Способ стабилизации параметров подшипника



Способ стабилизации параметров подшипника

 


Владельцы патента RU 2581408:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) (RU)

Изобретение относится к машиностроению, а именно к стабилизации геометрических параметров подшипников качения приработкой в собранном виде. Способ заключается во вращении колец подшипника под внешней осевой нагрузкой, внешнюю нагрузку устанавливают равной Р=k Со, а частоту вращения подшипника устанавливают не более 200 об/мин, где Со - осевая статическая грузоподъемность подшипника; k - коэффициент надежности (k=0,8-0,9). Технический результат заключается в увеличении контактных напряжений и повышении интенсивности проработки. 1 ил.

 

Изобретение относится к машиностроению, а именно к стабилизации геометрических параметров подшипников качения приработкой в собранном виде, предназначенной для уменьшения погрешностей их изготовления и снижения степени рассеивания эксплуатационных параметров.

Известны способы [1, 2] стабилизации параметров колец подшипников приработкой в среде абразивной суспензии. Недостатками данных способов являются длительность процесса, необходимость введения дополнительной трудоемкой операции очистки деталей подшипника от абразива и техническая сложность осуществления процесса обработки.

Наиболее близким по технической сущности и достигаемому эффекту к заявляемому является способ стабилизации параметров подшипника приработкой в собранном виде, заключающийся во вращении колец подшипников под осевой нагрузкой [3]. Подшипник нагружают циклически изменяющейся во времени осевой нагрузкой, в момент действия минимальной нагрузки на подшипник накладывают ультразвуковые колебания и регулируют соотношение времени обработки при минимальной и максимальной нагрузке.

Недостатком данного способа является низкая производительность, так как обычно внешнюю нагрузку в процессе обработки устанавливают небольшой величины, в результате чего контактные напряжения получаются низкими.

Задачей предлагаемого изобретения является устранение указанных недостатков, а именно повышение производительности процесса стабилизации параметров подшипника приработкой в собранном виде.

Ожидаемым техническим результатом является увеличение контактных напряжений в процессе обработки и, как следствие, повышение интенсивности обработки.

Поставленная задача решается тем, что в известном способе стабилизации параметров подшипника, заключающемся во вращении колец подшипника под внешней осевой нагрузкой, согласно предлагаемому техническому решению внешнюю нагрузку устанавливают равной P=k·Co, а частоту вращения подшипника устанавливают не более 200 об/мин, где Co - осевая статическая грузоподъемность подшипника; k - коэффициент надежности (k=0,8-0,9).

Так как внешнюю нагрузку в процессе обработки выбирают близкой к статической грузоподъемности подшипника, то контактные напряжения в подшипнике получаются максимально возможными, а следовательно, обеспечивается максимально возможная производительность. Коэффициент надежности k=0,8-0,9 учитывает непредвиденные обстоятельства, такие как колебания внешней нагрузки из-за погрешностей установки, в которой осуществляется обработка, и погрешностей изготовления самого подшипника. При более высокой внешней нагрузке могут повреждаться тела и дорожки качения. При меньшей нагрузке существенно снижаются контактные напряжения и уменьшается производительность обработки. Частоту вращения ограничивают до 200 об/мин, так как при ее дальнейшем увеличении начинают играть отрицательную роль динамические факторы.

Сущность изобретения поясняется чертежом, на котором представлена схема осуществления способа стабилизации параметров шарикоподшипника.

Шариковый подшипник, состоящий из внутреннего кольца 1, наружного кольца 2 и шариков 3, установленных в сепараторе 4, устанавливают на оправку (не показана), а на внутреннее кольцо воздействуют нагрузкой Ρ, например, посредством эксцентрикового механизма. Так как в подшипнике всегда имеются зазоры между шариками и кольцами, то шарики 3 вступают в контакт с дорожками качения колец 1 и 2 под углом β, зависящим от величины зазоров. Внутреннему кольцу 2 придают вращение вокруг его оси с частотой n≤200 об/мин.

Пример. Обработке подвергают подшипник 42205: угол контакта в подшипнике β=26°, средний диаметр расположения шариков Do=38,5 мм, диаметр шариков dS=8 мм, число шариков z=9.

Осевую статическую грузоподъемность подшипника определяем по формуле [4]:

C o = 14,6 z sin β σ S 3 η 2 d S 2 , H .

Тогда

P = k 14,6 z sin β σ S 3 η 2 d S 2 ,

где z - число шариков в шарикоподшипнике, шт; β - угол контакта шариков и дорожек качения, град; σS - допустимое контактное напряжение, МПа (в соответствии с ГОСТ 18854-94 для стандартных шариковых подшипников σS=4200 МПа); dS - диаметр шариков, мм; η - упругая постоянная материала тел и колец подшипника:

η = 1 μ 1 2 E 1 + 1 μ 2 2 E 2 , 1 М П а ,

µ1 и µ2 - коэффициент Пуассона соответственно шариков и колец подшипника (для подшипниковой стали µ=0,3); E1 и E2 - модули упругости материалов шариков и колец (для подшипниковой стали E=2,12·105 МПа).

Для условий примера:

η = 1 0,3 2 2,12 10 5 + 1 0,3 2 2,12 10 5 = 8,67 10 6 1/МПа;

P = 0,8 14,6 9 sin 26 4200 3 ( 8,67 10 6 ) 2 7 2 = 2,1 10 4 H .

При меньшей нагрузке интенсивность приработки будет низкая, а при большей нагрузке возможно появление дефектов на дорожках и телах качения.

Придаем вращение подшипнику с частотой n=40 об/мин.

Для такой приработки достаточно сделать до 10 оборотов, чтобы обеспечить необходимое качество подшипника. Время обработки составит:

t = 10 60 40 = 15 с .

Обычно время приработки подшипника существующими способами составляет от получаса до нескольких часов.

Обработку подшипника осуществляют с двух сторон. В таком случае подшипник сможет воспринимать при эксплуатации реверсивную нагрузку или для него будет безразлично, с какой стороны действует эксплуатационная нагрузка.

Таким образом, предложенный способ стабилизации параметров подшипника обеспечивает существенное повышение производительности обработки.

Технико-экономическая эффективность от использования предлагаемого изобретения заключается в следующем:

1. Повышается жесткость подшипника и, как следствие, уменьшается вибрация и снижается волнистость обработанной поверхности.

2. Повышается производительность обработки.

Источники информации

1. Авторское свидетельство SU №1294580, МПК: B24B 19/06. Способ доводки подшипника качения в сборе. Опубл. 07.03.1987.

2. Авторское свидетельство SU №1202815, МПК: B24B 1/00, B24B 19/06. Способ доводки шарикоподшипников в собранном виде. Опубл. 07.01.1986.

3. Авторское свидетельство SU №1264023, МПК: G01M 13/04. Способ приработки шарикоподшипников. Опубл. 15.10.1984 - прототип.

4. Спришевский А.И. Подшипники качения. М., Машиностроение, 1968, 432 с.

Способ стабилизации параметров подшипника, заключающийся во вращении колец подшипника под внешней осевой нагрузкой, отличающийся тем, что внешнюю нагрузку устанавливают равной P=k Co, а частоту вращения подшипника устанавливают не более 200 об/мин, где Co - осевая статическая грузоподъемность подшипника; k - коэффициент надежности (k=0,8-0,9).



 

Похожие патенты:

Изобретение относится к определению технического состояния авиационных газотурбинных двигателей всех типов способом виброакустической диагностики с применением технического микрофона.

Изобретение относится к области измерительной техники и может быть использовано преимущественно в различных отраслях машиностроения. Устройство содержит узел установки и крепления внутреннего кольца контролируемого подшипника на приводном валу электродвигателя, два токосъемника, преобразователь, регистрирующую аппаратуру и источник электрического напряжения, один полюс которого через первый токосъемник связан с приводным валом, второй полюс связан с преобразователем, к которому подключен второй токосъемник, выполненный с возможностью подключения к наружному кольцу контролируемого подшипника.

Изобретения относятся к измерительной технике, в частности к устройствам для оценки повреждения подшипника качения электрической машины. При реализации заявленного способа электрическая машина, содержащая контролируемый подшипник качения, электрически подключена к инвертору с промежуточным контуром напряжения, а указанный подшипник качения имеет, соответственно, смазочный зазор между внутренним кольцом подшипника и телом качения и внешним кольцом подшипника и телом качения.

Изобретение относится к устройствам для измерения радиального зазора в подшипниках качения, преимущественно радиальных и радиально-упорных, применяемых на различных производствах.

Изобретение относится к устройствам для измерения осевого биения наружных колец подшипников качения, преимущественно радиальных и радиально-упорных, применяемых на различных производствах.

Заявленное изобретение относится к области измерительной техники, и может быть использовано для контроля износа двигателя. Способ содержит следующие этапы: в течение всего периода измерения Р считывают текущий вибрационный сигнал (Vc) механической вибрации компонентов двигателя; в течение периода P дискретизируют сигнал (Vc); сигнал синхронизируют относительно изменений режима N; сигнал преобразуют в частотный сигнал для получения частотных спектральных полос, упорядоченных по режиму N; вычисляют среднее значение амплитуд спектральных полос, чтобы получить текущую вибрационную сигнатуру (Sc) двигателя; вычисляют степень отклонения (Δ) между сигнатурой (Sc) и нормальной контрольной вибрационной сигнатурой (Ss); и степень отклонения (Δ) сравнивают с указателями дефектов заранее сформированной базы данных, объединяющей теоретические повреждения опорных подшипников двигателя, для определения потенциальных повреждений опорного подшипника.

Изобретение относится к испытательной технике и может быть использовано при испытаниях и доводке газовых подшипников высокооборотных турбомашин. Стенд содержит статор, в котором размещен ротор, установленный в двух опорах, выполненных с возможностью размещения в них испытуемых газодинамических подшипников.

Изобретение относится к устройству для комплексной диагностики технического состояния межроторных подшипников двухвальных газотурбинных двигателей методами вибродиагностики и может быть использовано в авиадвигателестроении.

Изобретение относится к области электротехники и может быть использовано в электрических машинах. Технический результат - повышение точности оценки токов подшипников в отношении потенциального повреждения соответствующего подшипника.

Изобретение относится к области диагностики повреждения деталей машин в процессе их непрерывной эксплуатации и может быть использовано для определения технического состояния машинных агрегатов и обеспечения их безопасной, ресурсосберегающей эксплуатации.

Изобретение относится к машиностроению, а именно к стабилизации геометрических параметров подшипников качения приработкой в собранном виде. Способ заключается во вращении подшипника под нагрузкой, при этом внешнюю нагрузку направляют к оси подшипника под углом не более 12 градусов, число шариков в процессе обработки устанавливают равным 4-6, в качестве шариков используют шарики из материала с твердостью на 8-12 единиц HRC выше твердости материала колец подшипника, а силу воздействия на подшипник устанавливают такой, чтобы в процессе приработки шарики осуществляли пластическую деформацию дорожки качения. Технический результат заключается в снижении контактных напряжений и повышении работоспособности подшипника. 1 ил.

Изобретение относится к испытательной технике и может быть использовано для испытаний шарнирных подшипников с имитацией эксплуатационных нагрузок и температур. Стенд состоит из основания, на котором размещены и соединены при помощи кинематической цепи привод и нагрузочное устройство. Основание состоит из рамы, верхняя часть которой выполнена в виде трубопровода для прохождения охлаждающей жидкости. В центре трубопровода жестко закреплен кронштейн, снаружи которого размещены нагревательные элементы. Кронштейн содержит два симметричных уха с соосными отверстиями, в которых размещена ось внутреннего кольца. Между ушами размещена качалка с центральным отверстием, в котором шарнирно установлено наружное кольцо подшипника. Один конец качалки шарнирно соединен с тягой, жестко соединенной со штоком привода. Другой конец качалки шарнирно соединен с тягой, жестко закрепленной со штоком нагрузочного устройства, установленным с возможностью продольного перемещения. Нагрузочное устройство состоит из корпуса с установленными внутри (с возможностью продольного перемещения) подпружиненными втулками. Шток нагрузочного устройства установлен во втулках. В нижней части рамы расположена жестко закрепленная на боковых и нижних стенках рамы перегородка с двумя отверстиями, в которых жестко закреплены втулки для размещения вилок. С одной стороны каждая вилка шарнирно соединена с верхней частью тензовставки, а нижняя часть тензоставки шарнирно соединена с нижней стенкой рамы, при этом одна вилка шарнирно соединена с корпусом нагрузочного устройства, а другая соединена с корпусом привода. Технический результат заключается в упрощении конструкции, возможности испытаний подшипников с имитацией условий эксплуатации. 4 ил.
Наверх