Способ получения sr-содержащего карбонатгидроксилапатита из модельного раствора синовиальной жидкости человека

Изобретение относится к области медицины, в частности к способу получения Sr-содержащего карбонатгидроксилапатита из модельного раствора синовиальной жидкости человека. Способ получения Sr-содержащего карбонатгидроксилапатита включает получение неорганического вещества, в искусственно созданной среде для этого готовят модельную среду указанного состава: СaСl2 - 1.3431-0,8059 г/л, Na2HPO4·12Н2O - 7.4822 г/л, NaCl - 2,8798 г/л, MgCl2·6Н2O - 0.4764 г/л, Na2SO4 - 1.6188 г/л, КСl - 0.3427 г/л, при концентрация ионов Sr - 0+0,2686 г/л, проводят осаждение при значении pH7.4 в течение 7 дней, полученный осадок фильтруют, сушат при температуре 100°C в течение 4 часов. Осуществление изобретения позволяет получить Sr-содержащий карбонатгидроксилапатит, который в дальнейшем может быть использован для адресной доставки лекарственных средств. 5 табл.

 

Изобретение относится к области медицины и созданию новых материалов биомедицинского назначения, которые могут быть использованы при создании бифазных композитов на основе Sr-содержащего карбонатгидроксилапатита, которые могут быть использованы для адресной доставки лекарственных препаратов.

Известен способ получения карбонатгидроксилапатита, приближенного к неорганическому матриксу костной ткани (патент RU 2526191 C1), из модельного раствора синовиальной жидкости человека, в котором готовят раствор состава: CaCl2 - 1.3431 г/л, Na2HPO4·12H2O - 7.4822 г/л, NaCl - 2,8798 г/л, MgCl2·6H2O - 0.4764 г/л, Na2SO4 - 1.6188 г/л, KCl - 0.3427 г/л, осаждение проводят при концентрации карбонат-ионов 24 ммоль/л, температуре 22-25°C, значении pH 7.4+0,05 в течение 30 дней.

Наиболее близким по технической сущности к заявляемому является способ получения Sr-содержащего гидроксилапатита с различным замещением ионов кальция на ионы стронция (Capuccini С, Torricelli Р, Boanini Е, Gazzano М, Giardino R, Bigi А. Interaction of Sr-doped hydroxyapatite nanocrystals with osteoclast and osteoblast-like cells // J Biomed Mater Res A. 2009 Jun; 89(3): 594-600). По данному способу синтез кристаллов Sr-содержащего гидроксилапатита проводили в инертной атмосфере N2 путем добавления по каплям 50 мл 0,65 М (NH4)2HPO4 раствора к 50 мл 1.08 М Ca(NO3)2·4H2O при pH 10. pH корректировали раствором NH4OH. Осадок выдерживали в реакционном растворе в течение 5 ч при 90°C при постоянном перемешивании, затем центрифугировали при 10000 оборотах в минуту в течение 10 мин и повторно промывали дистиллированной водой, свободной от CO2. Продукт сушили при 37°C в течение ночи.

Способ позволяет получать нанокристаллы Sr-содержащего гидроксилапатита с различным содержанием стронция в гидроксилапатите от 0-10% масс. К недостаткам метода следует отнести отсутствие возможности получения Sr-содержащего карбонатгидроксилапатита, на всех этапах синтеза приняты меры, исключающие попадания карбонат-ионов в структуру получаемых кристаллов.

Задачей заявляемого изобретения является разработка способа получения Sr-содержащего карбонатгидроксилапатита из модельного раствора синовиальной жидкости человека, который в дальнейшем может быть использован для адресной доставки лекарственных средств.

Указанный технический результат достигается тем, что предложен способ получения Sr-содержащего карбонатгидроксилапатита из модельного раствора синовиальной жидкости человека, приближенного к неорганическому матриксу кости, включающий получение неорганического вещества, в искусственно созданной среде для этого готовят модельную среду указанного состава: CaCl2 - 1.3431-0,8059 г/л, Na2HPO4·12H2O - 7.4822 г/л, NaCl - 2,8798 г/л, MgCl2·6H2O - 0.4764 г/л, Na2SO4 - 1.6188 г/л, KCl - 0.3427 г/л, при концентрация ионов Sr - 0÷0,2686 г/л, проводят осаждение при значении pH 7.4, в течение 7 дней, полученный осадок фильтруют, сушат при температуре 100°C в течение 4 часов.

Синовиальная жидкость является биологической средой, уникальной по биофизическим, физико-химическим свойствам и составу и выполняет в суставах ряд функций: метаболическую (обменную), барьерную (защитную), протекторную (биомеханическую). Метаболическая функция синовиальной жидкости играет большую роль в лечении больных с костными патологиями, выполняя роль носителя различных неорганических и органических ионов, которые могут встраиваться в структуру костного апатита и способствовать изменению его биофизических, структурных и морфологических особенностей. Так, в последнее время на основании экспериментальных и клинических исследований были получены доказательства того, что соединения стронция и препараты на его основе стимулируют процесс образования костной ткани, подавляют процесс ее разрушения.

Синтез Sr-содержащего карбонатгидроксилапатита осуществлялся из модельной среды, приближенной по ионно-электролитному составу, pH, ионной силе к синовиальной жидкости человека. Осаждение из растворов проводилось при значении pH 7.4, что соответствует физиологическому значению кислотности синовии в норме [Лунева С.Н. Биохимические изменения в тканях суставов при дегенеративно-дистрофических заболеваниях и способы биологической коррекции: Дис. … д-ра биол. наук. Курган. 2003. 297 с.]. При это корректировка pH до требуемых физиологических значений осуществлялась путем добавления 20%-ного раствора NaOH или концентрированной HCl. Данные концентрационные диапазоны соответствуют содержанию ионов в синовиальной жидкости человека [Кирсанов А.И. Концентрация химических элементов в разных биологических средах человека. Клиническая лабораторная диагностика. 2001. №3. С. 16-20] представлены в табл. 1.

Для приготовления модельных растворов использовались соли (CaCl2, Na2HPO4·12H2O, MgCl2·6H2O, NaHCO3, Na2SO4, KCl, NaCl, SrCl2·6H2O) марки ч.д.а, х.ч. и дистиллированная вода. Соли и их количество подбирались таким образом, чтобы концентрации их ионов в растворе и ионная сила были максимально приближены к данным параметрам моделируемой системы, а именно синовиальной жидкости. Для получения Sr-содержащих материалов на основе карбонатгидроксилапатита в модельные опыты добавляли различное содержание стронция и кальция, при этом их концентрация варьировалась в интервале от 0 до 100 масс. % от максимально возможной концентрации кальция. В качестве источников ионов Sr2+ были использованы неорганическая соль SrCl26·H2O. Кристаллизация твердой фазы осуществлялась в течение 7 суток, при t=22-25°C. Осадок высушивали при температуре ~100°C.

Анализ надосадочной жидкости проводился химическими методами для установления остаточных концентраций ионов кальция и фосфат ионов в фильтрате. Соотношение Ca/Р оценивали по разнице начальных и конечных концентраций ионов в системе. На основе данных о содержаниях кальция и фосфора в твердой фазе определяли соотношение Ca/Р. При увеличении содержания стронция в исходном растворе наблюдается закономерное снижение Ca/Р коэффициента, непостоянство стехиометрического отношения можно объяснить возможными изоморфными замещениями в катионной подрешетке.

Согласно результатам РФА полученные материалы в составе содержат гидроксилапатит и брушит. С увеличением количества ионов стронция в твердой фазе происходит увеличение доли брушита и уменьшение доли гидроксилапатита в осадке. В табл. 2 приведены размеры кристаллитов фосфата кальция при варьировании концентраций Sr для образцов, рассчитанные по данным порошковой дифрактометрии с помощью формулы Селякова-Шеррера.

В табл. 3 приведена зависимость удельной поверхности от концентрации стронция в исходном модельном растворе. Для полученных образцов были определены удельные площади поверхности порошков ГА. В интервале концентраций от 0 до 50.0% масс. стронция обнаружено уменьшение удельной поверхности частиц. Это может быть обусловлено образованием брушита, что согласуется с результатами РФА.

Для определения качественного состава синтезированного материала использовалась ИК-спектроскопия. Все ИК-спектры порошков характеризуются наличием полос валентных колебаний OH-групп в области длин волн 3570-3730 см-1 и деформационных колебаний при 3000-3600 см-1 - О-H групп, участвующих в образовании водородных связей. Можно также отметить полосы деформационных колебаний υ4 О-Р-O в P O 4 3- 640-550 см-1, асимметричных валентных колебаний υ3 Р-O в P O 4 3- ; 1060-1030 см-1, деформационных колебаний О-С-O в C O 3 2- 870-879 см-1.

В табл. 4 представлена зависимость Ca/Р и массы от концентраций кальция и стронция. Из данных табл. 4 видно, что при высоких концентрациях Sr в исходном растворе (60-100 масс. %) преобладает фосфат кальция с соотношением Са/Р≈0,5, при содержании 30-50 масс. % образуется октакальциевый фосфат (Са8(HPO4)2(PO4)4·5H2O с соотношением Са/Р≈1,2, при содержании стронция 20-30 масс. % кристаллизуется кальций-дефицитный гидроксилапатит (Са9(HPO4)(PO4)5(ОН)) с соотношением Ca/Р<1,67. А при минимальных содержаниях Sr образуется гидроксилапатит (Ca10(PO4)6(ОН)2) с соотношением Ca/Р≈1,67. Таким образом, оптимальным диапазоном концентрации ионов стронция для получения карбонатгидроксилапатита является 0÷0,2686, г/л (WSr, масс. % до 20%).

Кроме того, отмечено, что при понижении концентрации кальция и увеличении стронция уменьшается масса образующейся твердой фазы.

В полученных твердых фазах с помощью атомно-эмиссионого анализа было определено содержание стронция. В табл. 5 представлено содержание Sr в полученных осадках. Результаты этого анализа показывают, что в состав полученных образцов входит стронций (табл. 5).

При этом концентрации стронция в осадках прямо пропорционально зависит от концетрации стронций-содержащих агентов в исходном модельном маточном растворе.

Таким образом, заявляемый способ позволяет в условиях, моделирующих синовиальную жидкость, получить Sr-замещенный карбонатгидроксилапатит, приближенный к неорганическому матриксу кости.

Способ получения Sr-содержащего карбонатгидроксилапатита из модельного раствора синовиальной жидкости человека, приближенного к неорганическому матриксу кости, включающий получение неорганического вещества, в искусственно созданной среде для этого готовят модельную среду указанного состава: CaCl2 - 1.3431 - 0, 8059 г/л, Na2HPO4·12H2O - 7.4822 г/л, NaCl - 2,8798 г/л, MgCl2·6H2O - 0.4764 г/л, Na2SO4 - 1.6188 г/л, KCl - 0.3427 г/л, при концентрация ионов Sr - 0÷0,2686 г/л, проводят осаждение при значении pH 7.4 в течение 7 дней, полученный осадок фильтруют, сушат при температуре 100°C в течение 4 часов.



 

Похожие патенты:

Изобретение относится к области инкапсуляции. Описан способ получения нанокапсул антибиотиков.

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ инкапсуляции лекарственного препарата методом осаждения нерастворителем, отличающийся тем, что в качестве ядер нанокапсул используются цефалоспориновые антибиотики, в качестве оболочки - полудан при соотношении оболочка:ядро 3:1, при этом к водному полудану добавляют порошок цефалоспоринового антибиотика и препарат Е472 с в качестве поверхностно-активного вещества, при перемешивании после растворения компонентов реакционной смеси по каплям приливают петролейный эфир, полученную суспензию нанокапсул отфильтровывают, промывают петролейным эфиром и сушат.

Группа изобретений относится к способу получения наноразмерных порошков лекарственных веществ, включающему перевод исходного вещества в газовую фазу, организацию направленного потока молекул соединения и последующую конденсацию вещества в виде наноразмерных частиц на охлаждаемой поверхности, и устройству для его осуществления.

Использование: для изготовления полевых эмиссионных элементов на основе углеродных нанотрубок. Сущность изобретения заключается в том, что прибор на основе углеродосодержащих холодных катодов, содержит полупроводниковую подложку, на поверхности которой сформирован изолирующий слой, катодный узел, расположенный над изолирующим слоем, состоит из токоведущего слоя катодного узла, каталитического слоя и массива углеродных нанотрубок (УНТ), расположенных на поверхности каталитического слоя перпендикулярно его поверхности, опорно-фокусирующую система, состоящая из первого диэлектрического, затворного электропроводящего и второго диэлектрического слоев, содержит сквозную полость, анодный токоведущий слой, расположенный на внешней поверхности второго диэлектрического слоя опорно-фокусирующей системы, в котором сформированы сквозные технологические отверстия, катодный узел дополнительно содержит слой проводящего материала, который расположен в сквозной полости на боковой поверхности первого диэлектрического слоя опорно-фокусирующей системы, высота углеродных нанотрубок одинакова по всей площади массива, на поверхности массива углеродных нанотрубок расположен слой интеркалированного материала, а токоведущий слой катодного узла и слой проводящего материала катодного узла обладают адгезионными свойствами.

Изобретение относится к области химической промышленности. Способ включает обработку исходной смеси, содержащей хлорид металла, в токе водяного пара при повышенной температуре.

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ инкапсуляции препарата методом осаждения нерастворителем, отличающийся тем, что в качестве ядер нанокапсул используется L-аргинин или норвалин, в качестве оболочки - альгинат натрия при соотношении оболочка:ядро 3:1 или 1:5, при этом L-аргинин или норвалин медленно по порциям добавляют в суспензию альгината натрия в бутаноле в присутствии препарата Е472с в качестве поверхностно-активного вещества, при перемешивании 1000 об/с, далее приливают гексан, полученную суспензию отфильтровывают и сушат при комнатной температуре.

Изобретение относится к производству термоэлектрических материалов на основе теллуридов висмута и сурьмы. Способ заключается в предварительной очистке исходных компонентов методом вакуумной дистилляции, синтезе исходных компонентов в вакуумированных ампулах при нагреве до плавления и охлаждении, выращивании кристаллов методом вертикальной зонной перекристаллизации с применением высокочастотного нагрева, при этом выращивание кристаллов осуществляют путем не менее двух проходов со скоростью не более 2,5-3 см/ч, высокочастотный нагрев ведут на частоте 1,76 МГц с градиентом температур 200 К/см, а после выращивания кристаллов осуществляют приготовление порошка с наноструктурой размером не более 200 нм, обеспечивающей анизотропию свойств каждой частицы, брикетирование, спекание, а затем горячую экструзию.
Изобретение может быть использовано для визуализации света ультрафиолетового диапазона в системах светодиодов белого света (WLED) и оптических дисплеях. Люминофор синего свечения представляет собой силикат редкоземельных элементов в наноаморфном состоянии состава Ca2Gd8(1-x)Eu8xSi6O26, где 0,001≤х≤0,5, характеризующийся широкой полосой синего излучения с максимумом при 455 нм, полушириной 77 нм, интенсивностью 14000-14263 отн.

Изобретение может быть использовано при изготовлении катализаторов, анодов для производства алюминия, процессоров, электронных устройств для хранения данных, датчиков биомолекул, деталей автомобилей и самолётов, спортивных товаров.

Изобретение относится к оптически прозрачным стеклокристаллическим наноматериалам. Технический результат изобретения - создание прозрачной оксифторидной стеклокерамики, обладающей свойством преобразования инфракрасного излучения в видимое и характеризующейся высокой интенсивностью желтой ап-конверсионной люминесценции.

Изобретение относится к медицине. Описан способ получения биоактивного покрытия с антибактериальным эффектом, который включает электроискровую обработку поверхности подложки обрабатывающим электродом, следующего состава (вес.

Изобретение относится к области медицины, а именно к способу получения биоактивного покрытия с антибактериальным эффектом, включающий электроискровую обработку поверхности токопроводящей подложки обрабатывающим электродом, состоящим из биоактивной добавки в количестве 5-40 вес.%; антибактериальной металлической добавки в количестве 0,5-5 вес.%; и биосовместимого тугоплавкого соединения в количестве остальное, при этом электроискровую обработку проводят при следующих условиях: 100 ≤ Ni ≤ 10000, 10 ≤ f ≤ 100000, 0,01 ≤ v ≤ 0,6, где Ni - мощность единичного импульсного разряда, Вт, f - частота импульсных разрядов, Гц, v - линейная скорость перемещения обрабатывающего электрода, м/мин.
Группа изобретений относится к медицине, конкретно к медицинскому импланту, имеющему, по меньшей мере на части его поверхности, покрытие, имеющее остеоиндуктивный и/или остеокондуктивный покрывающий слой на основе фосфата кальция, где антибиотический ингредиент, который слабо или плохо растворим в водной среде, покрывает остеоиндуктивный и/или остеокондуктивный покрывающий слой участками с пространствами между ними, оставленными свободными, на остеоиндуктивном и/или остеокондуктивном покрывающем слое.

Изобретение относится к медицине и заключается в способе нанесения биокерамических покрытий на имплантат. При осуществлении способа смешивают порошок гидроксиапатита с биологически совместимым связующим веществом в виде фосфатной связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, наносят полученную суспензию на поверхность имплантата, сушат имплантат, проводят термообработку в условиях индукционного нагрева при потребляемой электрической мощности 0,45-0,55 кВт, частоте тока на индукторе 100±10 кГц и продолжительности термообработки 0,5-1,0 мин.

Группа изобретений относится области медицины и может быть использовано для получения антибактериального покрытия на медицинских изделиях. Способ обработки поверхности медицинского изделия включает стадии, на которых: получают коллоидно-диспергированную систему, подвергают медицинское изделие обработке коллоидно-диспергированной системой путем погружения, создают разность потенциалов цепи переменного тока между медицинским изделием в качестве первого электрода и/или вторым электродом, помещенным в коллоидно-диспергированную систему, для превращения погруженной поверхности в оксидную пленку посредством плазменного электролитического оксидирования, при этом превращенная поверхность частично покрывается островками, образованными коллоидно-диспергированными частицами коллоидно-диспергированной системы.

Изобретение относится к медицине. Описан способ получения детонационного биосовместимого покрытия на медицинский имплантат, включающий механическую и химическую подготовку поверхности титанового имплантата, и затем осуществляют формирование покрытия путем напыления порошка гидроксиапатита на титановый имплантат.

Изобретение относится к области медицины, конкретно к способу получения нанокристаллического силикатзамещенного карбонатгидроксиапатита (КГА), который включает смешение растворов солей кальция, фосфата и силиката, отстаивание, фильтрование, промывку от маточного раствора и сушку, при этом смешивают растворы четырехводного нитрата кальция, безводного двузамещенного фосфата аммония, пятиводного метасиликата натрия при соотношении концентраций Ca/(P+Si) равном 1,70, и доле силикат-ионов в общем количестве осадкообразующих анионов ( X S i O 4 4 − = C S i O 4 4 − / ( C P O 4 4 − + C S i O 4 4 − ) ) , составляющей не более 30 мол.

Изобретение относится к медицине, в частности к способу получения лантансодержащего биопокрытия титанового имплантата. Способ получения заключается в предварительной подготовке лантансодержащего порошка, подготовке поверхности титановой основы имплантата, плазменном напылении титанового подслоя на поверхности титановой основы, плазменном напылении порошка гидроксиапатита на титановый подслой, формировании лантансодержащего биопокрытия.

Изобретение относится к области медицины, а именно к способу получения порошкового материала на основе карбонатгидроксиапатита и брушита, который может быть использован для создания новых керамических, композиционных материалов, цементных масс и лечебных паст для травматологии, ортопедии, челюстно-лицевой хирургии и стоматологии.

Изобретение относится к области медицины и созданию новых материалов биомедицинского назначения, которые могут быть использованы при создании биоактивных кальций-фосфатных покрытий на имплантатах, при создании бифазных композитов на основе фосфатов кальция и сплавов титана.

Изобретение относится к медицине, а именно к хирургии. Для этого в брыжейку кишки устанавливают полиэтиленовую трубку.
Наверх