Способ повышения стойкости металлорежущего инструмента из быстрорежущей стали


C21D1/78 - Изменение физической структуры черных металлов; устройства общего назначения для термообработки черных или цветных металлов или сплавов; придание ковкости металлам путем обезуглероживания, отпуска или других видов обработки (цементация диффузионными способами C23C; поверхностная обработка металлов, включающая по крайней мере один процесс, предусмотренный в классе C23, и по крайней мере другой процесс, охватываемый этим подклассом, C23F 17/00; однонаправленное отвердевание эвтектики или однонаправленное разделение эвтектик C30B)

Владельцы патента RU 2580767:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Балтийский государственный технический университет "ВОЕНМЕХ" им. Д.Ф. Устинова (БГТУ "ВОЕНМЕХ") (RU)

Изобретение относится к области обработки черных металлов, а более конкретно к обработке металлорежущего инструмента из быстрорежущей стали. Для повышения стойкости инструмента рабочую часть стандартно термоупрочненного инструмента из быстрорежущей стали подвергают воздействию пульсирующего дозвукового воздушного потока, имеющего частоту 1130-2100 Гц и звуковое давление 120-140 дБ при комнатной температуре в течение 10-20 мин. Изобретение позволило повысить стойкость стандартно термоупрочненного металлорежущего инструмента из быстрорежущей стали в 2-2,5 раза.

 

Заявляемое изобретение относится к области обработки черных металлов, а более конкретно к повышению стойкости металлорежущего инструмента из быстрорежущей стали.

Быстрорежущие стали, такие как сталь Р6М5, обладают способностью сохранять высокую твердость и износостойкость при температурах 600°C и более (красностойкостью), что позволяет в 2-4 раза повысить скорость резания по сравнению с инструментальными сталями, не обладающими красностойкостью.

Их широко используют для изготовления всех видов режущего инструмента, предназначенного для обработки углеродистых и легированных конструкционных сталей, а также инструмента, работающего с ударными нагрузками.

Стандартная упрочняющая термическая обработка подобных изделий из данных сталей заключается в закалке с температуры 1220-1270°C, необходимой для получения в результате нагрева высоколегированного вольфрамом и молибденом аустенита, а после закалочного охлаждения - обладающего высокой теплостойкостью мартенсита и двух или трехкратном отпуске при температуре 550-570°C, вызывающем превращение остаточного аустенита в мартенсит и выделение дисперсных вторичных карбидов.

Износ режущей кромки инструмента в процессе эксплуатации происходит вследствие совокупности таких факторов, как повреждение режущей кромки, происходящее под действием механических и термических нагрузок, изнашивание вследствие сваривания под давлением инструмента и заготовки (адгезия), механическое изнашивание, представляющее собой отрыв частиц режущей кромки под действием внешних сил, а при значительных температурах и угорание материала режущей кромки (тепловое изнашивание). Стойкость обычно оценивается по износу режущей кромки инструмента.

Актуальной является задача повышения стойкости металлорежущего инструмента из быстрорежущих сталей и уменьшения, тем самым, расхода дорогостоящего инструмента, а также увеличения производительности труда.

Известен способ упрочнения изделий из углеродистых, легированных, высоколегированных, быстрорежущих сталей и твердых сплавов (см. патент RU 2100456 C1, 27.12.1997 г. Бюл. №36), включающий нагрев изделия до температуры (0,15-0,95) Ac1, с последующим охлаждением под воздействием акустического поля, создаваемого газоструйным генератором звука, со звуковым давлением 160-180 дБ, частотой акустического поля 450-1500 Гц, при это изделие подвергают обработке холодом до отрицательной температуры, равной 0,5-2,0 температуры конца мартенситного превращения.

Основным недостатком данного известного способа является применение дополнительного нагрева, который создает значительный градиент температур по объему изделия, что приводит к поводке и растрескиванию, а также делает обработку сложной и дорогостоящей. К недостаткам можно отнести существенную трудоемкость способа, требующего быстрого помещения нагретых изделий в резонатор газодинамического генератора звука и потребность в размещении нагревательных печей вблизи генератора.

Наиболее близким по технической сущности к заявляемому изобретению является способ снятия остаточных напряжений на поверхности металлических изделий (см. патент RU 2458155 С1, 10.08.2012 г. Бюл. №22), принятый в качестве ближайшего аналога.

Снятие растягивающих остаточных напряжений на поверхности металлических изделий осуществляют за счет воздействия на них пульсирующего дозвукового воздушного потока, имеющего частоту 1130-2100 Гц и звуковое давление 120-140 дБ при комнатной температуре.

Основным недостатком данного известного способа является отсутствие повышения стойкости металлорежущего инструмента из быстрорежущей стали без обеспечения определенной минимальной продолжительности обработки пульсирующим дозвуковым воздушным потоком.

Перед заявляемым изобретением поставлена задача повысить стойкость металлорежущего инструмента из быстрорежущей стали.

Решение поставленной задачи достигается тем, что рабочую часть стандартно термоупрочненного металлорежущего инструмента из быстрорежущей стали подвергают воздействию пульсирующего дозвукового воздушного потока, имеющего частоту 1130-2100 Гц и звуковое давление 120-140 дБ при комнатной температуре в течение 10-20 минут.

Таким образом изобретение позволило получить технический результат, а именно: повысить стойкость стандартно термоупрочненного металлорежущего инструмента из быстрорежущей стали в 2-2,5 раза.

Заявляемое изобретение реализуется следующим образом:

Стандартно термоупрочненный металлорежущий инструмент из быстрорежущей стали помещают в рабочую камеру установки, где его рабочую часть подвергают воздействию пульсирующего дозвукового воздушного потока, имеющего частоту 1130-2100 Гц и звуковое давление 120-140 дБ при комнатной температуре в течение 10-20 минут. Меньшая продолжительность обработки не приводит к получению технического результата, а более значительная не вызывает дальнейшего повышения стойкости инструмента.

Так, обработка готовых сверл из стали Р6М5 диаметром 9,5 мм осуществлялась воздействием на их рабочую часть пульсирующего дозвукового воздушного потока в течение 15 минут без использования нагрева изделия.

Обработка осуществлялась по двум режимам. При первом режиме частота пульсаций воздушного потока составляла порядка 1130 Гц, а звуковое давление достигало значения 120 дБ.

Второй режим характеризовался частотой пульсаций порядка 1200 Гц и звуковым давлением до 130 дБ. При данном режиме существенно возрастает скорость газового потока без значительного роста частоты пульсаций.

Стойкость инструмента определялась по сравнительному износу режущей кромки.

Исследования показали, что при обработке по первому режиму стойкость инструмента выше в 2 раза, а при обработке по второму режиму - в 2,5 раза, чем у стандартно термоупрочненного.

Воздействие пульсирующего дозвукового воздушного потока позволяет инициировать процессы, соответствующие начальным стадиям распада мартенсита - выделение из него высокодисперсных карбидных частиц - дисперсионное твердение. Наличие значительного числа мелких карбидных частиц сдвигает процесс коагуляции карбидов, а следовательно и разупрочнение в область более высоких температур. Кроме того, можно предположить, что в ходе описанного воздействия на быстрорежущий инструмент происходит продолжение мартенситного превращения остаточного аустенита.

Данный способ позволяет применять обработку пульсирующим газовым потоком к режущему и другому термоупрочненному инструменту из быстрорежущей стали.

Таким образом изобретение позволило получить технический результат, а именно: повысить стойкость стандартно термоупрочненного металлорежущего инструмента из быстрорежущей стали в 2-2,5 раза.

Способ обработки металлорежущего инструмента из быстрорежущей стали, включающий воздействие на рабочую часть термоупрочненного инструмента пульсирующим дозвуковым воздушным потоком, имеющим частоту 1130-2100 Гц и звуковое давление 120-140 дБ при комнатной температуре в течение 10-20 мин.



 

Похожие патенты:

Изобретение относится к машиностроению, в частности к области термической обработки инструмента. Способ упрочнения разделительного штампа включает лазерную закалку боковых рабочих поверхностей путем оплавления припусков за один проход при перемещении луча лазера по стыку припусков и последующий лазерный отпуск.

Изобретение относится к области металлургии и главным образом к способам термообработки быстрорежущей стали для упрочнения режущего инструмента, и который изготовлен преимущественно из прокованной или порошковой быстрорежущей стали.

Изобретение относится к технологии объемного упрочнения и может быть использовано в машиностроении и других отраслях промышленности, где используется режущий инструмент, технологическая оснастка и др.
Изобретение относится к области термической обработки и может найти применение в машиностроении. Для повышения качества поверхности деталей благодаря повышению эффективности действия титана по раскислению расплава, особенно качества поверхности острых кромок инструмента с сохранением их высокой твердости, осуществляют погружение инструмента в расплав соли, нагревают его до температуры термообработки и затем охлаждают, при этом расплав соли в ванне раскисляют титаном.

Изобретение относится к области металлургии и может быть использовано для термической обработки инструмента из кобальтсодержащей быстрорежущей стали. Для повышения эксплуатационной стойкости инструмента осуществляют закалку путем нагрева инструмента до температуры 1190-1220°C с последующим охлаждением водой и отпуск за 5-7 циклов путем нагрева до температуры 500-520°C при длительности выдержки при температуре нагрева в каждом цикле 1-3 ч.

Изобретение относится к металлургии, преимущественно к области термомеханической обработки низколегированных сталей, и может быть использовано для изготовления ответственных элементов конструкций, крепежных изделий различного назначения.
Изобретение относится к области машиностроения и может быть использовано для термической обработки режущего инструмента, например протяжек небольшого диаметра, метчиков и других мелких инструментов.
Изобретение относится к области металлообработки и может найти применение в машиностроении. Техническим результатом изобретения является улучшение эксплуатационных характеристик оправок за счет значительного повышения их жёсткостных и демпфирующих параметров.

Изобретение относится к инструментальному производству, а именно изготовлению металлорежущего инструмента с применением наплавки. Способ изготовления наплавленного режущего инструмента включает механическую и термическую обработку корпуса, наплавку быстрорежущей сталью рабочего слоя, его поверхностное пластическое деформирование и высокотемпературный отпуск.
Изобретение относится к области термической обработки быстрорежущих сталей и может быть использовано преимущественно для термической обработки длинномерного инструмента и инструмента сплошной формы.

Изобретение относится к получению дисперсно-упрочненных ультрамелкозернистых материалов путем обработки высокоскоростным потоком порошковых частиц. Способ включает обработку заготовки из металла или сплава потоком порошковых частиц, разогнанных энергией взрыва заряда взрывчатого вещества, в режиме сверхглубокого проникания частиц.

Изобретение относится к области металлургии. Для повышения поверхностной твердости деталей без нарушения качества поверхности деталь подвергают ультразвуковому воздействию в емкости с жидкой средой с помещенным в ней источником акустического излучения с частотой акустических колебаний fрц 20-30 кГц в течение τ=30-45 минут с амплитудой колебательных смещений ξ=7-40 мкм.

Изобретение относится к ножницам для резки длинномерного проката. Ножницы содержат по меньшей мере одно лезвие, изготовленное из стали, химическая композиция которой, выраженная в массовых процентах, состоит из 0,45-0,55% углерода, 0,10-0,30% кремния, 0,20-0,50% марганца, 4,00-5,50% хрома, 2,00-3,00% молибдена, 0,45-0,65% ванадия, остальное - железо и неизбежные примеси и микроструктура которой состоит из отпущенного мартенсита.

Изобретение относится к способу нанесения наноалмазного материала комбинированной электромеханической обработкой и может быть использовано в машиностроительной, авиационной, автомобильной и других отраслях промышленности.
Изобретение относится к области черной металлургии, конкретнее к способам обработки высокопрочных аустенитных сталей, и может быть использовано, например, для изготовления высоконагруженных деталей в машиностроении.

Изобретение относится к области обработки металлов давлением. .
Изобретение относится к черной металлургии, конкретнее к эксплуатации оборудования доменной печи. .

Изобретение относится к упрочнению металлических деталей и может быть использовано для повышения долговечности и ресурса деталей. .

Изобретение относится к обработке металлов давлением с использованием интенсивной пластической деформации и предназначено для получения нанокристаллической структуры материалов с увеличенным уровнем механических свойств.

Изобретение относится к изготовлению листа. Для получения стального листа с мартенситной структурой, в которой средний размер реек меньше 1 микрометра, средний коэффициент удлинения реек составляет от 2 до 5, предел упругости - более 1300 МПа, предел прочности превышает (3220(C)+958) мегапаскалей, где (С) содержание углерода в мас.%, поставляют полуфабрикат из стали, содержащей, мас.%: 0,15≤С≤0,40; 1,5%≤Mn≤3%; 0,005≤Si≤2; 0,005≤Al≤0,1; 1,8≤Cr≤4; 0≤Mo≤2, при этом 2,7≤0,5(Mn)+(Cr)+3(Mo)≤5,7; S≤0,05; Р≤0,1, и необязательно: 0≤Nb≤0,050; 0,01≤Ti≤0,1; 0,0005≤В≤0,005; 0,0005≤Са≤0,005, остальное железо и неизбежные примеси.
Наверх