключенные между ним и приемником цепочки из первого узкополосного фильтра и первого детектора, а также из второго узкополосного фильтра и второго детектора, подключенные выходами детекторов к первому и второму входам первого сумматора, при этом приемник имеет два делителя частоты, схему задержки, второй сумматор и несколько перемножителей, выполненных с возможностью согласования НЧД с ПСП, и подключенных между схемой задержки и вторым сумматором таким образом, что выходы перемножителей приемника подключены к входам второго сумматора, выход которого подключен к входу фильтра, первые входы перемножителей приемника подключены к выходам схемы задержки, а вторые входы перемножителей приемника подключены к первым выходам делителей частоты, входы которых подключены к первым входам первого и второго преобразователей, первый из которых дополнительно содержит цепочку из последовательно соединенных второго перемножителя и второго фильтра, а второй также дополнительно содержит цепочку из последовательно соединенных второго перемножителя и второго фильтра, при этом первый и второй выходы эталона частоты подключены ко вторым входам вторых перемножителей первого и второго преобразователей, а выходы фильтров первого и второго преобразователей подключены к входам вторых перемножителей первого и второго преобразователей и ко второму и третьему входам вычислительного средства.

Защищаемая новизна способа радиолокации и радиолокатора с доплеровским передатчиком для его реализации заключается в компенсации доплеровского смещения частоты отраженного от цели сигнала путем изменения частоты зондирующего сигнала передатчика строго на текущую величину доплеровского смещения частоты отраженного сигнала, но с обратным знаком

f д о т р = | f д и з л | .

Для более полного раскрытия изобретения далее приводится описание конкретных возможных вариантов его исполнения с соответствующими чертежами.

Фиг.1 - структурная схема радиолокатора с доплеровским передатчиком, поясняющая способ радиолокации.

Фиг.2 - структурная схема радиолокатора с доплеровским передатчиком с использованием PN MSK сигналов.

Фиг.3 - структура изменения частот (доплеровской и компенсирующей).

Фиг.4 - структура PN MSK сигнала.

Фиг.5 - квадрированный спектр PN MSK сигнала.

Фиг.6 - изометрическая проекция PN MSK сигнала.

Радиолокатор с доплеровским передатчиком, реализующий данный способ радиолокации, содержит передатчик 1, который может иметь усилитель 1.2 (Фиг.1). Выход передатчика 1 соединен с входом антенного переключателя 2, вход-выход которого подключен к входу-выходу антенны 3, а выход антенного переключателя 2 подключен к входу приемника 4, который может содержать фильтр 4.1 и выпрямитель 4.2, выход которого подключен к первому входу первого преобразователя 5.1, второй вход которого подключен к выходу эталона частоты 6, выход которого подключен ко второму входу второго преобразователя 5.2, первый вход которого подключен к выходу первого преобразователя 5.1. Выход второго преобразователя 5.2 подключен к входу электронного ключа 8, второй вход которого подключен к выходу схемы поиска 7, вход которой подключен к выходу приемника 4 и первому входу первого преобразователя 5.1, а выход электронного ключа 8 подключен к входу передатчика 1. При этом первый преобразователь 5.1 имеет перемножитель 5.1.1 и фильтр 5.1.2, а второй преобразователь 5.2 имеет перемножитель 5.2.1 и фильтр 5.2.2.

Способ радиолокации поясняется на примере работы представленного выше радиолокатора с доплеровским передатчиком.

В исходном состоянии схема поиска 7 вырабатывает сигнал с частотой f0, меняющейся по линейному закону в пределах всего доплеровского диапазона частот (Фиг.1). Этот сигнал с выхода схемы поиска 7 через электронный ключ 8 поступает на вход передатчика 1. Там происходит его усиление, и через антенный переключатель 2 он поступает в антенну 3 и излучается. При появлении цели, в пределах диаграммы направленности антенны 3, наступает момент, когда отраженный от цели сигнал с частотой f0+fД принимается антенной 3, и с ее выхода, через антенный переключатель 2 попадает на вход приемника 4, усиливается в нем, и поступает на вход первого преобразователя 5.1, в котором производят преобразование частоты f0+fД отраженного от цели сигнала. В первом преобразователе 5.1, ко второму входу которого подают постоянно с эталона частоты 6 сигнал с частотой f0, преобразуют частоту входного сигнала, и формируют сигнал с частотой f0+fД-f0, то есть сигнал с частотой fД, который поступает на первый вход второго преобразователя 5.2, ко второму входу которого подают постоянно с эталона частоты 6 сигнал с частотой f0. Во втором преобразователе 5.2 производят преобразование входящего сигнала с частотой fД, в выходящий сигнал с частотой f0-fД, который направляют через электронный ключ 8 в передатчик 1, а затем через антенный переключатель 2 в антенну 3 для передачи его в качестве зондирующего сигнала, после чего происходит непрерывное поддержание равенства частот f Д = | f Д | замкнутой петлей системы, при котором мгновенное изменение частоты доплера передатчика 1Δf компенсируется соответствующим изменением частоты передатчика 1, в результате чего происходит замыкание системной петли обратной связи, образованной передатчиком 1, в котором управляют частотой его излучения.

Мгновенное изменение частоты Доплера Δf (Фиг.3) компенсируется соответствующим изменением частоты передатчика 1, т.е. fд(t)=|-fд(t-T), где T - время прохождения излученного сигнала до цели и обратно.

Результатом организации такой замкнутой системной петли обратной связи является принудительная компенсация доплеровского смещения частоты, т.е. цель, от которой принят отраженный сигнал, «как бы перестает перемещаться» в пространстве по признаку отсутствия в ее сигнале доплеровского смещения частоты, и, как следствие, возникают условия работы узкополосного приемника на постоянной частоте f0.

Применение описанного выше способа позволяет:

- во-первых, реализовать потенциально предельный энергетический потенциал РЛС за счет сужения полосы пропускания приемника до теоретически минимальной (вместо суммарной, при которой полоса приемника должна быть расширена для учета динамической составляющей спектра во входном сигнале), т.е. энергия сигнала оказывается максимальной, а энергия шума минимальной, причем сохраняются все информационные свойства сигнала (динамическая составляющая спектра, порожденная движением цели, и проявляющаяся в доплеровском смещении частоты оказывается скомпенсированной);

- во-вторых, в спектральных и корреляционных преобразованиях Фурье возникают условия для существенного увеличения пределов интегрирования (накопления энергии сигнала), а следовательно, дополнительного повышения энергетических параметров радиолокатора (РЛС), т.к. на приведенной шкале времени ликвидируется «дефект времени», вызванный разными системами отсчета времени (частоты);

- в-третьих, такая компенсационная структура построения радиолокатора (РЛС) обеспечивает прием сигналов только от одной цели, т.к. сигналы, отраженные от всех других объектов (включая отражения от местных предметов подстилающей поверхности, пассивных и активных помех и прочих неподвижных и двигающихся объектов с частотой, отличной от компенсационной передатчика, не пройдут через узкополосный фильтр приемной системы;

- в-четвертых, не чувствительность приемника радиолокатора (РЛС) ко всем отраженным сигналам, за исключением одной сопровождаемой цели существенно разгрузит вычислительные и индикаторные средства радиолокатора (РЛС).

В описанном выше простейшем варианте радиолокатора (РЛС) не оговаривались структуры применяемых сигналов и ряд других деталей. Поэтому основной задачей простейшего представленного радиолокатора являлась проблема изложить новый способ доплеровской радиолокации, который может быть адаптирован для конкретных условий (наземные, корабельные, авиационные, космические и т.д.)

Второй вариант реализации радиолокатора с доплеровским передатчиком (Фиг.2), с перестройкой излучаемых передатчиком несущих, использующий новый структурный принцип, конкретизирован в части применения новых PN МСК сигналов (Pseudo Noise Minimum Shift Keying) широкополосных шумоподобных дискретных с минимальным сдвигом фаз и индексом манипуляции частот D=2ΔfTd=0,5. Их структура во временной и спектральной областях изображена на фиг.4, 5, а на фиг.6 изображена изометрическая проекция PN МСК сигнала. Эти сигналы по своему существу и свойствам значительно превосходят широко применяемые в настоящее время ФКМ, не говоря уже о таких устаревших, как AM, ЛЧМ и др. Основное их отличие и преимущество над известными сигналами заключается в том, что огибающие временной функции, огибающие спектра и корреляционной функции являются гладкими кривыми, не имеющими боковых лепестков фиг.4 и фиг.5 (при условии достаточно большого количества N, а практически когда максимальный уровень бокового лепестка будет не больше номинального уровня шума), следовательно, и функция неопределенности обладает единственным максимумом в центре плоскости.

Второй вариант реализации радиолокатора с доплеровским передатчиком (Фиг.2) содержит, дополнительно к первому варианту радиолокатора, синхронизатор 24 с памятью 23, первый вход которого подключен к выходу генератора случайных комбинаций (ГСК) 25, преселектор 9, квадратор 10 и канал обнаружения 4.1, включенные между антенным переключателем 2 и приемником 4, выход которого, через последовательно соединенные фильтр 21 и детектор 22, подключен к первому входу вычислительного средства 26, при этом последовательно соединенные фильтр 21 и детектор 22 представляют собой формирователь корреляционных максимумов. Второй и третий входы вычислительного средства 26 подключены ко вторым выходам первого 5.1 и второго 5.2 преобразователей, а четвертый вход вычислительного средства 26 подключен к входу схемы поиска 7, при этом передатчик 1 снабжен модулятором ПСП сигналов 1.1 и усилителем 1.2. Первый вход модулятора ПСП сигналов 1.1 подключен к выходу синхронизатора 24, второй вход подключен к выходу электронного ключа 8, а выход модулятора ПСП сигналов 1.1 подключен к входу усилителя передатчика 1.2. Канал обнаружения 4.1 содержит первый сумматор 15, две параллельно подключенные между ним и приемником цепочки из первого узкополосного фильтра 11 и первого детектора 13, а также из второго узкополосного фильтра 12 и второго детектора 14, подключенные к первому и второму входам первого сумматора 15.

Приемник 4 содержит схему задержки 18, второй сумматор 20, несколько перемножителей 19 (19-1,9-n, 19-n-1), выполненных с возможностью согласования НЧД с ПСП, и подключенных между схемой задержки 18 с отводами и вторым сумматором 20, а также два делителя частоты 16 и 17, подключенных выходами ко вторым входам перемножителей 19 приемника, а входами к первому 5.1 и второму 5.2 преобразователям, первый из которых дополнительно содержит цепочку из последовательно соединенных второго фильтра 5.1.3 и второго перемножителя 5.1.4, а второй дополнительно содержит цепочку из последовательно соединенных второго фильтра 5.2.3 и второго перемножителя 5.2.4.

Принцип работы второго варианта радиолокатора с доплеровским передатчиком, изображенного на фиг.2, аналогичен тому, который был описан для первого варианта радиолокатора с доплеровским передатчиком. Отличие состоит только в необходимости адаптировать упрощенный одноканальный и одночастотный вариант приемника 4, схему Фурье свертки во времени к двухчастотным PN MSK сигналам, а также в обеспечении зашиты нового принципа обнаружения квадрированного сигнала по всплескам спектра на удвоенных НЧД.

Отличительной особенностью второго варианта радиолокатора с доплеровским передатчиком является структура канала обнаружения 4.1, в которой при квадрировании (удвоении) частоты сигнала в структуре PN MSK сигнала появляются регулярные составляющие спектра, что теоретически приводит к появлению в нем компонент, в которых сосредоточено 50% энергии входного сигнала (Фиг.4).

Используя это свойство для обнаружения сигнала существенно понижается порог чувствительности и резко возрастает отношение с/ш, не учитываемое в стандартных технических расчетах. Однако отсутствие явной зависимости амплитуды остаточных боковых лепестков в выражении спектра от количества дискретов заставляет налагать дополнительное условие: чтобы максимальная амплитуда бокового лепестка спектра не превосходила минимального уровня шума.

Защита структуры (комбинаторики ПСП) зондирующего сигнала производится путем использования ГСК 25, основу которого составляет генератор шума, поэтому даже разработчик аппаратуры не может предугадать структуру очередной комбинации ПСП.

Готовность к работе Фурье свертки во времени в течение всей посылки обеспечивается схемой памяти 23 в составе синхронизатора 24.

Как очевидно специалистам в данной области техники, данное изобретение легко разработать в других конкретных формах, не выходя при этом за рамки сущности данного изобретения.

При этом настоящие варианты осуществления необходимо считать просто иллюстративными, а не ограничивающими, причем объем изобретения представлен его формулой, и предполагается, что в нее включены все возможные изменения и область эквивалентности пунктам формулы данного изобретения.

1. Способ радиолокации, предусматривающий формирование передатчиком зондирующего сигнала с частотой f0, излучение антенной данного зондирующего сигнала, прием антенной входного, отраженного от цели сигнала с частотой f0+fД, усиление данного входного сигнала, отличающийся тем, что сначала производят преобразование частоты f0+fД отраженного от цели сигнала в первом преобразователе, ко второму входу которого подают постоянно с эталона частоты сигнал с частотой f0, при этом первый преобразователь преобразует частоту входного сигнала и формирует сигнал с частотой f0+fД-f0, то есть сигнал с частотой fД, который поступает на первый вход второго преобразователя, ко второму входу которого подают постоянно с эталона частоты сигнал с частотой f0, во втором преобразователе производят преобразование входящего сигнала с частотой fД в выходящий сигнал с частотой f0-fД, который направляют в передатчик, а затем в антенну для передачи его в качестве зондирующего сигнала, после чего происходит непрерывное поддержание равенства частот fД=|-fД| замкнутой петлей системы, при котором мгновенное изменение частоты доплера передатчика Δf компенсируется соответствующим изменением частоты передатчика, в результате чего происходит замыкание системной петли обратной связи, образованной передатчиком, в котором управляют частотой его излучения.

2. Способ радиолокации по п.1, отличающийся тем, что производят формирование передатчиком зондирующего сигнала с частотой f0, меняющейся по линейному закону в пределах всего доплеровского диапазона частот.

3. Радиолокатор с доплеровским передатчиком, реализующий способ по п.1, содержащий антенну, вход-выход которой подключен к входу-выходу антенного переключателя, вход которого подключен к выходу передатчика, а выход соединен с входом приемника, отличающийся тем, что в него введены, по меньшей мере, первый и второй преобразователи, соединенные последовательно с приемником, эталон частоты, выход которого подключен ко второму входу первого преобразователя и ко второму входу второго преобразователя, схема поиска и электронный ключ, выполненный с возможностью подключения входа передатчика к выходу второго преобразователя или выходу схемы поиска, вход которой подключен к выходу приемника и первому входу первого преобразователя, первый выход которого подключен к первому входу второго преобразователя.

4. Радиолокатор с доплеровским передатчиком по п.3, отличающийся тем, что приемник содержит фильтр и усилитель, соединенные последовательно, каждый из преобразователей снабжен перемножителем и фильтром, соединенными последовательно, а передатчик имеет усилитель.

5. Радиолокатор с доплеровским передатчиком по п.4, отличающийся тем, что он снабжен генератором случайных комбинаций (ГСК), синхронизатором с памятью, первый вход которого подключен к выходу генератора случайных комбинаций (ГСК), преселектором, квадратором и каналом обнаружения, включенными последовательно между антенным переключателем и приемником, выход которого через последовательно соединенные фильтр и детектор, которые представляют собой формирователь корреляционных максимумов, подключен к первому входу вычислительного средства, второй и третий входы которого подключены ко вторым выходам первого и второго преобразователей, а четвертый вход вычислительного средства подключен к входу схемы поиска и каналу обнаружения, при этом передатчик снабжен модулятором ПСП сигналов, первый вход которого подключен к выходу синхронизатора, второй вход подключен к выходу электронного ключа, а выход модулятора ПСП сигналов подключен к входу усилителя передатчика, канал обнаружения содержит первый сумматор, две параллельно подключенные между ним и приемником цепочки из первого узкополосного фильтра и первого детектора, а также из второго узкополосного фильтра и второго детектора, подключенные выходами детекторов к первому и второму входам первого сумматора, при этом приемник имеет два делителя частоты, схему задержки, второй сумматор и несколько перемножителей, выполненных с возможностью согласования НЧД с ПСП и подключенных между схемой задержки и вторым сумматором таким образом, что выходы перемножителей приемника подключены к входам второго сумматора, выход которого подключен к входу фильтра, первые входы перемножителей приемника подключены к выходам схемы задержки, а вторые входы перемножителей приемника подключены к первым выходам делителей частоты, входы которых подключены к первым входам первого и второго преобразователей, первый из которых дополнительно содержит цепочку из последовательно соединенных второго перемножителя и второго фильтра, а второй также дополнительно содержит цепочку из последовательно соединенных второго перемножителя и второго фильтра, при этом первый и второй выходы эталона частоты подключены ко вторым входам вторых перемножителей первого и второго преобразователей, а выходы фильтров первого и второго преобразователей подключены к входам вторых перемножителей первого и второго преобразователей и ко второму и третьему входам вычислительного средства.



 

Похожие патенты:

Изобретение относится к радиолокации и может использоваться в радиотехнических системах, установленных на подвижных объектах, для получения радиолокационного изображения (РЛИ) в процессе дистанционного зондирования земной поверхности.

Изобретение относится к области радиотехники, в частности к способам и технике радиотехнического мониторинга источников радиоизлучений (ИРИ) с линейно-частотно-модулированными (ЛЧМ) сигналами.

Изобретение относится к области средств обнаружения нарушений, выявляемых правоохранительными органами. Достигаемый технический результат - повышение чувствительности и помехозащищенности.

Изобретение относится к радиолокации и может быть использовано в импульсных радиолокационных станциях (РЛС) сопровождения с активной фазированной антенной решеткой.

Изобретение относится к области подповерхностной радиолокации и контроля насыпи железных дорог и автодорог. Влажность, загрязненность и толщину слоев насыпи определяют с помощью георадара.

Изобретение относится к устройствам акустоэлектроники. Техническим результатом является повышение степени защищенности информационного сигнала от несанкционированного прочтения и повышение технологичности процесса его кодирования.
Изобретения относятся к области радиолокации и могут быть использованы в радиолокационных станциях (РЛС) для управления воздушным движением и для контроля воздушного пространства.

Изобретение относится к области определения местоположения подвижных подводных объектов технической природы и может быть использовано при поиске и обнаружении подводных аппаратов и платформ.

Изобретение относится к области радиолокации и может быть использовано при создании средств обнаружения высокоскоростных воздушных целей. Достигаемый технический результат изобретения - повышение вероятности обнаружения высокоскоростных воздушных целей за счет учета скорости их сближения с носителем импульсно-доплеровской радиолокационной станции (ИД РЛС).

Изобретение относится к области радиолокации и может быть использовано на вертолетах и других летательных аппаратах для обнаружения наземных объектов. Достигаемый технический результат - улучшение технико-эксплуатационных характеристик.

Изобретение относится к области навигации наземных транспортных средств и предназначено для построения доплеровских датчиков продольной, сносовой и тангажной скоростей. Изобретение направлено на увеличение точности измерения скорости наземного транспортного средства с помощью ОДДС за счет компенсации погрешности смещения у средней частоты сигнала погрешностью смещения у частоты максимума спектра сигнала, величина которой пропорциональна погрешности средней частоты. Однолучевой доплеровский датчик скорости, содержащит последовательно соединенные приемоизлучающее устройство и измеритель частоты с Δfф>Δfс, где Δfф - ширина полосы пропускания фильтра, Δfс - ширина спектра полезного сигнала. При этом в него введены второй измеритель частоты с Δfф<Δfc, схема вычитания частот, корректор и схема сложения частот. 3 ил.

Группа изобретений относится к сельскому хозяйству и может быть использована для сбора информации для экспресс-диагностики инфекционных заболеваний биологических объектов - животных и птиц. Для этого на каждом биологическом объекте устанавливают RFID -метку, содержащую информацию о биологическом объекте. Берут образец от каждого биологического объекта. Размещают на его упаковке RFID-метку, содержащую информацию об образце и биологическом объекте. Наносят каждый образец на соответствующий иммунострип, меченный RFID-меткой. Считывают информацию с RFID-меток, находящихся на каждом биологическом объекте, соответствующем образце и иммунострипе. Вносят в память ридера результаты анализа, полученные для каждого образца с помощью иммунострипа. Передают информацию с ридера путем беспроводной или проводной связи в блок обработки данных, с помощью которого регистрируют полученную информацию и формируют единую базу данных. Также предложена система сбора информации для экспресс-диагностики инфекционных заболеваний животных и птиц. Группа изобретений позволяет осуществлять диагностический контроль на инфекционные заболевания животных и птиц. 2 н. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к области радиолокации и может быть использовано в радиолокационных станциях (РЛС). Достигаемый технический результат - сохранение максимального коэффициента усиления Ку антенны РЛС в широком диапазоне сканирования в угломестной плоскости. Указанный технический результат достигается тем, что радиолокационный обзор пространства осуществляют с помощью фазированной антенной решетки, при этом при электронном сканировании по углу места и механическом в азимутальной плоскости обеспечивают равномерное распределение максимального значения коэффициента усиления антенны путем механического сканирования луча в угломестной плоскости. 2 ил.

Изобретение относится к области радиолокации и может быть использовано в радиолокационных станциях (РЛС) для защиты от импульсных, в том числе ответных, помех. Достигаемый технический результат изобретения - распознавание сигналов помехи, имитирующих цель, во всем угломестном столбце. Указанный технический результат по первому варианту достигается тем, что в способе радиолокационного обзора пространства, основанном на сканировании угломестного столбца, при очередном зондировании изменяют параметры зондирующего сигнала, считают помехой, имитирующей цель, сигналы во всем угломестном столбце, принятые на дальностях, на которых в осмотренном направлении обнаружены сигналы с прежними параметрами. Указанный технический результат по второму варианту достигается тем, что в способе радиолокационного обзора пространства, основанном на сканировании угломестного столбца, вводят задержку излучения зондирующего сигнала или пропускают очередное зондирование, считают помехой, имитирующей цель, сигналы, обнаруженные за пределами инструментальной дальности, а также сигналы, совпадающие с ними по дальности во всем угломестном столбце. 2 н. и 4 з.п. ф-лы, 3 ил.

Изобретение относится к радионавигации и может быть использовано в локальных навигационных системах и сетях для управления движением мобильных объектов в локальных зонах навигации. Достигаемый технический результат - повышение помехозащищенности, повышение точности определения координат объекта навигации. Указанный результат достигается за счет того, что способ основан на излучении объектом навигации высокочастотного гармонического сигнала, приеме его в нескольких опорных радионавигационных точках с известными координатами, при этом с объекта навигации дополнительно излучают второй высокочастотный гармонический сигнал, частота которого отличается от частоты первого высокочастотного гармонического сигнала на заданную величину, в каждой из опорных радионавигационных точек принимают этот сигнал наряду с первым, формируют из принятых сигналов сигналы разностной частоты, передают сформированные сигналы в центральный пункт обработки, где из каждого из них дополнительно формируют сигналы масштабной частоты, величина которой в n раз меньше разностной частоты, измеряют и фиксируют разности фаз сигналов разностной частоты, поступивших из разных опорных точек, а также разности фаз сформированных из них сигналов масштабной частоты, по окончании измерений результаты измерений разностей фаз пересчитывают в координаты объекта навигации с учетом взаимного расположения центрального пункта обработки и опорных радионавигационных точек. 2 ил.

Изобретение относится к радиолокационной технике и может быть использовано при построении вращающихся многофункциональных радиолокационных станций (РЛС) дальнего обнаружения целей с электронным сканированием луча для обзора воздушного пространства и одновременного точного сопровождения целей. Достигаемый технический результат - улучшение технико-эксплуатационных характеристик РЛС. Указанный результат достигается за счет того, что мобильная трехкоординатная РЛС содержит радиолокационный канал дальномера метрового диапазона в составе антенны, приемно-передающего устройства и устройства первичной обработки, а также антенну наземного радиозапросчика (НРЗ), антенну устройства ориентирования и топопривязки, устройство отображения, управления и контроля и устройство связи с потребителем, в которой дальномер вместе с антеннами НРЗ и устройства ориентирования и топопривязки входит в антенно-аппаратный комплекс, размещенный на первом транспортном средстве и включающий антенно-мачтовое устройство (АМУ), расположенное на вращающейся части опорно-поворотного устройства (ОПУ) транспортного средства, гидравлическую систему свертывания-развертывания АМУ и аппаратный контейнер (АК), радиолокационный канал высотомера дециметрового диапазона в составе антенны, приемно-передающего устройства и устройства первичной обработки, устройство управления, контроля и передачи радиолокационной информации, устройство вторичной обработки и кабина управления, размещенная на втором транспортном средстве, при этом АК расположен, как и АМУ, на вращающейся части ОПУ первого транспортного средства. 1 ил.

Способ увеличения дальности действия системы многоабонентной радиочастотной идентификации относится к области радиотехники и может быть использован при организации идентификации одновременно нескольких объектов. Новым в способе многоабонентной радиочастотной идентификации является включение в состав транспондеров, устанавливаемых на объектах идентификации однопортовых радиочастотных усилителей и управляемых фазовращателей проходного типа. Антеннами транспондеров радиочастотные колебания от считывающего устройства принимают и пропускают в первый раз через управляемый фазовращатель проходного типа. После этого радиочастотный сигнал усиливают однопортовым усилителем, где осуществляют его дополнительную амплитудную модуляцию уникальной кодовой последовательностью. Усиленный и модулированный радиочастотный сигнал вновь пропускают через управляемый фазовращатель проходного типа, на управляющий вход которого подают низкочастотный сигнал управления, и излучают далее через антенны транспондера. Двойной проход через фазовращатель приводит к сдвигу частоты радиочастотного сигнала. Антенной устройства считывания трансформированные по частоте и модулированные по амплитуде радиочастотные колебания вторично принимают и смешивают с исходными радиочастотными колебаниями, в результате чего на выходе смесителя получают одновременно несколько сигналов от транспондеров, при этом выделяют эти комбинационные низкочастотные составляющие разности исходных и трансформированных по частоте радиочастотных колебаний. Выделенные в каждом канале устройства считывания низкие частоты равны частотам сдвига, вносимым каждым из транспондеров, находящимся в зоне действия системы радиочастотной идентификации. Каждый из этих низкочастотных сигналов демодулируют и получают одновременно на выходе амплитудных детекторов несколько уникальных кодовых последовательностей, осуществляя тем самым идентификацию нескольких объектов одновременно.

Способ увеличения дальности действия и увеличения точности измерения расстояния системы радиочастотной идентификации и позиционирования может быть использован, например, при идентификации управлении движением подвижных объектов. Новым в способе измерения дальности является использование в измерительной станции двух антенн круговой поляризации, работающих одна на излучение, другая на прием. При этом циркулятор, разделяющий излучаемые и принимаемые сигналы, из состава измерительной станции исключается. Пространственное разнесение антенн измерительной станции позволяет повысить развязку между каналами приема и передачи, что позволяет излучать сигналы повышенной мощности и дополнительно усиливать принимаемые сигналы. Дальность действия системы при этом повышается. Направление вращения плоскости поляризации приемной антенны измерительной станции выбирается противоположным направлению вращения плоскости поляризации волны, отраженной от поперечной площади рассеивания объекта, на котором установлен транспондер, что обеспечивает подавление этого мешающего сигнала и повышения таким образом точности определения расстояния. Кроме того, использование в транспондере антенны линейной поляризации позволяет ликвидировать замирания сигнала, возникающие при движении объекта и изменении таким образом взаимной ориентации антенн транспондера и измерительной станции.

Изобретение относится к области техники электрических измерений и может быть использовано при изучении распространения микроволн на открытых атмосферных трассах. В основу изобретения поставлена задача увеличения точности измерения флуктуации набега фаз и углов прихода микроволн, при исследовании их распространения от одной точки измерительной трассы к другой. Сравнение предлагаемого устройства с уже известными устройствами и прототипом показывает, что заявляемое устройство выявляет новые технические свойства, которые заключаются в достижении фазовой синхронизации опорных генераторов на обоих концах измерительной трассы и повышении помехозащищённости опорного сигнала, что позволяет повысить точность измерений набега фазы микроволн; также в усилении исследуемого микроволнового сигнала в ретрансляторе, что позволяет увеличить длину атмосферной измерительной трассы, тем самым повысить точность измерения углов прихода микроволн, а также в достижении оптимизации частотных свойств радиоканала, за счёт выбора отличающихся частот F1 и F2 опорного и синхронизирующего сигналов. Независимость частот F1 и F2 даёт разработчику свободу при выборе частоты опорного сигнала. Устройство измерения состоит из двух симметричных измерительных каналов и одного опорного канала. В опорном канале ретранслятора, переизлучающего микроволновый измерительный сигнал, создана специальная цепь обратной связи, которая автоматически отслеживает и подстраивает начальную фазу сигнала управления микроволновым фазовращателем. Дополнительное преимущество данного измерителя заключается в том, что ретранслятор усиливает переизлучаемый измерительный сигнал, что позволяет увеличить длину измерительной трассы. Следовательно, увеличивая длину измерительной трассы и базу интерферометра повышают точность измерения флуктуаций набега фазы и углов прихода микроволн за счёт снижения относительных погрешностей измерения разностей фаз исследуемых микроволновых сигналов.

Изобретение относится к радионавигации и может быть использовано в локальных навигационных системах и сетях для управления движением мобильных объектов в локальных зонах навигации. Достигаемый технический результат - повышение точности определения координат объекта навигации и расширение области пространства, в пределах которой возможно однозначное определение координат объекта навигации без снижения точности. Способ основан на одновременном излучении объектом навигации в течение интервала времени, достаточного для фазовых измерений, двух высокочастотных гармонических сигналов с отличающимися на заданную величину частотами, их приеме в нескольких опорных радионавигационных точках с известными координатами и формировании из них сигналов разностной частоты, передаче указанных сигналов разностной частоты в центральный пункт обработки, измерении в нем разностей фаз сигналов разностной частоты, полученных из разных опорных радионавигационных точек, при этом из каждого сигнала разностной частоты в центральном пункте обработки дополнительно формируют сигнал масштабной частоты, величина которой в n раз больше разностной частоты, измеряют разности фаз сигналов масштабной частоты, сформированных для разных пар опорных точек, а результаты измерений разностей фаз сигналов на разностной и масштабной частотах пересчитывают с учетом взаимного расположения опорных радионавигационных точек и центрального пункта обработки в координаты объекта навигации. 2 ил.
Наверх