Ротор электромашины

Изобретение относится к области электротехники, в частности к электромашиностроению, и может быть использовано при проектировании электрогенераторов и электродвигателей с высокой частотой вращения. Технический результат: повышение прочности ротора, снижение моментов инерции ротора, снижение динамических нагрузок на подшипники электромашины. Ротор электромашины содержит полый вал из немагнитного материала и надетый на него магнитный индуктор цилиндрической формы, содержащий постоянные магниты, полюса из материала с высокой магнитной проницаемостью и немагнитные металлические клинья. Полый вал сформирован из дисков равного сопротивления с одинаковым внешним диаметром, выполненных из немагнитного материала, жестко скрепленных торцевыми поверхностями друг с другом. Индуктор содержит магнитные планки, ориентированные вдоль продольной оси ротора, выполненные из постоянных магнитов, намагниченных в тангенциальном направлении, чередующихся с полюсами, выполненными как планки. Магнитные планки зафиксированы немагнитными клиньями, выполненными в виде желобчатых планок, размещенных над магнитными планками. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к области электротехники, в частности к электромашиностроению, и может быть использовано при проектировании электрогенераторов и электродвигателей с высокой частотой вращения.

Известен ротор электромашины, содержащий полый вал из немагнитного материала и надетый на него цилиндр, выполненный из магнитомягкого материала с высокой магнитной проницаемостью, в продольных радиальных пазах которого размещены постоянные магниты, зафиксированные немагнитными металлическими клиньями, внешняя поверхность которых соответствует кривизне внешней поверхности цилиндра (Балагуров В.А., Галтеев Ф.Ф. Электрические генераторы с постоянными магнитами. - М.: Энергоатомиздат, 1988, с. 30, рис. 1.27).

Недостатком известного устройства является невозможность обеспечения высокой мощности при ограниченных массогабаритных параметрах устройства, которую можно было бы получить за счет повышения частоты вращения ротора, в связи с недостаточной механической прочностью ротора, приводящей к возможности его разрушения при эксплуатации в режиме повышенных частот вращения.

Известен также ротор электрогенератора, содержащий втулку из немагнитного материала и надетый на нее цилиндр, составленный полюсами, выполненными из магнитомягкого материала, чередующимися с постоянными магнитами, радиальные наружные торцы которых перекрыты немагнитными металлическими клиньями, внешняя поверхность которых соответствует кривизне внешней поверхности цилиндра. При этом немагнитная втулка, цилиндр и немагнитные клинья скреплены вакуумно-диффузионной сваркой (RU 2386200, 2010).

Недостатком известного устройства является невозможность использования ротора значительной осевой длины из-за прогиба для создания высокооборотной электромашины большой мощности.

Известен также ротор электромашины, содержащий полый вал из немагнитного материала и надетый на него магнитный индуктор цилиндрической формы, содержащий постоянные магниты, полюса из материала с высокой магнитной проницаемостью и немагнитные металлические клинья. Краевые участки ротора выполнены в виде полых цилиндрических немагнитных втулок, внешний диаметр которых равен диаметру ротора, при этом длина опорной поверхности этих втулок и ротора превышает длину индуктора (RU 2385524, 2010).

Недостатком известного устройства является недостаточная прочность ротора при высоких окружных скоростях.

Задачей, на решение которой направлено предлагаемое техническое решение, является повышение прочности ротора электромашины при высоких окружных скоростях, уменьшение массы и массовых моментов инерции ротора и, следовательно, динамических нагрузок на подшипники электромашины.

Технический результат, который достигается при решении поставленной задачи, выражается в повышении окружной скорости ротора и тем самым снижении массы ротора, массовых моментов инерции ротора, снижении динамических нагрузок на подшипники электромашины за счет уменьшения гироскопического момента, в повышении ресурса электромашины при работе на повышенных и высоких частотах вращения с минимальным прогибом вала путем использования газового слоя в зазоре между немагнитной изоляционной втулкой, размещенной в статоре и зафиксированной в торцевых щитах, и ротором электромашины для организации газового подшипника и пассивных магнитных подшипников и за счет этого отказа от подшипников качения. Это особенно существенно для длинных мощных электромашин.

Для решения поставленной задачи в роторе электромашины, содержащем полый вал из немагнитного материала и надетый на него магнитный индуктор цилиндрической формы, содержащий постоянные магниты, полюса из материала с высокой магнитной проницаемостью и немагнитные металлические клинья, согласно изобретению полый вал сформирован из дисков равного сопротивления, с одинаковым внешним диаметром, выполненных из немагнитного материала, жестко скрепленных торцевыми поверхностями друг с другом, при этом индуктор содержит магнитные планки, ориентированные вдоль продольной оси ротора, выполненные из постоянных магнитов, намагниченных в тангенциальном направлении, чередующихся с полюсами, выполненными как планки, при этом магнитные планки зафиксированы немагнитными клиньями, выполненными в виде желобчатых планок, размещенных над магнитными планками, кроме того, диски равного сопротивления, полюса и немагнитные клинья жестко скреплены друг с другом, например вакуумно-диффузионной сваркой, а магнитные планки жестко связаны с упомянутой сборкой, например, установлены с натягом между соседними полюсами, кроме того, один торец ротора жестко скреплен, предпочтительно сварен, с днищем торцевого стакана, выполненного из немагнитного материала, внешняя поверхность которого соответствует поверхности ротора, причем обращенная наружу поверхность его днища жестко скреплена с валом, соосным продольной оси ротора, при этом второй торец ротора жестко скреплен, предпочтительно сварен, с торцевой втулкой, выполненной из немагнитного материала, внешняя поверхность которой соответствует поверхности ротора, кроме того, этот торец ротора и внутренняя поверхность втулки жестко скреплены, предпочтительно склеены, соответственно с дном и стенками фиксирующего стакана, предпочтительно алюминиевого. Кроме того, поверхность ротора, торцевого стакана и торцевой втулки снабжены бандажом, единым для названных поверхностей, выполненным из высокопрочного немагнитного материала, например углеволокна.

Сопоставительный анализ существенных признаков предлагаемого технического решения и существенных признаков прототипа и аналогов свидетельствует о его соответствии критерию «новизна».

При этом существенные признаки отличительной части формулы изобретения решают следующие функциональные задачи.

Признак, указывающий что «полый вал сформирован из дисков равного сопротивления, с одинаковым внешним диаметром, выполненных из немагнитного материала, жестко скрепленных торцевыми поверхностями друг с другом», формирует прочную и легкую конструкцию внутренней втулки и направляет магнитный поток магнитных планок на наружную поверхность полюса.

Признаки, указывающие что «индуктор содержит магнитные планки, ориентированные вдоль продольной оси ротора, выполненные из постоянных магнитов, намагниченных в тангенциальном направлении, чередующихся с полюсами, выполненными как планки, при этом магнитные планки зафиксированы немагнитными клиньями, выполнеными в виде желобчатых планок, размещенных над магнитными планками», формируют эффективную магнитную систему индуктора с тангенциальным направлением намагниченности постоянных магнитов при минимальной массе, обеспечивают возможность работы электрической машины.

Признаки, указывающие что «диски равного сопротивления, полюса и немагнитные клинья жестко скреплены друг с другом, например вакуумно-диффузионной сваркой» формируют жесткую и прочную конструкцию ротора и предотвращают его деформацию от действия центробежных сил.

Признак, указывающий что «магнитные планки жестко связаны с упомянутой сборкой, например, установлены с натягом между соседними полюсами», предотвращает перемещение магнитных планок в роторе и тем самым препятствует разбалансировке ротора при высоких окружных скоростях.

Признаки, указывающие что «один торец ротора жестко скреплен, предпочтительно сварен, с днищем торцевого стакана, выполненного из немагнитного материала, внешняя поверхность которого соответствует поверхности ротора, причем обращенная наружу поверхность его днища жестко скреплена с валом, соосным продольной оси ротора», позволяют передавать значительный крутящий момент от приводного двигателя к индуктору или наоборот, использовать поверхности цилиндрического стакана и ротора в качестве цапфы газового подшипника, увеличить площадь его опорной поверхности и тем самым значительно повысить несущую способность, жесткость газового слоя подшипника, повысить устойчивость ротора к «полускоростному вихрю», использовать внутреннюю поверхность стакана для формирования пассивного магнитного подшипника.

Признаки, указывающие что «второй торец ротора жестко скреплен, предпочтительно сварен, с торцевой втулкой, выполненной из немагнитного материала, внешняя поверхность которой соответствует поверхности ротора, кроме того, этот торец ротора и внутренняя поверхность втулки жестко скреплены, предпочтительно склеены, соответственно с дном и стенками фиксирующего стакана, предпочтительно алюминиевого», позволяют использовать поверхность цилиндрической втулки и ротора в качестве цапфы газового подшипника, увеличить площадь его опорной поверхности и тем самым значительно повысить несущую способность, жесткость газового слоя подшипника, повысить устойчивость ротора к «полускоростному вихрю», использовать внутреннюю поверхность втулки для формирования пассивного магнитного подшипника, а также зафиксировать магнитные планки индуктора от осевого смещения.

Признак, указывающий что «поверхность ротора, торцевого стакана и торцевой втулки снабжены бандажом, единым для названных поверхностей, например, выполненным из высокопрочного немагнитного материала, например углеволокна» позволяет увеличить прочность, индуктора, торцевого стакана и втулки, значительно уменьшить их деформацию в радиальном направлении от действия центробежных сил и тем самым предотвратить заклинивание газового подшипника при высоких окружных скоростях ввиду малости радиального зазора газового подшипника.

Заявленное устройство иллюстрируется чертежами, где на фиг. 1 показан продольный разрез ротора электромашины, и на фиг. 2 - его поперечное сечение.

На чертежах показаны диски 1 равного сопротивления, магниты 2, намагниченные в тангенциальном направлении, полюса 3, немагнитные клинья 4, торцевой стакан 5, цилиндрическая втулка 6, фиксирующий стакан 7, приводной вал 8, бандаж 9, магниты радиально-упорных магнитных подшипников 10, 11.

Ротор электромашины содержит полый вал, сформированный из дисков 1 равного сопротивления, жестко скрепленных друг с другом торцевыми поверхностями, например сваркой, с одинаковым внешним диаметром, выполненных из немагнитного материала, например из нержавеющей стали или титана, на который надет магнитный индуктор цилиндрической формы.

Индуктор содержит планки, ориентированные вдоль продольной оси ротора, выполненные из постоянных магнитов 2, которые образуют составную втулку, при этом планки размещены так, что между магнитами 2, намагниченными в тангенциальном направлении, размещены полюса 3 с возможностью образования магнитной схемы с тангенциальным направлением намагниченности. Полюса 3 выполнены из материала с высокой магнитной проницаемостью, например из сплава 48КНФ, и немагнитные металлические клинья 4, например, из нержавеющей стали или титана, контактируют друг с другом своими продольными боковыми кромками и жестко скреплены друг с другом. Внутренние поверхности полюсов 3 конгруэнтны обращенной к ним поверхности соответствующих участков дисков 1, а внешние составляют цилиндрическую поверхность.

При этом магниты 2 с тангенциальным направлением намагниченности уперты в обращенные к ним внутренние поверхности немагнитных клиньев 4. Полюса 3 внутренними поверхностями жестко скреплены с наружными цилиндрическими поверхностями дисков 1 равного сопротивления. Торцевые поверхности полюсов 3, немагнитных металлических клиньев 4 жестко скреплены с днищами цилиндрических торцевых стакана 5 из немагнитного материала и втулки 6 из немагнитного материала, внешний диаметр которых соответствует диаметру ротора. Торцевой стакан 5 снабжен приводным валом 8.

Днище торцевого стакана 5 жестко скреплено с торцевой поверхностью немагнитных клиньев 4, полюсов 3 и крайнего диска равного сопротивления 1, например, сваркой и с приводным валом 8, соосным продольной оси диска 1, что позволяет передавать на ротор значительные крутящие моменты. Внешняя поверхность ротора, образованная поверхностью полюсов 3, немагнитных клиньев 4, цилиндрического торцевого стакана 5 и цилиндрической втулки 6, снабжена бандажом 9 из высокопрочного немагнитного материала, например углеволокна. При этом внутренняя поверхность стенок торцевых стакана 5 и втулки 6 выполнена с возможностью их использования как обоймы радиально-упорных магнитных подшипников 10, 11.

На внутренней поверхности стенок торцевых стакана 5 и втулки 6 жестко закреплены составные постоянные магниты радиально-упорных подшипников 10, 11 одинаковой высоты, каждый из которых содержит, как минимум, три кольцевых постоянных магнита, намагниченных с возможностью образования магнитной схемы Хальбаха. Между торцевыми поверхностями магнитов 11 и магнитами радиально упорного подшипника размещен стакан 7 для предотвращения осевого смещения магнитов 2.

Ротор изготавливают в следующем порядке (фиг. 1, 2). Диски 1 равного сопротивления сваривают между собой по наружному диаметру и протачивают после сварки. На внешнюю поверхность дисков 1 устанавливают равномерно полюса 3 и сваривают их с дисками 1, например, вакуумно-диффузионной сваркой. Подбор материалов позволяет использовать вакуумно-диффузионную сварку для получения заготовки ротора, представляющей из себя монолитную конструкцию (после первого этапа вакуумно-диффузионной сварки), включающую полюса 3 из стали с высокой магнитной проницаемостью, составной вал из немагнитного материала. Между полюсами 3 устанавливают технологические планки-имитаторы постоянных магнитов, а на них устанавливают немагнитные клинья 4 и сваривают их боковые поверхности с полюсами 3, например, электронно-лучевой сваркой. Из немагнитного материала, например, нержавеющей стали, изготавливают цилиндрические торцевые стакан 5 и втулку 6. К торцам составного кольца, состоящего из полюсов 3, немагнитных клиньев 4 и крайнего диска 1 соосно устанавливают и приваривают торцевой стакан 5. К торцу составного кольца, состоящего из полюсов 3 и немагнитных клиньев 4, соосно устанавливают и приваривают торцевую втулку 6. Охлаждают планки постоянных магнитов 2 и вставляют их в пазы сваренной конструкции полюсов 3, немагнитных клиньев 4, составных дисков 1, стакана 5 и втулки 6. Устанавливают во внутрь цилиндрической втулки 6 на клей торцевой стакан 7. На наружную поверхность ротора, образованную полюсами 3, немагнитными клиньями 4, стаканом 4 и втулкой 6, наматывают бандаж 9 из углеволокна и пропитывают его твердеющими синтетическими смолами. Во внутрь торцевых стакана 5 и втулки 6 вклеивают кольцевые постоянные магниты радиально-упорных магнитных подшипников 10, 11. Ротор электромашины подвергают динамической балансировке.

Заявленное устройство работает следующим образом (см. фиг. 1). При вращении ротора в цилиндрических втулках (торцевых стакане 5 и втулке 6), составных дисках 1, полюсах 3 и немагнитных клиньях 4 возникают напряжения от действия центробежных сил и они тем больше, чем выше частота вращения ротора. Диски 1 равного сопротивления препятствуют расширению обода диска 1, полюсов 3 и немагнитных клиньев 4 от действия центробежных сил и тем самым снижают напряжения в них. Магнитные планки (магниты) 2 под действием центробежных сил создают значительные напряжения в составном кольце, состоящем из полюсов 3, немагнитных клиньев 4 и составных дисков 1. Для повышения прочности составного кольца на его наружную поверхность намотан бандаж 9 из высокомодульного материала, например углеволокна. При отсутствии центрального отверстия в дисках 1 напряжения минимальны (отсутствует эффект «булавочного укола»). Крутящий момент от приводного двигателя на ротор передается от приводного вала 8 через торец стакана 5, полюса 3 и немагнитные клинья 4. Работа электромашины не отличается от работы известных устройств аналогичного назначения.

1. Ротор электромашины, содержащий полый вал из немагнитного материала и надетый на него магнитный индуктор цилиндрической формы, содержащий постоянные магниты, полюса из материала с высокой магнитной проницаемостью и немагнитные металлические клинья, отличающийся тем, что полый вал сформирован из дисков равного сопротивления, с одинаковым внешним диаметром, выполненных из немагнитного материала, жестко скрепленных торцевыми поверхностями друг с другом, при этом индуктор содержит магнитные планки, ориентированные вдоль продольной оси ротора, выполненные из постоянных магнитов, намагниченных в тангенциальном направлении, чередующихся с полюсами, выполненными как планки, при этом магнитные планки зафиксированы немагнитными клиньями, выполнеными в виде желобчатых планок, размещенных над магнитными планками, кроме того, диски равного сопротивления, полюса и немагнитные клинья жестко скреплены друг с другом, например, вакуумно-диффузионной сваркой, а магнитные планки жестко связаны с упомянутой сборкой, например, установлены с натягом между соседними полюсами, кроме того, один торец ротора жестко скреплен, предпочтительно сварен, с днищем торцевого стакана, выполненного из немагнитного материала, внешняя поверхность которого соответствует поверхности ротора, причем обращенная наружу поверхность его днища жестко скреплена с валом, соосным продольной оси ротора, при этом второй торец ротора жестко скреплен, предпочтительно сварен, с торцевой втулкой, выполненной из немагнитного материала, внешняя поверхность которой соответствует поверхности ротора, кроме того, этот торец ротора и внутренняя поверхность втулки жестко скреплены, предпочтительно склеены, соответственно с дном и стенками фиксирующего стакана, предпочтительно алюминиевого.

2. Ротор электромашины по п. 1, отличающийся тем, что поверхность ротора, торцевого стакана и торцевой втулки снабжены бандажом, единым для названных поверхностей, выполненным из высокопрочного немагнитного материала, например углеволокна.



 

Похожие патенты:

Изобретение относится к области электротехники, в частности к электромашиностроению, и может быть использовано при проектировании электрогенераторов и электродвигателей с высокой частотой вращения.

Изобретение относится к области двигателестроения и может быть использовано при освоении космического пространства. Технический результат - обеспечение управления траекторией космического аппарата.

Изобретение относится к электротехнике. Технический результат - повышение надёжности.

Изобретение относится к электротехнике, в частности к роторам электрических машин, содержащим постоянные магниты. Технический результат - повышение КПД электрической машины.

Изобретение относится к области электротехники и может быть использовано в электрических приводах транспортных средств. Техническим результатом является обеспечение высокого отношения частот вращения при постоянной мощности.

Изобретение относится к ротору для электродвигателя со встроенными постоянными магнитами, который используется, например, для электрических транспортных средств, гибридных транспортных средств и станков.

Изобретение относится к ротору для электрической машины. Технический результат - повышение эффективности охлаждения ротора.

Изобретение относится к энергомашиностроению и может быть использовано в электрических генераторах с постоянными магнитами. Технический результат: повышение синусоидальности кривой магнитной индукции в воздушном зазоре и снижение омических потерь в электрической машине от высших гармоник, а также снижение амплитуды высших гармоник.

Изобретение касается электрической машины с жидкостным охлаждением. Технический результат - повышение эффективности охлаждения.

Настоящее изобретение касается сдвоенного двигателя. Технический результат - повышение технологичности сдвоенного двигателя.

Изобретение относится к области электротехники, в частности к электромашиностроению, и может быть использовано при проектировании электрогенераторов и электродвигателей с высокой частотой вращения. Технический результат - повышение прочности ротора электромашины при высоких окружных скоростях, снижение массы, массовых моментов инерции ротора, снижение динамических нагрузок на подшипники электромашины. Ротор электромашины содержит полый вал из немагнитного материала и надетый на него магнитный индуктор цилиндрической формы, содержащий постоянные магниты, чередующиеся с полюсами из материала с высокой магнитной проницаемостью. Полый вал сформирован из дисков равного сопротивления с одинаковым внешним диаметром, выполненных из материала с высокой магнитной проницаемостью, жестко скрепленных торцевыми поверхностями друг с другом. Индуктор содержит магнитные планки, ориентированные вдоль продольной оси ротора, выполненные из постоянных магнитов, намагниченных в радиальном направлении, чередующихся со вставками из немагнитного материала, выполненными как планки. Полюса выполнены в виде желобчатых планок, размещенных над магнитными планками. 1 з.п. ф-лы, 2 ил.

Изобретение относится к герметизированным узлам статора, предназначенным для применения в двигателях с электрическим приводом, таких как двигатель компрессора с электроприводом. Технический результат - снижение потерь на вихревые токи. Герметизированный узел статора включает статор, содержащий сердечник и концевую зону, и керамический цилиндр, ограничивающий поверхность сердечника статора. Концевая зона статора расположена смежно с сердечником статора и содержит лобовые части обмотки статора. При этом в концевой зоне статора расположена ограничительная стенка статора. Керамический цилиндр и ограничительная стенка статора ограничивают внутреннее пространство, предназначенное для установки ротора, причем указанная стенка статора имеет внутреннюю поверхность, обращенную к зоне расположения лобовых частей обмотки статора, и наружную поверхность, обращенную к внутреннему пространству, ограниченному указанной стенкой статора и указанным керамическим цилиндром. При этом по меньшей мере часть указанной внутренней поверхности имеет защитный слой, содержащий проводящий металл, а указанная стенка статора содержит коррозионно-стойкий металл. 3 н. и 20 з.п. ф-лы, 6 ил.

Изобретение относится к области электротехники, а именно к низкооборотным электрическим генераторам, и может быть использовано, в частности, в ветроэнергетических установках. Технический результат - упрощение сборки генератора. В магнитоэлектрическом генераторе ротор снабжен постоянными магнитами, а статор содержит две параллельные пластины, между которыми размещены кольцевые обмотки. Обмотки выполнены в форме равнобедренных трапеций, боковые стороны которых расположены радиально относительно оси вращения ротора. Участки обмоток в основаниях трапеций выгнуты по дуге. Ротор выполнен из двух закрепленных на валу параллельных дисков, на каждом из которых на обращенных друг к другу поверхностях размещены кольцеобразные ряды постоянных магнитов, полярность которых в каждом ряду чередуется. Полюса постоянных магнитов одного ряда обращены к противоположным полюсам постоянных магнитов другого ряда и смещены на половину ширины магнитов. Кольцевые обмотки вставлены друг в друга с образованием модулей, причем расстояние l между участками кольцевых обмоток в основаниях трапеций превышает ширину b кольцеобразного ряда постоянных магнитов. Между кольцевыми обмотками размещена дополнительная плоская кольцевая обмотка в форме равнобедренной трапеции, боковые стороны которой расположены в одной плоскости между боковыми сторонами других кольцевых обмоток. 7 ил.

Изобретение относится к области ветроэнергетики, в частности к ветроэлектрогенераторам сегментного типа. Технический результат - уменьшение массы и габаритов ветроэлектрогенератора. Статор ветроэлектрогенератора содержит вращающееся основание катушки, магнитопроводы, источники магнитного поля, два ротора-ветроколеса, установленные на ферромагнитной перекладине с возможностью магнитного контакта с магнитопроводами. На вращающемся основании последовательно установлены нижний магнитопровод, первый источник магнитного поля, ферромагнитная перекладина, второй источник магнитного поля, верхний магнитопровод. При этом участки ферромагнитной перекладины, расположенные между источниками возбуждения и роторами, снабжены рабочими катушками. 3 ил.

Изобретение относится к электромашиностроению и может быть использовано при проектировании и изготовлении высокооборотных электрических машин с постоянными магнитами на роторе. Технический результат - повышение технологичности изготовления ротора. Первоначально изготавливают узел из магнитопровода с закрепленными на нем магнитами и установленным бандажом из высокопрочных волокон, после чего собранный узел устанавливают на вал. При этом установка бандажа на магниты и узла целиком на вал осуществляется с цилиндрическим натягом. Подбор величин натягов обеспечивает передачу крутящего момента между магнитами и валом, а также позволяет управлять напряженно-деформированным состоянием изделия при сборке и при работе на рабочей скорости вращения. Бандаж на магнитах изготавливают из высокопрочных волокон в виде цельного кольца или в виде нескольких колец, которые устанавливаются на один или несколько рядов магнитов. Запрессовка бандажа на магниты происходит по специальной оправке. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области электротехники, в частности к электрогенераторам постоянного тока. Технический результат - повышение рабочего магнитного потока. Магнитоэлектрическая машина содержит ротор с постоянными магнитами и статор, представляющий собой магнитопровод с пазами, в которых размещена трехфазная обмотка. На роторе закреплены постоянные магниты, причем число магнитных полюсов ротора равно числу магнитных полюсов трехфазной обмотки статора. Ротор представляет собой цилиндр, выполненный из двух частей: верхней и внутренней. Внутренняя часть ротора выполнена в виде цилиндра и изготовлена из ферромагнетика, а внешняя часть выполнена в виде полого цилиндра, в котором выполнены отверстия для размещения в них постоянных магнитов, и изготовлена из немагнитного материала. Внутренняя и внешняя части цилиндрического ротора жестко скреплены между собой. 4 ил.

Изобретение относится к электротехнике, а именно к однофазным асинхронным электродвигателям с пусковой обмоткой, и может быть использовано при создании электрических машин для бытовой техники и электроинструмента. Технический результат: повышение пускового момента однофазного асинхронного электродвигателя, что обеспечивает его надежный пуск при наличии увеличенной нагрузки на валу. Однофазный асинхронный электродвигатель содержит ротор и статор с пазами, в которых размещены основная и вспомогательная обмотки со смещением магнитных осей по отношению друг к другу на половину полюсного деления. В статоре в области пазов, расположенных в зонах магнитных осей основной обмотки, размещены дополнительные обмотки, магнитные оси которых направлены в радиальном направлении ярма статора. 6 ил.

Изобретение относится к электротехнике, а именно к электрическим машинам униполярного типа. Мотор-генератор содержит множество статорных колец, расположенных вокруг центральной оси; катушки якоря, сцепленные с пазами статорных колец; одну или более катушек возбуждения, каждая из которых окружает центральную ось; ротор мотора-генератора, окружающий статор и содержащий множество сегментов ротора, каждый из которых выполнен с возможностью замыкания магнитной цепи между первым и вторым статорными кольцами с пазами и отделен от других сегментов ротора немагнитным материалом; цилиндрический составной ротор, окружающий n-полюсный статор, определяющий n каналов статора и группу катушек якоря, соединенных с каждым каналом статора, причем каждая группа катушек якоря выполнена с возможностью двунаправленного обмена электроэнергией с соответствующим преобразователем переменного тока в постоянный ток в n-канальном блоке электропитания. Технический результат состоит в расширении функциональных возможностей униполярных машин и повышении их эффективности. 3 н. и 4 з.п. ф-лы, 21 ил.

Изобретение относится к электрическим двигателям с возвратно-поступательным движением якоря. Технический результат: повышение надежности за счёт обеспечения защиты постоянных магнитов от посторонних механических воздействий. Электродвигатель содержит цилиндрический корпус 1, индуктор (статор) 2, по крайней мере две центрирующие опоры 3, а также якорь, который установлен в корпусе 1 с возможностью возвратно-поступательного движения вдоль оси корпуса. Якорь содержит шток 4, множество постоянных магнитов 5, множество разделительных колец 6 и множество цилиндрических втулок 7. Шток 4 и кольца 6 выполнены из диамагнитного материала. Магниты 5 изготовлены из редкоземельных элементов с поперечным намагничиванием. Втулки 7 выполнены из ферромагнитного материала. Втулки 7 и кольца 6 расположены на штоке 4 с чередованием друг относительно друга, так что любые две смежные втулки 7 своими обращенными друг к другу торцами совместно с внутренней поверхностью расположенного между ними разделительного кольца 6 образуют капсулу, в которой свободно расположен соответствующий магнит 5 с ориентацией его полюсов вдоль оси корпуса 1. При этом любые два смежных магнита 5 установлены с ориентацией друг к другу одинаковыми полюсами. 1 з.п. ф-лы, 1 ил.

Изобретение относится к фазному ротору с улучшенным охлаждением для вращающейся электрической машины и к машине, содержащей такой ротор. Технический результат - повышение эффективности охлаждения. Ротор (1) вращающейся электрической машины вытянут вдоль продольной оси (X) и содержит явновыраженные полюсы (3), имеющие полюсные башмаки (3a), и внутренние охлаждающие каналы (5), проходящие по оси через по меньшей мере один полюсный башмак (3a). При этом охлаждающие каналы (5) разделены внутри полюсного башмака (3a) ребрами (4). 2 н. и 10 з.п. ф-лы, 5 ил.
Наверх