Способ проведения самоходных модельных испытаний судов в ледовом опытовом бассейне

Изобретение относится к области судостроения и касается проведения экспериментальных исследований на моделях ледоколов и судов ледового плавания в ледовых опытовых бассейнах. Предложен способ проведения модельных испытаний судов в ледовом опытовом бассейне, включающий буксировку прикрепленной через динамометр к буксировочной тележке бассейна самоходной модели с работающими движителями в ледовых условиях, а затем на чистой воде в ледовом канале, оставшемся после прохождения буксируемой модели в ледяном поле, который предварительно очищают от битого льда. Буксировочная тележка бассейна обеспечивает движение модели с заданными скоростями, а частоту вращения движителей выбирают из условия равенства расчетной тяги и тяги движительного комплекса модели на заданной скорости движения. По результатам буксировочных самоходных испытаний модели в ледовых условиях и в условиях чистой воды в упомянутом ледовом канале определяют силу чистого ледового сопротивления модели RI, значение которой вычисляют в виде RI=FI+FW, где FI и FW - сила между моделью и буксировочной тележкой в ледовых условиях и в условиях чистой воды соответственно, причем при суммировании значения сил FI и FW берутся со своими знаками. Технический результат заключается в повышении достоверности и точности результатов модельных испытаний судов ледового плавания. 3 ил.

 

Изобретение относится к области морского транспорта и способов проведения экспериментальных исследований на моделях ледоколов и судов ледового плавания в ледовых опытовых бассейнах.

Известен способ проведения самоходных испытаний модели в ледовом опытовом бассейне, при использовании которого проводят испытания модели с работающими гребными винтами, связанной через динамометр с буксировочной тележкой. При проведении указанных испытаний измеряют силу между буксировочной тележкой и моделью, упор ее движителей и частоту их вращения. В случае движения модели кормой вперед с работающими винтами, уравнение сил, с помощью которого определяют ледовое сопротивление RI, выглядит следующим образом:

R I = ( F m e a s + ( 1 t ) i P i ) , (1)

где: Fmeas - сила, измеренная динамометром; t - коэффициент засасывания; i P i - суммарный упор движителей (Рыжков А.В., Сазонов К.Е., Щербаков И.В. Методы определения ледового сопротивления на самоходных моделях. Доклады Всероссийской научно-технической конференции «Крыловские чтения - 2011», СПб., 2011, с. 120-122).

Недостатком указанного способа является необходимость измерения упоров движителей, а также проведение самоходных испытаний модели на чистой воде для определения коэффициента засасывания. Это существенно снижает точность получаемых экспериментальных данных, а также требует больших временных и финансовых затрат на проведение испытаний.

Известен также способ проведения самоходных модельных испытаний судов в ледовых условиях, разработанный финскими специалистами, принятый в качестве прототипа. По известному способу перед проведением ледовых испытаний проводят испытания прикрепленной к буксировочной тележке самоходной модели на чистой воде и определяют зависимость силы, регистрируемой на динамометре, от скорости движения модели и частоты вращения ее движителей. Затем проводят испытания в ледовых условиях, при которых используется уже свободно плавающая самоходная модель. В процессе этих испытаний измеряют скорость движения модели и частоту вращения движителей. По измеренной скорости движения модели и частоте вращения движителей с помощью ранее полученных на чистой воде данных определяют ледовое сопротивление модели (Клементьева Н.Ю., Сазонов К.Е., Тарица Г.В., Штрамбранд В.И., Щербаков И.В. Сопоставление результатов модельных исследований различных вариантов перспективного ледокола мощностью 25 МВт. Труды ЦНИИ им. акад. А.Н. Крылова, 2010, вып. 51(335), с. 207-218).

Недостатком указанного способа является необходимость измерения скорости движения модели, что является достаточно сложной технической задачей. Кроме того, скорость свободно плавающей модели в процессе эксперимента непостоянна, поэтому ее определение вносит существенную погрешность в полученные результаты при определении ледового сопротивления модели.

Другим недостатком указанного способа при проведении самоходных буксировочных испытаний модели судна в условиях чистой воды является то обстоятельство, что при движении модели имеет место волновая составляющая сопротивления воды движению судна, наличие которой приводит к недостоверным результатам определения силы взаимодействия между моделью и буксировочной тележкой, от которых зависит точность и достоверность определения чистого ледового сопротивления модели судна.

И наконец, при испытаниях модели с работающими гребными винтами или при движении задним ходом модели с носовыми движителями, работающими с произвольно выбранной частотой, имеет место несоответствие модельного режима обтекания корпуса модели струями от его работающих гребных винтов натурному режиму, что также негативно сказывается на точности и достоверности результатов определения ледового сопротивления судна.

Предлагаемое изобретение решает задачу повышения достоверности и точности результатов модельных испытаний моделей судов в ледовом опытовом бассейне и получения объективных экспериментальных данных по ледовому сопротивлению, необходимых для проектирования ледоколов и судов активного ледового плавания, в том числе путем создания условий проведения модельного эксперимента, подобных натурным.

Для этого по способу проведения модельных испытаний судов в ледовом опытовом бассейне, включающему буксировку на чистой воде прикрепленной через динамометр к буксировочной тележке бассейна самоходной модели с работающими движителями и проведение самоходных испытаний модели в ледовых условиях с последующим определением чистого ледового сопротивления модели, по изобретению при проведении самоходных испытаний в ледовых условиях испытуемую модель также связывают с помощью динамометра с буксировочной тележкой бассейна, обеспечивающей движение модели с заданными скоростями, и при этом измеряют силу между моделью и буксировочной тележкой бассейна FI, причем частоту вращения движителей выбирают из условия равенства расчетной тяги и тяги движительного комплекса модели на заданной скорости движения. А аналогичные самоходные испытания в условиях чистой воды проводят по окончании указанного эксперимента в ледовых условиях и выполняют их в ледовом канале, оставшемся в бассейне после прохождения буксируемой модели в ледяном поле в ходе проведения упомянутых испытаний в ледовых условиях, который предварительно очищают от битого льда, причем проводят их при тех же значениях частоты вращения движителей модели и скорости ее движения и также измеряют силу между моделью и буксировочной тележкой FW. И по результатам буксировочных самоходных испытаний модели в ледовых условиях и в условиях чистой воды в упомянутом ледовом канале определяют силу чистого ледового сопротивления модели RI, значение которой вычисляют в виде RI=FI+FW, причем при суммировании значения сил FI и FW берутся со своими знаками.

При проведении испытаний в ледовых условиях соединение самоходной модели с буксировочной тележкой с помощью динамометра необходимо для точного задания скорости движения модели. Измеряемая при таких испытаниях динамометром сила между испытательной тележкой и моделью FI дает информацию о том, насколько тяга движителей TE превосходит сумму ледового сопротивления RI и сопротивления воды RW или является недостаточной для преодоления этого суммарного сопротивления. Эта сила определяется выражением:

FI=RI+RW-TE, (1)

где RW - сопротивление воды движению модели, TE - тяга движительного комплекса модели.

Проведение буксировочных самоходных испытаний жестко прикрепленной к буксировочной тележке самоходной модели в ледовом канале, образовавшемся в ледовом поле бассейна после прохождения буксируемой модели судна, который предварительно очищают от битого льда, позволяет повысить точность определения силы на динамометре FW, т.к. при таких испытаниях (в канале) практически не возникает волновая составляющая сопротивления воды движению модели. В ходе этих испытаний определяется сила взаимодействия между моделью и буксировочной тележкой. Она задается формулой:

FW=TE-RW. (2)

Из формулы (1) следует, что ледовое сопротивление равно

RI=FI+TE-RW.

Тогда для определения ледового сопротивления получим окончательное выражение

RI=FI+FW,

причем при суммировании значения сил FI и FW берутся со своими знаками.

Выбор частоты вращения движителей из условия равенства расчетной тяги движительного комплекса на заданной скорости движения позволяет обеспечить натурные условия обтекания корпуса модели струями от движителей при движении модели преимущественно задним ходом или при испытаниях модели с носовыми гребными винтами. В соответствии с теорией гребных винтов скорость в струе движителя Vjet зависит от тяги комплекса:

V j e t = T E ρ π , где ρ - плотность воды.

Таким образом, подбор частоты вращения, обеспечивающий заданную тягу движительного комплекса при заданной скорости движения, позволяет получить близкое к натурному обтекание корпуса струями от работающих гребных винтов.

Проведение самоходных модельных испытаний в ледовом опытовом бассейне по предлагаемому способу осуществляется по схеме, приведенной на фиг. 1, при испытаниях в ледовых условиях, и по схеме, приведенной на фиг. 2, при испытаниях в ледовом канале в условиях чистой воды, схема движения буксируемой самоходной модели по очищенному от обломков льда ледяному каналу приведена на фиг. 3.

При проведении обоих видов самоходных испытаний модель судна 1 жестко прикреплена к буксировочной тележке 2 с помощью динамометра 3 (фиг. 1, 2) и протаскивается ею через ледяное поле 4 (фиг. 1, 3) с силой FI, при этом у модели 1 работают движители 5, создавая тягу TE. В результате движения модель 1 испытывает сопротивление среды, которое состоит из силы ледового сопротивления RI и силы сопротивления воды RW. Частоту вращения движителей 5 при этом подбирают таким образом, чтобы она соответствовала расчетной тяге при заданной скорости движения модели 1. В процессе эксперимента измеряют динамометром силу FI между буксировочной тележкой 2 и движущейся моделью 1.

После проведения испытаний в ледовых условиях оставшийся после прохождения модели в ледяном поле 4 канал 6 (фиг. 3) очищают от битого льда. После чего проводят самоходные испытания буксируемой модели 1 с работающими движителями 5 (гребными винтами) в очищенном ледяном канале 6 уже в условиях чистой воды (фиг. 2). Причем эти испытания модели проводятся с частотами вращения работающих движителей, создающих тягу TE, и скоростью буксировки модели 1, совпадающими с аналогичными величинами, которые были использованы при испытаниях модели в ледовых условиях. При этом измеряется сила FW на динамометре 3. В процессе этих испытаниях модель испытывает только сопротивление воды RW.

По экспериментальным данным, полученным в ледовых испытаниях и испытаниях в ледяном канале в чистой воде, определяют чистое ледовое сопротивление модели по формуле: RI=FI+FW.

Предлагаемый способ проведения модельных испытаний судов в ледовом опытовом бассейне позволяет повысить достоверность и точность результатов модельных испытаний и обеспечивает получение объективных экспериментальных данных по ледовому сопротивлению, необходимых для проектирования ледоколов и судов активного ледового плавания, в том числе путем создания условий проведения модельного эксперимента, подобных натурным, что его выгодно отличает от прототипа.

Способ проведения самоходных модельных испытаний судов в ледовом опытовом бассейне, включающий буксировку на чистой воде прикрепленной через динамометр к буксировочной тележке бассейна самоходной модели с работающими движителями и проведение самоходных испытаний модели в ледовых условиях с последующим определением ледового сопротивления модели, отличающийся тем, что при проведении самоходных испытаний в ледовых условиях испытуемую модель также связывают с помощью динамометра с буксировочной тележкой бассейна, обеспечивающей движение модели с заданными скоростями, и при этом измеряют силу между моделью и буксировочной тележкой бассейна F1, причем частоту вращения движителей выбирают из условия равенства расчетной тяги и тяги движительного комплекса модели на заданной скорости движения, а аналогичные самоходные испытания в условиях чистой воды проводят по окончании указанного эксперимента в ледовых условиях и выполняют их в ледовом канале, оставшемся в бассейне после прохождения буксируемой модели в ледяном поле в ходе проведения упомянутых испытаний в ледовых условиях, который предварительно очищают от битого льда, причем проводят их при тех же значениях частоты вращения движителей модели и скорости ее движения и также измеряют силу между моделью и буксировочной тележкой Fw, и по результатам буксировочных самоходных испытаний модели в ледовых условиях и в условиях чистой воды в упомянутом ледовом канале определяют силу чистого ледового сопротивления модели R1, значение которой вычисляют в виде R1=F1+Fw, причем при суммировании значения сил F1 и Fw берутся со своими знаками.



 

Похожие патенты:

Изобретение относится к способу испытаний гидроэлектрической турбины, позволяющему выполнять испытания турбины до ее окончательной установки на дне моря путем моделирования прохождения приливно-отливных течений воды через турбину.

Изобретение относится к области судостроения, а именно к техническим средствам экспериментальной гидромеханики судна, в частности к устройствам для гидродинамических испытаний масштабных моделей надводных судов на открытом водоеме методом буксировки.

Изобретение относится к гидравлическим испытательным стендам и может быть использовано для проведения испытаний на циклическую долговечность при отрицательных температурах гидравлических и пневматических емкостей.

Изобретение относится к области судостроения и касается способа моделирования работы двухступенчатого лопастного движителя за корпусом судна в ходе самоходных испытаний в опытовом бассейне.

Изобретение относится к области экспериментальной аэродинамики, в частности к устройствам, предназначенным для исследования аэродинамических характеристик летательных аппаратов (ЛА).

Изобретение относится к области экспериментальной техники и может быть использовано для опытного определения динамических характеристик пусковых устройств подводных аппаратов.

Изобретение относится к области судостроения, а более конкретно к экспериментальной гидромеханике судов и морских инженерных сооружений, работающих в ледовых условиях, касается методов и оборудования для проведения модельных испытаний в ледовом опытовом бассейне.

Изобретение относится к области судостроения, а более конкретно - к экспериментальной гидромеханике судов и морских инженерных сооружений, работающих в ледовых условиях, касается методов и оборудования для проведения ледовых модельных исследований в ледовом опытовом бассейне.

Изобретение относится к ракетной технике и может быть использовано при экспериментальной отработке заборных устройств, установленных в топливных баках ракет, для экспериментального определения гидравлических остатков незабора топлива в динамических условиях.

Изобретение относится к ракетной технике и может быть использовано при экспериментальной отработке заборных устройств, установленных в топливных баках ракет, для экспериментального определения гидравлических остатков незабора топлива.

Изобретение относится к области судостроения, а именно к техническим средствам экспериментальной гидромеханики судна, в частности к устройствам для гидродинамических испытаний масштабных моделей надводных судов на открытом водоеме методом буксировки.

Изобретение относится к области судостроения и касается способа моделирования работы двухступенчатого лопастного движителя за корпусом судна в ходе самоходных испытаний в опытовом бассейне.

Изобретение относится к области судостроения, а более конкретно к экспериментальной гидромеханике судов и морских инженерных сооружений, работающих в ледовых условиях, касается методов и оборудования для проведения модельных испытаний в ледовом опытовом бассейне.

Изобретение относится к области судостроения, а более конкретно - к экспериментальной гидромеханике судов и морских инженерных сооружений, работающих в ледовых условиях, касается методов и оборудования для проведения ледовых модельных исследований в ледовом опытовом бассейне.

Способ моделирования ледяного покрова с заданными прочностными характеристиками в ледовом опытном бассейне включает понижение температуры воздуха до -10 градусов Цельсия, чашу бассейна с переохлажденной соленой водой засеивают ядрами кристаллизации льда путем распыления пресной воды из мелкодисперсной форсунки в количестве около 0,1 кг на квадратный метр поверхности с равномерно движущейся тележки в течение 1-2 минут, после чего выжидают некоторое время до образования сплошного слоя тонкого льда и далее по определенному графику регулируют температуру воздуха в бассейне в сторону понижения или повышения в зависимости от требуемой толщины и прочности ледяного покрова.

Изобретение относится к области судостроения, более конкретно - к экспериментальной гидромеханике, и касается вопросов проведения экспериментальных исследований в опытовых бассейнах моделей быстроходных судов с воздушными кавернами на днище.

Изобретение относится к судостроению и касается проектирования экранопланов. При определении аэродинамических характеристик горизонтального оперения экраноплана с установленными на нем работающими маршевыми двигателями изготавливают геометрически подобную модель горизонтального оперения и двигателей силовой установки.

Изобретение относится к области судостроения, касается вопроса экспериментального определения характеристик нестационарных сил, возникающих на элементах судовых движителей.

Изобретение относится к области экспериментальной гидродинамики морского транспорта. .

Изобретение относится к области экспериментальной техники для исследований гидродинамики и динамики судов и касается создания опытовых бассейнов с возможностями моделирования в них волнения.

Изобретение относится к области судостроения, более конкретно к экспериментальной гидромеханике корабля. Предложен опытовый бассейн для испытаний моделей судов и морских инженерных сооружений преимущественно во льдах, включающий холодильную камеру с системой охлаждения и каналом, заполненным соленой водой, на поверхности которой образовано ледяное поле с торосами, а также установку сжатия подводной части торосов, содержащую размещенные по обоим бортам канала друг против друга погруженные в воду вертикально расположенные упорные плиты, оснащенные упругой мембраной, установленной на верхнем торце плиты, и гидропривод с подвижными штоками, соединенными с упорными плитами для их горизонтального перемещения. Высота упорных плит превышает толщину консолидированного слоя тороса по меньшей мере на 10%, а их ширина - по меньшей мере на 50% ширину подводной части тороса. Гидропривод связан с пультом управления, расположенным на борту опытового бассейна. Технический результат заключается в расширении функциональных возможностей опытового бассейна. 1 з.п. ф-лы, 1 ил.
Наверх