Способ и устройство для идентификации короткого замыкания посредством дифференциальной токовой защиты

Использование: в области электротехники. Технический результат - повышение чувствительности, надежности и быстродействия защиты. Способ содержит измерение полных токов на двух концах системы с двухконцевой линией и вычисление соответствующих векторов тока КЗ; получение рабочего значения путем вычисления первой разности между абсолютной величиной суммы указанных векторов тока КЗ и первой заданной величиной Iset1; получение тормозного значения путем умножения второй разности на регулирующий коэффициент, при этом указанную вторую разность вычисляют между максимумом абсолютных величин указанных токов КЗ и второй заданной величиной Iset2 или между абсолютной величиной разности указанных токов КЗ и второй заданной величиной Iset2; и идентификацию КЗ как внешнего КЗ или внутреннего КЗ посредством сравнения указанного рабочего значения с указанным тормозным значением. 2 н. и 12 з.п. ф-лы, 9 ил.

 

Область техники

Настоящее изобретение относится к области дифференциальной токовой защиты и более конкретно к способу и устройству для идентификации короткого замыкания (КЗ) посредством дифференциальной токовой защиты.

Предшествующий уровень техники

В настоящее время дифференциальная токовая защита широко применяется в энергосистемах в качестве основного средства защиты вследствие ее хороших рабочих характеристик. Критерий идентификации для классической дифференциальной токовой защиты приведен ниже:

Такой критерий основан на полных токах, которые являются исходными измеренными токами, включающими на основе принципа суперпозиции нагрузочную составляющую тока и составляющую тока, относящуюся к КЗ; однако с этим решением связаны также следующие проблемы:

1) низкие чувствительность и скорость срабатывания при КЗ в условиях больших нагрузок или высоких сопротивлений;

2) возможность ложного срабатывания при внешнем КЗ в случае насыщения трансформатора тока (ТТ);

3) трудности в достижении баланса между чувствительностью, быстродействием и надежностью. При низком пороге срабатывания для обеспечения хорошей чувствительности и быстродействия снижается надежность. При высоком пороге срабатывания для достижения хорошей надежности ухудшаются чувствительность и быстродействие.

Для решения этих проблем исследователями и производителями была предложена дифференциальная защита на основе тока КЗ. Ниже приведен алгоритм типовой дифференциальной защиты на основе тока КЗ:

Можно видеть, что такое решение будет в общем случае иметь улучшенные чувствительность и быстродействие по сравнению с классическим дифференциальным токовым реле при КЗ в условиях больших нагрузок и высоких сопротивлений, поскольку из расчетов исключены токи нагрузки. Но существующая дифференциальная защита по току КЗ только в некотором смысле улучшает чувствительность и быстродействие, но не решает проблемы надежности при насыщении трансформатора тока; более того, не существует эффективного решения, которое обеспечивает хороший баланс между чувствительностью и надежностью.

Аналогичная ситуация и для классической дифференциальной защиты на основе полного тока; в классической дифференциальной токовой защите на основе тока КЗ возможны ложные срабатывания из-за внешнего КЗ при насыщении трансформатора тока. Кроме того, в обоих видах дифференциальной защиты трудно добиться хорошего баланса между чувствительностью, быстродействием и надежностью. Если улучшить чувствительность и быстродействие для идентификации внутреннего КЗ, это снизит надежность идентификации внешнего КЗ. С другой стороны, повышение надежности идентификации внешнего КЗ ведет к снижению чувствительности и быстродействия при идентификации внутреннего КЗ.

Следовательно, при использовании существующих решений, описанных выше, трудно одновременно обеспечить и чувствительность, и надежность дифференциальной защиты, а также быстродействие. Вследствие указанных выше проблем настоящее изобретение предлагает способ и устройство для идентификации КЗ посредством дифференциальной токовой защиты.

Сущность изобретения

Главной целью настоящего изобретения является улучшение чувствительности и быстродействия дифференциальной токовой защиты при внутренних КЗ и повышение надежности при внешних КЗ. Таким образом, настоящее изобретение направлено на создание способа и устройства для идентификации КЗ с помощью дифференциальной токовой защиты.

Согласно одному из аспектов настоящего изобретения предложен способ идентификации КЗ посредством дифференциальной токовой защиты. Способ включает: измерение полных токов на двух концах системы с двухконцевой линией и вычисление векторов соответствующих токов КЗ; получение рабочего значения путем вычисления первой разности между абсолютной величиной суммы векторов тока КЗ и первой заданной величиной Iset1; получение тормозного значения посредством умножения второй разности на регулирующий коэффициент, при этом указанную вторую разность вычисляют между максимумом абсолютных величин указанных токов КЗ и второй заданной величиной Iset2 или между абсолютной величиной разности токов КЗ и второй заданной величиной Iset2; и идентификацию КЗ как внешнего или внутреннего КЗ путем сравнения рабочего значения с тормозным значением.

Согласно другому предпочтительному варианту настоящего изобретения регулирующий коэффициент относится к фазовому углу между токами КЗ.

Согласно другому предпочтительному варианту настоящего изобретения регулирующий коэффициент будет иметь сравнительно большую положительную величину для внешнего КЗ и сравнительно небольшую положительную величину или даже отрицательную величину для внутреннего КЗ.

Согласно другому предпочтительному варианту настоящего изобретения, если рабочее значение меньше тормозного значения, КЗ идентифицируют как внешнее КЗ или отсутствие КЗ в системе; в других случаях будет идентифицировано внутреннее КЗ.

Согласно другому предпочтительному варианту настоящего изобретения предлагаемый способ может быть применен к многоконцевой системе посредством преобразования такой многоконцевой системы в виртуальную двухконцевую систему.

Согласно другому предпочтительному варианту настоящего изобретения способ дополнительно содержит: измерение полных токов на всех концах системы с многоконцевой линией и вычисление соответствующих векторов тока КЗ; выбор максимальной величины из совокупности вычисленных величин тока КЗ; вычисление суммы всех остальных вычисленных токов КЗ за исключением указанного максимума; и принятие максимальной величины и суммы в качестве двух токов на концах виртуальной системы с двумя концами.

Согласно другому предпочтительному варианту настоящего изобретения способ непосредственно использует векторы полных токов, соответствующих векторам тока КЗ, для идентификации КЗ.

Согласно другому предпочтительному варианту настоящего изобретения предложено устройство для идентификации КЗ посредством дифференциальной токовой защиты. Устройство включает в себя: измерительный модуль, выполненный с возможностью измерения полных токов на двух концах системы с двухконцевой линией; вычислительный модуль, выполненный с возможностью вычисления соответствующих векторов тока КЗ; получения рабочего значения путем вычисления первой разности между абсолютной величиной суммы векторов тока КЗ и первой заданной величиной Iset1; получения тормозного значения путем умножения второй разности на регулирующий коэффициент, при этом указанную вторую разность вычисляют между максимумом абсолютных величин указанных токов КЗ и второй заданной величиной Iset2 или между абсолютной величиной разности указанных токов КЗ и второй заданной величиной Iset2; и модуль идентификации, выполненный с возможностью идентификации КЗ как внешнего или внутреннего путем сравнения рабочего значения с тормозным значением.

Согласно другому предпочтительному варианту настоящего изобретения регулирующий коэффициент относится к фазовому углу между токами КЗ.

Согласно другому предпочтительному варианту настоящего изобретения регулирующий коэффициент будет иметь сравнительно большую положительную величину для внешнего КЗ и сравнительно небольшую положительную величину или даже отрицательную величину для внутреннего КЗ.

Согласно другому предпочтительному варианту настоящего изобретения модуль идентификации осуществляет идентификацию КЗ как внешнее КЗ или отсутствие КЗ в системе, если рабочее значение меньше тормозного значения; в противном случае будет идентифицировано внутреннее КЗ.

Согласно другому предпочтительному варианту настоящего изобретения предлагаемое устройство может быть применено к многоконцевой системе посредством преобразования указанной многоконцевой системы в виртуальную двухконцевую систему.

Согласно другому предпочтительному варианту настоящего изобретения измерительный модуль дополнительно выполнен с возможностью измерения полных токов на всех концах системы с многоконцевой линией и вычисления соответствующих векторов тока КЗ; вычислительный модуль дополнительно выполнен с возможностью выбора максимума из вычисленных токов КЗ и вычисления суммы всех остальных вычисленных токов КЗ за исключением указанного максимума; а преобразовательный модуль выполнен с возможностью считать указанные максимальную величину и сумму двумя токами на концах виртуальной системы с двумя концами.

Согласно другому предпочтительному варианту настоящего изобретения устройство непосредственно использует векторы полных токов, соответствующих векторам тока КЗ, для идентификации КЗ.

Варианты настоящего изобретения предлагают способ и устройство для идентификации КЗ посредством дифференциальной токовой защиты, обеспечивающие лучшие надежность, чувствительность и быстродействие, чем существующие системы дифференциальной токовой защиты.

Краткое описание чертежей

Предмет настоящего изобретения будет пояснен более подробно в последующем описании со ссылками на примеры предпочтительных вариантов, иллюстрируемые чертежами, на которых:

фиг. 1 - типовая двухконцевая система электропитания с внутренним КЗ (фиг. 1а) и соответствующая схема для тока КЗ (фиг. 1b);

фиг. 2 - логическая схема способа идентификации КЗ посредством дифференциальной токовой защиты в соответствии с настоящим изобретением;

фиг. 3а и 3b - рабочие характеристики дифференциального реле для внешнего КЗ и внутреннего КЗ соответственно;

фиг. 4а и 4b - векторные диаграммы токов КЗ для случаев внешнего КЗ и внутреннего КЗ соответственно;

фиг. 5 - векторные диаграммы для преобразования многоконцевой системы в виртуальную двухконцевую систему согласно настоящему изобретению; и

фиг. 6 иллюстрирует схему устройства для идентификации КЗ посредством дифференциальной токовой защиты в соответствии с одним из вариантов настоящего изобретения.

Варианты осуществления изобретения

Далее примеры вариантов осуществления настоящего изобретения описаны в сочетании с прилагаемыми чертежами. Для большей ясности и лаконизма в настоящем описании рассмотрены не все особенности реальных вариантов осуществления изобретения.

Предлагаемое изобретение относится к дифференциальной токовой защите, и разность фазовых углов (arg(ΔIRemote), arg(ΔILocal)) токов КЗ на разных концах системы отличается для внутреннего КЗ и внешнего КЗ. Для внутреннего КЗ разность фаз составляет около 0 градусов, а для внешнего КЗ - почти 180 градусов. Такая очевидная разница может быть использована для задания рабочего значения или тормозного значения, чтобы обеспечить широкие пределы рабочих характеристик. При таком подходе рабочий диапазон может изменяться в соответствии с условиями КЗ, и может быть очень узким для внешнего КЗ и очень широким для внутреннего КЗ. Тем самым можно добиться лучшей чувствительности для внутреннего КЗ и большей надежности для внешнего КЗ одновременно.

На фиг. 1а представлена типовая двухконцевая система электропитания с внутренним КЗ, и на фиг. 1b - схема для тока КЗ, соответствующая фиг. 1а.

Как показано на фиг. 1а, I ˙ M и I ˙ N представляют собой токи, измеренные дифференциальной защитой на двух концах М и N. Δ I ˙ M и Δ I ˙ N представляют собой токи КЗ, соответствующие этим двум концам.

На фиг. 2 представлена логическая схема способа идентификации КЗ посредством дифференциальной токовой защиты в соответствии с настоящим изобретением.

Как показано на фиг. 2, способ 200 идентификации КЗ посредством дифференциальной токовой защиты содержит следующие этапы.

Этап 202 измерения полных токов на двух концах системы с двухконцевой линией и вычисления соответствующих векторов тока КЗ. На фиг. 1b токи Δ I ˙ M и Δ I ˙ N могут быть вычислены на основе полных токов I ˙ M и I ˙ N . Ток КЗ предпочтительно содержит по меньшей мере один из следующих токов: фазный ток КЗ, ток КЗ прямой последовательности, обратной последовательности, нулевой последовательности.

Если оба тока | Δ I ˙ M | и | Δ I ˙ N | больше порогового значения Ilim, используемого для обеспечения точности вычисления фазового угла тока, продолжают выполнять следующие этапы.

На этапе 204 получают рабочее значение путем вычисления первой разности между абсолютной величиной суммы векторов тока КЗ и первой заданной величиной Iset1.

На этапе 206 получают тормозное значение путем умножения второй разности на регулирующий коэффициент F(θM, θN), где указанная вторая разность ( | Δ I ˙ M | , | Δ I ˙ N | ) I s e t 2 вычисляется между максимумом абсолютных величин указанных токов КЗ и второй заданной величиной Iset2, θ M = arg ( Δ I ˙ M ) и θ N = arg ( Δ I ˙ N ) .

На этапе 208 идентифицируют КЗ как внешнее или внутреннее путем сравнения рабочего значения с тормозным значением.

Если неравенство справедливо, может быть идентифицировано внутреннее КЗ, и тогда сработает реле; в противном случае будет идентифицировано внешнее КЗ либо отсутствие КЗ в системе, и ложного срабатывания дифференциального токового реле не будет.

В другом варианте вторую разность | Δ I ˙ M Δ I ˙ N | I s e t 2 вычисляют между абсолютным значением разности токов КЗ и второй заданной величиной Iset2. В этом случае неравенство может быть переписано, как указано ниже:

Величины Iset1 и Iset2 представляют собой токовые параметры для управления началом наклонного участка рабочей характеристики. В одном из вариантов настоящего изобретения эти два параметра могут быть заданы как: Iset1≥0, Iset2≤0. Следует отметить, что специалист в рассматриваемой области может задать для величин Iset1 и Iset2 любые значения в соответствии с фактическим оборудованием.

На фиг. 3а и 3b представлены рабочие характеристики дифференциального реле для внешнего КЗ и внутреннего КЗ соответственно.

Как показано на фиг. 3а и 3b, ограничение приводит к тому, что начало (Iset2, Iset1) наклонного участка рабочей характеристики находится во втором квадранте, а штриховая линия показывает типовую рабочую характеристику классического дифференциального реле для сравнения.

На этом чертеже, | Δ I ˙ M + Δ I ˙ N | представляет рабочий ток, а max ( | Δ I ˙ M | , | Δ I ˙ N | ) - тормозной ток. Функция F(θM, θN) является общей функцией фаз токов КЗ, которая должна иметь отрицательное или небольшое положительное значение для внутреннего КЗ и сравнительно большое положительное значение для внешнего КЗ. Таким образом, эта функция регулирует крутизну наклона рабочей характеристики. Т.е. она уменьшает рабочую область для внешнего КЗ и увеличивает рабочую область для внутреннего КЗ.

В предпочтительном варианте настоящего изобретения регулирующий коэффициент F(θM, θN) может быть равен К12·cos(θMN). Следует отметить, что помимо этого примера при фактической реализации может быть использована любая функция, способная удовлетворить требованиям к F(θM, θN), приведенным выше.

На фиг. 4а и 4b представлены векторные диаграммы для токов КЗ в случае внешнего КЗ и внутреннего КЗ соответственно.

Как отмечено выше, наклон характеристики регулируется функцией F(θM, θN), например (K12·cos(θMN)). В общем случае величина (θМN) близка к 0° для внутреннего КЗ, как показано на фиг. 4b, и составляет почти 180° для внешнего КЗ, как показано на фиг. 4а.

Наклон (К12·cos(θMN)) рабочей характеристики при надлежащей установке К1 и К2 будет иметь отрицательную величину или сравнительно небольшую положительную величину для внутреннего КЗ, в то время как при надлежащей установке К1 и К2 он будет иметь сравнительно большую положительную величину для внешнего КЗ. Здесь параметр К1 может обеспечить достаточно большое положительное значение для функции (К12·cos(θMN)) даже при серьезном насыщении трансформатора тока в случаях внешнего КЗ (в этом случае угол (θMN) может быть большим, а не нулевым). К2 одновременно настраивает как чувствительность при внутреннем КЗ, так и надежность при внешнем КЗ. Другими словами, увеличение параметра К2 улучшит надежность при внешнем КЗ и чувствительность при внутреннем КЗ одновременно.

На фиг. 5 представлена векторная диаграмма для преобразования многоконцевой системы в виртуальную двухконцевую систему согласно настоящему изобретению.

Как показано на фиг. 5, для преобразования многоконцевой системы в виртуальную двухконцевую систему сначала измеряют полные токи на всех концах системы с многоконцевой линией и вычисляют соответствующие вектора тока КЗ. После этого выбирают максимум из вычисленных токов КЗ, вычисляют сумму всех остальных токов КЗ за исключением максимального тока; и затем считают указанный максимум и вычисленную сумму в качестве токов на двух концах указанной виртуальной двухконцевой системы.

После преобразования многоконцевой системы в виртуальную двухконцевую систему может быть применен способ, показанный на фиг. 1, для идентификации КЗ посредством дифференциальной токовой защиты.

Согласно предпочтительному варианту, если амплитуда по меньшей мере одного из токов слишком мала для измерения фазового угла, например | I ˙ M | < I lim и/или | I ˙ N | < I lim ; может быть использован фиксированный регулирующий коэффициент К вместо адаптивного коэффициента F(θM, θN); иными словами, критерий будет переписан в виде В другом варианте вторую разность вычисляют между абсолютной величиной разности указанных токов КЗ и второй заданной величиной Iset2. Таким образом, неравенство будет переписано в виде

Из описания настоящего изобретения специалисту в рассматриваемой области должно быть очевидно, что для идентификации КЗ в способе непосредственно используются векторы полных токов, соответствующие векторам тока КЗ.

Подробнее, способ включает: измерение полных токов на двух концах системы с двухконцевой линией, т.е. I ˙ M и I ˙ N ; получение рабочего значения путем вычисления первой разности между абсолютной величиной суммы векторов полных токов и первой заданной величиной Iset1; получение тормозного значения путем умножения второй разности на регулирующий коэффициент F(θM, θN), при этом указанную вторую разность вычисляют между максимумом абсолютных величин полных токов и второй заданной величиной Iset2; и идентификацию КЗ как внешнего КЗ или внутреннего КЗ посредством сравнения рабочего значения с тормозным значением. Иными словами, критерий выбора переписан в следующем виде:

В другом варианте вторую разность | I ˙ M I ˙ N | I s e t 2 вычисляют между абсолютной величиной разности полных токов и второй заданной величиной Iset2. Таким образом, указанное неравенство будет записано следующим образом:

Следует отметить, что полный ток включает в себя полный фазный ток и/или фазный ток прямой последовательности. В этом случае регулирующий коэффициент F(θM, θN) относится к фазовому углу полных токов.

Согласно другому варианту настоящего изобретения, если амплитуда по меньшей мере одного из токов слишком мала для измерения фазового угла, можно использовать фиксированный регулирующий коэффициент К вместо коэффициента F(θM, θN), иными словами, критерий будет переписан в виде В другом варианте вторую разность вычисляют между абсолютной величиной разности указанных полных токов и второй заданной величиной Iset2. Таким образом, неравенство будет переписано в следующем виде:

На фиг. 6 представлена схема устройства для идентификации КЗ посредством дифференциальной токовой защиты согласно одному из вариантов настоящего изобретения.

Как показано на фиг. 6, устройство 600 для идентификации КЗ посредством дифференциальной токовой защиты главным образом содержит измерительный модуль 602, вычислительный модуль 604 и модуль 606 идентификации.

Измерительный модуль 602 выполнен с возможностью измерения полных токов на двух концах системы с двухконцевой линией.

Вычислительный модуль 604 выполнен с возможностью вычисления соответствующих векторов тока КЗ; получения рабочего значения путем вычисления первой разности между абсолютной величиной суммы векторов тока КЗ и первой заданной величиной Iset1; получение тормозного значения путем умножения второй разности на регулирующий коэффициент (регулирующий коэффициент относится к фазовому углу токов КЗ), при этом вторая разность вычисляется между максимумом абсолютных величин токов КЗ и второй заданной величиной Iset2 или между абсолютной величиной разности указанных токов КЗ и второй заданной величиной Iset2.

Модуль 606 идентификации выполнен с возможностью идентификации КЗ как внешнего КЗ или внутреннего КЗ посредством сравнения рабочего значения с тормозным значением. Конкретнее, модуль идентификации осуществляет идентификацию КЗ как внешнее КЗ или отсутствие КЗ в системе, если рабочее значение является меньшим; в другом случае идентифицируется внутреннее КЗ.

Если устройство применяется к многоконцевой системе, устройство дополнительно содержит преобразовательный модуль 608, выполненный с возможностью выбора максимума из вычисленных токов КЗ и вычисления суммы всех остальных величин вычисленных токов КЗ за исключением этой выбранной максимальной величины и считать указанный максимум и указанную сумму в качестве токов на двух концах указанной виртуальной двухконцевой системы. Тогда система с несколькими концами может быть преобразована в виртуальную двухконцевую систему.

На основе предложенного решения в соответствии с настоящим изобретением специалист в рассматриваемой области сможет спроектировать или изготовить дифференциальную токовую защиту, обладающую лучшими надежностью, чувствительностью и более высоким быстродействием по сравнению с существующими аналогами. Более того, алгоритм можно легко реализовать на существующей платформе (аппаратной и программной). Кроме того, для настоящего алгоритма не требуется более высокая частота дискретизации или большая точность измерений, что будет полезно с точки зрения экономии затрат на разработку.

Следует отметить, что способ и устройство для идентификации КЗ посредством дифференциальной токовой защиты, предлагаемые в настоящем изобретении, могут быть использованы, не ограничиваясь этим, в дифференциальной защите линий или дифференциальной защите основного оборудования, например защите генераторов, защите системы шин, защите конденсаторов, защите трансформаторов, защите электрических реакторов, защите двигателей или в других защитах на основе алгоритма дифференциального тока и т.п.

Специалист в рассматриваемой области сможет на основе этого описания примеров вариантов осуществления изобретения оценить преимущества настоящего изобретения:

1. В соответствии со способом и устройством для идентификации КЗ посредством дифференциальной токовой защиты, предлагаемыми в настоящем изобретении, имеется очень маленькая рабочая область для внешнего КЗ, что значительно повышает надежность даже в случае серьезного насыщения трансформаторов тока.

2. В соответствии со способом и устройством для идентификации КЗ посредством дифференциальной токовой защиты, предлагаемыми в настоящем изобретении, имеется очень большая рабочая область для внутреннего КЗ, что значительно повышает чувствительность при внутреннем КЗ даже в случаях больших нагрузок и высоких сопротивлений.

3. В соответствии со способом и устройством для идентификации КЗ посредством дифференциальной токовой защиты, предлагаемыми в настоящем изобретении, срабатывание реле защиты происходит быстрее по сравнению с существующими системами дифференциальной защиты на основе полных токов или токовых компонент, связанных с КЗ.

4. При организации дифференциальной токовой защиты в соответствии со способом и устройством для идентификации КЗ, предлагаемыми в настоящем изобретении, критерий оценки является простым и его легко регулировать на основе реального оборудования, а также его удобно применять к существующей платформе (аппаратное обеспечение, программное обеспечение, частота дискретизации и т.п.).

Хотя настоящее изобретение описано на основе некоторых предпочтительных вариантов, специалисты в рассматриваемой области должны понимать, что эти варианты никоим образом не ограничивают объем настоящего изобретения. Любые вариации и модификации этих вариантов, не отклоняющиеся от сущности и принципов настоящего изобретения, вполне доступны для понимания специалистов в рассматриваемой области и потому попадают в объем притязаний настоящего изобретения, ограниченного прилагаемой формулой изобретения.

1. Способ идентификации короткого замыкания (КЗ) посредством дифференциальной токовой защиты, содержащий этапы, на которых
измеряют полный ток на двух концах системы с двухконцевой линией и вычисляют соответствующие векторы тока КЗ;
получают рабочее значение путем вычисления первой разности между абсолютной величиной суммы указанных векторов тока КЗ и первой заданной величиной Iset1;
получают тормозное значение путем умножения второй разности на регулирующий коэффициент, при этом указанную вторую разность вычисляют между максимумом абсолютных величин указанных токов КЗ и второй заданной величиной Iset2 или между абсолютной величиной разности указанных токов КЗ и второй заданной величиной Iset2; и
идентифицируют КЗ как внешнее КЗ или внутреннее КЗ посредством сравнения рабочего значения с тормозным значением.

2. Способ по п. 1, в котором регулирующий коэффициент связан с фазовым углом токов КЗ.

3. Способ по п. 1, в котором регулирующий коэффициент имеет сравнительно большую положительную величину для внешнего КЗ и сравнительно небольшую положительную величину или отрицательную величину для внутреннего КЗ.

4. Способ по п. 1, в котором, если рабочее значение меньше тормозного значения, КЗ идентифицируют как внешнее КЗ или в системе отсутствует КЗ, в других случаях идентифицируют внутреннее КЗ.

5. Способ по п. 1, в котором для применения указанного способа к многоконцевой системе преобразуют указанную многоконцевую систему в виртуальную двухконцевую систему.

6. Способ по п. 5, в котором дополнительно
измеряют полные токи на всех концах системы с многоконцевой линией и вычисляют соответствующие векторы тока КЗ;
выбирают максимум из вычисленных токов КЗ;
вычисляют сумму всех остальных вычисленных токов КЗ за исключением указанного максимума; и
считают указанный максимум и указанную сумму в качестве токов на двух концах указанной виртуальной двухконцевой системы.

7. Способ по п. 1 или 6, в котором для идентификации КЗ непосредственно используют векторы полных токов, соответствующие указанным векторам тока КЗ.

8. Устройство для идентификации КЗ посредством дифференциальной токовой защиты, содержащее
измерительный модуль, выполненный с возможностью измерения полных токов на двух концах системы с двухконцевой линией;
вычислительный модуль, выполненный с возможностью вычисления соответствующих векторов тока КЗ, получения рабочего значения путем вычисления первой разности между абсолютной величиной суммы указанных векторов тока КЗ и первой заданной величиной Iset1, получения тормозного значения путем умножения второй разности на регулирующий коэффициент, при этом указанную вторую разность вычисляют между максимумом абсолютных величин указанных токов КЗ и второй заданной величиной Iset2 или между абсолютной величиной разности указанных токов КЗ и второй заданной величиной Iset2; и
модуль идентификации, выполненный с возможностью идентификации КЗ как внешнего КЗ или внутреннего КЗ посредством сравнения указанного рабочего значения с указанным тормозным значением.

9. Устройство по п. 8, в котором регулирующий коэффициент связан с фазовым углом токов КЗ.

10. Устройство по п. 9, в котором регулирующий коэффициент имеет сравнительно большую положительную величину для внешнего КЗ и сравнительно небольшую положительную величину или отрицательную величину для внутреннего КЗ.

11. Устройство по п. 8, в котором модуль идентификации выполнен с возможностью, в случае если рабочее значение меньше тормозного значения, идентифицировать КЗ как внешнее КЗ или как отсутствие КЗ в системе, а в других случаях идентифицировать КЗ как внутреннее КЗ.

12. Устройство по п. 8, которое выполнено с возможностью применения для многоконцевой системы путем преобразования указанной многоконцевой системы в виртуальную двухконцевую систему.

13. Устройство по п. 12, в котором
указанный измерительный модуль дополнительно выполнен с возможностью измерения полного тока на всех концах системы с многоконцевой линией и вычисления соответствующих векторов тока КЗ;
указанный вычислительный модуль дополнительно выполнен с возможностью выбора максимума из вычисленных токов КЗ и вычисления суммы всех остальных вычисленных токов КЗ за исключением указанного максимума; и
преобразовательный модуль выполнен с возможностью считать указанный максимум и указанную сумму в качестве токов на двух концах указанной виртуальной двухконцевой системы.

14. Устройство по п. 8 или 13, которое выполнено с возможностью непосредственно использовать вектора полных токов, соответствующие указанным векторам токов КЗ, для идентификации КЗ.



 

Похожие патенты:

Использование: в области электротехники. Технический результат - повышение точности определения места замыкания.

Использование: в области электроэнергетики. Технический результат - обеспечение надежной защиты в условиях изменяющейся электрической топологии системы передачи.

Использование: в области электроэнергетики. Технический результат - повышение эффективности и простоты способа.

Использование: в области электроэнергетики. Технический результат - повышение эффективности и простоты способа.

Изобретение относится к области электротехники, а именно к защите электроустановок. Технический результат заключается в повышении чувствительности и быстродействия защиты, а также устойчивости ее функционирования.

Изобретение относится к области электротехники и может быть использовано в системах дистанционной защиты от замыкания на землю в системах линий электропередачи. Техническим результатом является повышение надежности защиты за счет возможности избежать переоценки или недооценки разницы между углами тока в месте короткого замыкания и на реле при отключении во время действия защиты.

Изобретение относится к области электротехники и может быть использовано в релейной защите линий электропередачи, предназначенной для реализации токовой защиты линии электропередачи.

Изобретение относится к электроэнергетике, в частности к дифференциально-фазной защите линий электропередачи 110-220 кВ с трехфазным управлением выключателями. Решает проблему распознавания сложного вида повреждения: однофазного замыкания с одновременным обрывом провода.

Изобретение относится к электротехнике. Технический результат заключается в обеспечении дифференциально-фазной высокочастотной защиты линии электропередачи напряжением 110-220 кВ с двухсторонним питанием в сочетании с дальним резервированием релейных защит и коммутационных аппаратов подстанций, подключенных к ответвлениям от указанной линии.

Использование: в области электроэнергетики. Технический результат - повышение быстродействия и надежности нахождения места КЗ. Согласно способу в момент короткого замыкания на каждом из концов защищаемого участка линии электропередачи формируется сигнал фазы тока промышленной частоты трехфазной электрической сети, протекающего через данный конец, и осуществляется обмен сигналами фаз тока между данными концами по каналу связи, а также осуществляется сравнение сигналов фаз тока на каждом из концов защищаемого участка линии электропередачи между собой и с установленным порогом, в результате чего формируется сигнал отключения линии, отличающемуся тем, что сигнал фазы тока формируют в виде отсчетов фазовых углов в дискретные моменты времени с заданной частотой дискретизации, используя мгновенные значения композиционного сигнала токов трехфазной электрической сети, а сравнение выборочных значений фаз тока на каждом из концов защищаемого участка линии электропередачи между собой осуществляют в те же дискретные моменты времени. 5 з.п. ф-лы, 2 ил.

Использование: в области электроэнергетики. Технический результат - повышение надежности защиты. Согласно способу линию любой конфигурации разделяют с помощью врезаемых в провода фаз линий безынерционных силовых измерительных шунтов на двухконцевые участки. На концах проводов каждой фазы каждого участка формируют импульсы колебаний заданной высокой частоты при переходах промышленного силового тока от отрицательных к положительным значениям. Импульсы колебаний передают через выводы силовых измерительных шунтов по проводам каждой фазы на противоположные концы. Измеряют время между импульсами своего и противоположного концов на каждом участке и, если оно меньше или больше полупериода промышленного синусоидального тока на заданную величину, например 5-7 мс, активизируют постоянное запоминающее устройство с записанным в него параллельным кодом обозначений линии, двухконцевого участка, фазы и короткозамкнутого провода. Преобразуют параллельный код в последовательный, с помощью которого модулируют колебания другой заданной высокой частоты, отличной от заданных частот участков, и через выводы силовых измерительных шунтов передают по проводам на головные участки на концах линии. При передаче осуществляют усиление высокочастотных колебаний кода на всех участках. Через выводы последнего силового измерительного шунта на каждом конце линии измеряют сигнал с последовательным кодом, который фильтруют от промышленной частоты и от высокочастотной несущей, затем освобождают от высоковольтного потенциала проводов линии, например, путем электронно-оптического преобразования, передачи по оптоволоконной жиле и обратного оптоэлектронного преобразования. Производят дешифрацию полученного кода на земном потенциале. Посредством выделенного потенциального импульса отключают выключатели данного конца линии. 4 ил.

Использование: в области электротехники. Технический результат - обеспечение гибкого управления для лучшей адаптации к переменным свойствам источников электроэнергии. Осуществляют управление электроэнергией, реализуемой оборудованием энергетического обслуживания, на основе рыночных данных, причем рыночные данные представляют собой данные, которые можно коррелировать с изменениями в будущем или с ожидаемыми энергетическими услугами для электрической сети. Устройство управления содержит процессор модели для моделирования исполнения множества моделей управления в качестве результата моделирования и для определения значения, связанного с каждым результатом моделирования в течение первого периода. Причем модели управления выполнены с возможностью управления работой оборудования энергетического обслуживания, при этом каждая из моделей управления основана на наборе изменяющихся рыночных данных, причем указанное значение включает в себя одно из следующих значений: уровень прибыли; значение в денежном выражении; или значение общего атрибута. Устройство также содержит селектор модели для выбора модели управления, связанной с наибольшим значением среди значений, определенных для каждой модели управления; и процессор для управления работой оборудования энергетического обслуживания во второй период, следующий за первым периодом, с использованием выбранной модели управления, связанной с наибольшим значением. 6 н. и 23 з.п. ф-лы, 7 ил.

Использование: в области электротехники. Технический результат – расширение функциональных возможностей и повышение чувствительности защиты. Согласно способу предполагается двухстороннее наблюдение электропередачи с обменом информации между двумя полукомплектами релейной защиты, установленными на разных сторонах. Используют передающие модели участков линии от мест наблюдения до ответвлений и участка линии между ответвлениями, преобразуют выходные сигналы передающих моделей в комплексные замеры, отображают замеры на комплексных плоскостях распознающих модулей. Обучают распознающие модули от имитационных моделей линии электропередачи. Для передающих моделей вводят эквивалентные ответвления числом не более двух, замеры формируют в виде комплексных параметров отдельно для основной защиты и для защиты дальнего резервирования. Для основной защиты формируют по два комплексных параметра ответвлений в каждой фазе, каждый замер подают на предназначенные для него блокирующий и разрешающий распознающие модули, обучают блокирующие модули обеих защит от первой имитационной модели, воспроизводящей режимы неповрежденной линии. Дополнительно обучают блокирующие модули основной защиты, а также обучают разрешающие модули защиты дальнего резервирования, от второй имитационной модели, воспроизводящей нуждающиеся в резервировании режимы короткого замыкания в ответвлениях. Обучают разрешающие модули основной защиты от третьей имитационной модели, воспроизводящей короткие замыкания в магистральной линии, задают области срабатывания распознающих модулей как отображения множества обучающих режимов соответствующих имитационных моделей. Блокируют основную защиту, если все замеры ее блокирующих модулей отображаются в их областях срабатывания, в противном случае разрешают срабатывание основной защиты, если хотя бы один замер отобразится в области срабатывания соответствующего разрешающего модуля. Блокируют защиту дальнего резервирования, если все замеры ее блокирующих модулей отображаются в их областях срабатывания, в противном случае разрешают срабатывание защиты дальнего резервирования, если хотя бы один замер отобразится в области срабатывания соответствующего разрешающего модуля. 3 з.п. ф-лы, 22 ил.

Использование: в области электротехники. Технический результат – устранение проблемы нелинейного искажения тока короткого замыкания вследствие насыщения трансформаторов тока. Сегментация призвана выделить интервалы правильной трансформации, возникающие в те промежутки времени, когда магнитопровод трансформатора тока выходит из насыщения, и подготовить условия для восстановления искаженного тока. Способ основан на сравнении отсчетов электрической величины и модельного сигнала. По результатам сравнения формируют двумерный сигнал, который подают на распознающий модуль, своеобразие которого заключается в том, что область его срабатывания задают на плоскости двумерного сигнала. Для достижения поставленной цели те же операции выполняют в строго определенной последовательности не однократно, а столько раз, сколько потребуется для определения максимальной продолжительности интервала однородности. Исследование совершают путем поэтапного расширения интервала всякий раз на один интервал дискретизации. Используют двухпараметрический сигнал. Параметры подбирают по заданному алгоритму. Между длительностью начального интервала и числом параметров модельного сигнала устанавливают взаимосвязь: число отсчетов наблюдаемой величины на единицу больше числа параметров модельного сигнала. Расширение интервала производят в случае срабатывания распознающего модуля на предыдущем интервале. Процесс приостанавливают, если при очередном расширении не произойдет срабатывания соответствующего распознающего модуля. Предлагается структура двумерного сигнала, состоящая из сигнала оценки уровня электрической величины на данном интервале и из сигнала невязки между электрической величиной и модельным сигналом. 3 з.п. ф-лы, 5 ил.

Использование: в области электроэнергетики. Технический результат - упрощение способа и повышение чувствительности защиты. Полукомплекты микропроцессорной защиты синхронно фиксируют токи и напряжения на обеих сторонах линии, а оптоволоконный канал связи передает информацию от одного комплекта к другому. Наблюдаемые отсчеты токов и напряжений преобразуют в комплексы и далее в замеры, которые воспринимаются распознающими модулями двух типов - блокирующего и разрешающего. Модули располагают комплексными плоскостями для отображения замеров как в ходе обучения, так и последующего функционирования релейной защиты на реальном объекте. Формирование замеров выполняется с участием передающей модели неповрежденной линии, такая модель представляет собой многополюсник в режиме обратной передачи. Входные величины передающей модели - токи и напряжения начала линии, выходные - модельные токи и напряжения, оценивающие соответствующие величины на втором конце предположительно неповрежденной линии. Реализован принцип многомерности релейной защиты. Основной замер токовый, дополнительный - напряженческий. Имитационная модель сети обучает блокирующие модули сигналами тех режимов, в которых линия не повреждена, а разрешающие модули, наоборот, режимов короткого замыкания в линии. Результатом обучения становятся области блокирования и срабатывания. 1 з.п. ф-лы, 7 ил.

Использование: в области электротехники. Технический результат - повышение надежности способа дифференциальной защиты. Согласно способу защиты участка электрической сети, содержащего, по меньшей мере, одну пару систем шин, соединенных между собой в каждой паре через трехфазный шиносоединительный выключатель, в трансформаторах тока преобразуют токи каждой из фаз каждого присоединения, подключенного к соответствующей шине через свой выключатель, а также токи каждой фазы шиносоединительного выключателя со стороны каждой из систем шин, формируют трехфазную последовательность токов путем геометрического суммирования токов, полученных в результате преобразований токов соответствующих фаз всех присоединений, а также протекающих через шиносоединительный выключатель, при отклонении результирующих токов пороговых уровней подают сигнал на отключение поврежденного элемента. При этом в состав участка электрической сети включены кабельные участки присоединений кабельно-воздушных линий электропередачи, в трансформаторах тока преобразуют токи каждой из фаз по концам кабельных участков присоединений кабельно-воздушных линий электропередачи, в состав трехфазной последовательности токов включаются токи каждой из фаз по концам кабельных участков присоединений кабельно-воздушных линий электропередачи, дополнительно для получения результирующих токов, обеспечивающих проверку условий срабатывания дифференциальной защиты участка электрической сети, формируют комбинации сумм и разностей последовательностей токов с применением метода двойной записи, выявляют неисправности трансформаторов тока присоединений шин, кабельных участков присоединений кабельно-воздушных линий электропередачи и шиносоединительного выключателя по соотношению результирующих токов. При выявленных неисправностях соответствующих трансформаторов тока выдают сигнал для вывода трансформаторов тока в ремонт и исключения излишних срабатываний дифференциальной защиты. 4 ил., 1 табл.
Наверх