Видеосистема на кристалле (варианты)



Видеосистема на кристалле (варианты)
Видеосистема на кристалле (варианты)
H01L31/00 - Полупроводниковые приборы, чувствительные к инфракрасному излучению, свету, электромагнитному, коротковолновому или корпускулярному излучению, предназначенные либо для преобразования энергии такого излучения в электрическую энергию, либо для управления электрической энергией с помощью такого излучения; способы или устройства, специально предназначенные для изготовления или обработки таких приборов или их частей; конструктивные элементы приборов (H01L 51/00 имеет преимущество; приборы, состоящие из нескольких компонентов на твердом теле, сформированных на общей подложке или внутри нее, кроме приборов, содержащих чувствительные к излучению компоненты, в комбинации с одним или несколькими электрическими источниками света H01L 27/00; кровельные покрытия с приспособлениями для размещения и использования устройств для накопления или концентрирования энергии E04D 13/18; получение тепловой энергии с

Владельцы патента RU 2581423:

Акционерное общество "Научно-исследовательский институт телевидения" (RU)

Изобретение относится к устройствам регистрации видеоизображений. Видеосистема на кристалле содержит цветное фотоприемное устройство с функцией спектрального разделения светового потока в зависимости от глубины проникновения фотоэлектронов в кристалл. В первом варианте на этом же кристалле размещают блок коммутации, блок управления и блок построения изображения. Во втором варианте на кристалле размещают блок вычитания, арифметико-логическое устройство, блок управления, сумматор и блок логического «И». Технический результат - повышение помехоустойчивости и быстродействия видеосистемы, повышение отношения сигнал/шум для обнаружения малоконтрастных объектов, повышение достоверности классификации объектов по спектральным признакам. 2 н.п. ф-лы, 2 ил.

 

Изобретение относится к области телевидения и цифровой фотографии, в частности к устройствам регистрации видеоизображений.

Известно устройство, описанное в заявке на изобретение RU 2012137834 А (опубл. 10.03.2014) «Способ формирования спектрозональных видеокадров и устройство для его осуществления», включающее оптическую систему, в фокальной плоскости которой расположен переменный интерференционный фильтр, проекционную оптическую систему, в плоскости изображений которой расположена фоточувствительная поверхность цифровой телекамеры, запоминающее устройство исходных видеокадров, подключенное к выходу цифровой телекамеры. Устройство осуществляет последовательное формирование оптического изображения, разложение оптического изображения по спектральным зонам с помощью переменного интерференционного фильтра, перенос оптического изображения на матричное фотоприемное устройство цифровой телекамеры, получение цифровых видеокадров и их запоминание в запоминающем устройстве.

Недостатками известного устройства являются «грубая» дискретизация по времени и ограниченный спектральный диапазон работы телекамеры, так как разложение оптического изображения по спектральным зонам осуществляется переменным интерференционным светофильтром, расположенным в плоскости оптического изображения.

Также известно устройство, описанное в заявке на изобретение SU 1582924 А1 (опубл. 27.01.2003) «Цветная телевизионная камера», включающее твердотельный линейный приемник изображения с цветокодирующим фильтром, элементы которого размещены над фоточувствительными элементами приемника, а выход приемника подключен к входу блока разделения цветовых каналов. Цветокодирующий фильтр выполнен из повторяющихся элементов голубого, белого, желтого и белого цветов. В камеру дополнительно введены блоки цветокоррекции и коррекции неравномерности чувствительности, при этом вход блока цветокоррекции соединен с выходом приемника изображения, выход блока цветокоррекции соединен с входом блока коррекции неравномерности чувствительности, выход которого соединен с входом блока разделения цветовых каналов.

Недостатком известного устройства является «грубая» дискретизация по полю, вызванная использованием в телевизионной камере мозаичного кодирующего светофильтра для разделения цветовых каналов.

Наиболее близким по своей технической сути к заявляемому устройству является устройство, описанное в патенте на изобретение US 6632701 В2 (опубл. 14.10.2003) «Массив датчиков с вертикальным цветным фильтром», содержащее массив фотоприемных элементов, каждый из которых представляет собой три области, поглощающих синий, зеленый и красный цвета видимого спектра излучения, расположенных друг под другом в одном элементе; каждый элемент формирует три выходных сигнала фототока, меняющегося в зависимости от изменения интенсивности и спектрального состава светового потока. Синий цвет, имеющий самую короткую длину волны в видимом диапазоне, поглощается раньше других, и фотодетектор, поглощающий синий цвет, находится ближе всего к поверхности кристалла, красный цвет имеет самую большую длину волны в видимом диапазоне и проникает глубже остальных в кремний, поэтому фотодетектор, поглощающий красный цвет, находится глубже всех остальных, фотодетектор, поглощающий зеленый цвет, находится между красным и синим.

Недостатками прототипа являются ограниченный спектральный диапазон чувствительности датчика, т.к. отсутствуют инфракрасная и ультрафиолетовая области спектра, низкая помехоустойчивость системы, а также необходимость подключения дополнительных модулей для построения полноценной видеосистемы.

Техническим результатом заявляемого устройства является повышение помехоустойчивости и быстродействия видеосистемы, уменьшение собственных шумов элементов видеосистемы, повышение отношения сигнал/шум для обнаружения малоконтрастных объектов, повышение достоверности классификации объектов по спектральным признакам.

Другим техническим результатом является повышение степени интеграции микросхем на одном кристалле для упрощения и универсализации конструирования видеосистем.

Это достигается тем, что видеосистема на кристалле, содержащая цветное фотоприемное устройство, обладающее функцией спектрального разделения светового потока в зависимости от глубины проникновения фотоэлектронов в кристалл, отличается тем, что в видеосистему на кристалле дополнительно введены блок коммутации, входы K1…KN которого соединены с соответствующими выходами цветного фотоприемного устройства, блок управления, один из выходов которого соединен с входом блока коммутации, а другой - с входом блока построения изображений, входы K1…KN которого соединены с соответствующими выходами блока коммутации, выходной видеосигнал формируется на выходе блока построения изображений.

Во втором варианте это достигается тем, что видеосистема на кристалле, включающая цветное фотоприемное устройство, обладающее функцией спектрального разделения светового потока в зависимости от глубины проникновения фотоэлектронов в кристалл, отличается тем, что в видеосистему на кристалле дополнительно введены блок вычитания, входы K1…KN которого соединены с соответствующими выходами цветного фотоприемного устройства, арифметико-логическое устройство, входы K1-K2, K2-K3…KN-1-KN которого соединены с соответствующими выходами блока вычитания, блок управления, один из выходов которого соединен с входом арифметико-логического устройства, а другой - с входом сумматора, входы K1…KN которого соединены с соответствующими выходами цветного фотоприемного устройства, и блок логическое «И», вход Bi которого соединен с выходом арифметико-логического устройства, вход KΣ соединен с выходом сумматора, выходной видеосигнал формируется на выходе блока логическое «И».

Представленные чертежи поясняют суть предлагаемого технического решения.

На Фиг. 1 изображена структурная схема видеосистемы на кристалле для обнаружения малоконтрастных объектов.

На Фиг. 2 изображен другой вариант видеосистемы на кристалле для классификации объектов по спектральным признакам.

Видеосистема на кристалле для обнаружения малоконтрастных объектов, изображенная на Фиг. 1, включает в себя цветное фотоприемное устройство 1, обладающее функцией спектрального разделения светового потока в зависимости от глубины проникновения фотоэлектронов в кристалл, блок 2 коммутации, входы K1…KN которого соединены с соответствующими выходами цветного фотоприемного устройства 1, блок 3 управления, один из выходов которого соединен с входом блока 2 коммутации, блок 4 построения изображений, входы K1…KN которого соединены с соответствующими выходами блока 2 коммутации, вход сигналов управления соединен с выходом блока 3 управления, а на выходе блока 4 построения изображений формируется выходной видеосигнал.

Видеосистема на кристалле для классификации объектов по спектральным признакам, изображенная на Фиг. 2, включает в себя цветное фотоприемное устройство 1, обладающее функцией спектрального разделения светового потока в зависимости от глубины проникновения фотоэлектронов в кристалл, блок 7 вычитания входы K1…KN которого соединены с соответствующими выходами цветного фотоприемного устройства 1, арифметико-логическое устройство 8, входы K1-K2, K2-K3…KN-1-KN которого соединены с соответствующими выходами блока 7 вычитания, блок 3 управления, один из выходов которого соединен со входом сигналов управления арифметико-логического устройства 8, сумматор 5, входы K1…KN которого соединены с соответствующими выходами цветного фотоприемного устройства, вход сигналов управления сумматора 5 соединен с выходом блока 3 управления, и блок 6 логическое «И», вход Bi которого соединен с выходом арифметико-логического устройства 8, вход КΣ соединен с выходом сумматора 5, а на выходе блока 6 логическое «И» формируется выходной видеосигнал.

В видеосистеме на кристалле для обнаружения малоконтрастных объектов (см. Фиг. 1) световой поток проецируется на цветное фотоприемное устройство 1, обладающее функцией спектрального разделения падающего светового потока по глубине проникновения фотонов в кристалл фотоприемника, за счет чего фотоприемное устройство формирует выходные сигналы K1…KN разных спектральных диапазонов без потери в цветовой разрешающей способности и без использования кодирующих светофильтров, включая ближние ультрафиолетовый и инфракрасный диапазоны. Видеосигналы K1…KN поступают на блок 2 коммутации, где с помощью блока 3 управления выбираются необходимые сигналы для построения видеоизображения, после чего выбранные сигналы поступают на блок 4 построения изображений, где после проведения требуемых операций преобразования и суммирования формируется выходной видеосигнал (ВВС). Данные для проведения операций задаются в блоке 3 управления, после чего поступают на блок 4 построения изображений. Блок 2 коммутации используется для выбора видеосигналов требуемого спектрального диапазона, в которых наблюдается максимальный контраст цели, а видеосигналы тех спектральных диапазонов, контраст цели в которых ниже порогового значения, отсеиваются, за счет чего в блоке 4 построения изображений формируется выходной мультиспектральный видеосигнал с максимально возможным контрастом изображения объекта.

В видеосистеме на кристалле для классификации объектов по спектральным признакам (см. Фиг. 2) световой поток проецируется на цветное фотоприемное устройство 1, как описано выше. Выходные сигналы фотоприемного устройства K1…KN разных спектральных диапазонов поступают на блок 7 вычитания. Разностные сигналы K1-K2, K2-K3…KN-1-KN поступают на арифметико-логическое устройство 8, где производится операция сравнения поступивших разностных сигналов с областью разрешенных сигналов, задающейся в блоке 3 управления. Арифметико-логическое устройство 8 проверяет наличие объекта заданного спектрального класса на изображении (параметры задаются в блоке 3 управления), на выходе формируется бинарный сигнал видеоизображения Bi. Бинарный сигнал Bi представляет собой последовательность кадров, состоящих из «0» и «1», причем в местах, где найден объект, формируются «1», а где объекта нет - «0». Выходные сигналы цветного фотоприемного устройства 1 K1…KN поступают на сумматор 5, в котором складываются, и суммарный сигнал видеоизображения KΣ поступает на блок 6 логическое «И», где берется произведение сигнала видеоизображения КΣ с сигналом Bi, за счет чего области изображения, содержащие цель, остаются неизмененными, а остальные неинформативные области изображения считаются фоном и обнуляются. На выходе блока 6 логическое «И» формируется выходной видеосигнал (ВВС), представляющий собой последовательность изображений, содержащих яркостной сигнал целей на нулевом фоне.

Отличие заявленного устройства от прототипа заключается в том, что на одном кристалле, помимо многоцветного фотоприемного устройства с функцией спектрального разделения светового потока в зависимости от глубины проникновения фотоэлектронов в кристалл, дополнительно размещены блок коммутации, блок управления и блок построения изображения в первом варианте, блок вычитания, арифметико-логическое устройство, блок управления, сумматор и блок логическое «И» во втором варианте, в результате чего на одном кристалле размещается полноценная видеосистема, что позволяет существенно снизить собственные шумы видеосистемы, повысить помехоустойчивость и быстродействие видеосистемы, а за счет использования многоцветного фотоприемного устройства с функцией глубинного считывания фотоэлектронов - избежать использования кодирующих светофильтров, повысить цветовое разрешение мультиспектральных изображений, уменьшить цветовые искажения, повысить чувствительность видеосистемы, повысить отношение сигнал/шум при обнаружении малоконтрастных объектов и достоверность классификации объектов по спектральным признакам.

1. Видеосистема на кристалле, включающая цветное фотоприемное устройство, обладающее функцией спектрального разделения светового потока в зависимости от глубины проникновения фотоэлектронов в кристалл, отличающаяся тем, что в видеосистему на кристалле дополнительно введены блок коммутации, входы K1…KN которого соединены с соответствующими выходами цветного фотоприемного устройства, блок управления, один из выходов которого соединен с входом блока коммутации, а другой - с входом блока построения изображений, входы K1…KN которого соединены с соответствующими выходами блока коммутации, на выходе блока построения изображений формируется выходной видеосигнал.

2. Видеосистема на кристалле, включающая цветное фотоприемное устройство, обладающее функцией спектрального разделения светового потока в зависимости от глубины проникновения фотоэлектронов в кристалл, отличающаяся тем, что в видеосистему на кристалле дополнительно введены блок вычитания, входы K1…KN которого соединены с соответствующими выходами цветного фотоприемного устройства, арифметико-логическое устройство, входы K1-K2, K2-K3…KN-1-KN которого соединены с соответствующими выходами блока вычитания, блок управления, один из выходов которого соединен с входом арифметико-логического устройства, а другой - с входом сумматора, входы K1…KN которого соединены с соответствующими выходами цветного фотоприемного устройства, и блок логическое «И», вход Bi которого соединен с выходом арифметико-логического устройства, вход KΣ соединен с выходом сумматора, на выходе блока логическое «И» формируется выходной видеосигнал.



 

Похожие патенты:

Изобретение относится к области электровакуумной техники, в частности к полупроводниковым оптоэлектронным устройствам - фотокатодам, а именно к гетероструктуре для полупрозрачного фотокатода с активным слоем из арсенида галлия, фоточувствительного в видимом и ближнем инфракрасном диапазоне, и может быть использовано при изготовлении фоточувствительного элемента оптоэлектронных устройств: электронно-оптических преобразователей фотоумножителей, используемых в детекторах излучений.

Изобретение относится к 8-алкил-2-(тиофен-2-ил)-8H-тиофен[2,3-6]индол замещенным 2-цианоакриловым кислотам формулы (I) которые могут быть использованы как перспективные красители для сенсибилизации неорганических полупроводников в составе цветосенсибилизированных солнечных батарей, способу их получения, а так же промежуточным соединениям, которые используют для синтеза данных соединений.

Настоящее изобретение относится к технологии термофотоэлектрических преобразователей с микронным зазором (MTPV) для твердотельных преобразований тепла в электричество.

Использование: для изготовления модульных (гибридных) оптико-электронных наблюдательных и регистрирующих приборов различных спектров действия, предназначенных для эксплуатации в условиях низкой освещенности.

Изобретение относится к гелиотехнике. Теплофотоэлектрический модуль с параболоцилиндрическим концентратором солнечного излучения состоит из параболоцилиндрического концентратора и линейчатого фотоэлектрического приемника (ФЭП), расположенного в фокальной области с равномерным распределением концентрированного излучения вдоль цилиндрической оси, при этом солнечный фотоэлектрический модуль содержит асимметричный концентратор параболоцилиндрического типа с зеркальной внутренней поверхностью отражения и линейчатый фотоэлектрический приемник, установленный в фокальной области с устройством протока теплоносителя; форма отражающей поверхности концентратора Х(Y) определяется предложенной системой уравнений, соответствующей условию равномерной освещенности поверхности фотоэлектрического приемника, выполненного в виде линейки шириной do из скоммутированных ФЭП и длиной h и расположенного под углом к миделю концентратора.

Изобретение относится к полупроводниковым приборам, чувствительным к свету. Гетероструктура содержит подложку, выполненную из AlN, на которой размещено три сопряженных друг с другом выполненных из In1-xGaxN двухслойных компонентов с p-n-переходами между слоями.

Изобретение относится к полупроводниковым приборам, чувствительным к свету, предназначенным для преобразования света в электрическую энергию, в частности к многопереходным солнечным элементам.

Предлагаемое изобретение «Монолитный быстродействующий координатный детектор ионизирующих частиц» относится к полупроводниковым координатным детекторам ионизирующих частиц.

Изобретение относится к физике и технологии полупроводниковых приборов, в частности к солнечным элементам на основе кристаллического кремния. Солнечный элемент на основе кристаллического кремния состоит из областей p- и n-типов проводимости, электродов к р- и n-областям, при этом согласно изобретению на фронтальной поверхности кристалла сформирована дифракционная решетка с периодом, равным длине волны кванта излучения, энергия которого равна ширине запрещенной зоны кристалла.

Система регулирования микроклимата сельскохозяйственного поля включает размещенные по границе поля ветрозащитные и снегозадерживающие элементы, водоем, устраиваемый вдоль границы поля со стороны наиболее вероятного проникновения суховея.

Использование: для создания многоэлементных фотоприемников. Сущность изобретения заключается в том, что способ сборки матричного модуля на держатель содержит стадии нанесения криостойкого клея на тыльную поверхность растра матричного модуля и на держатель, ориентации матричного модуля относительно держателя, прижима матричного модуля к держателю, приклеивают матричный модуль на держатель с помощью приспособления типа «насадка» в виде цилиндрического колпака, плотно надеваемого на растр с помощью выступов на окружности основания и содержащего четыре выреза под метки совмещения, расположенные под углом 90° по отношению соседних меток друг к другу, предназначенных для ориентации матричного модуля относительно держателя с помощью инструментального микроскопа, кроме этого, содержащего дополнительно четыре выреза по углам фоточувствительного элемента, предназначенные для бездефектного надевания «насадки» на растр, а также содержащего в центре верха колпака метку в виде отверстия для ориентации и коническое углубление для прижима с помощью зондовой головки и возможности поворота «насадки» для совмещения меток, расположенных на растре и держателе. Технический результат: обеспечение возможности бездефектного способа сборки матричного модуля. 2 з.п. ф-лы, 5 ил.

Изобретение относится к области гелиоэнергетики и касается конструкции фотоэлектрического модуля космического базирования. Фотоэлектрический модуль включает в себя нижнее защитное покрытие, на котором с помощью полимерной пленки закреплены кремниевые солнечные элементы с антиотражающим покрытием, и расположенное над лицевой поверхностью солнечных элементов верхнее защитное покрытие, которое скреплено с солнечными элементами промежуточной пленкой из оптически прозрачного полимерного материала. Со стороны лицевой поверхности солнечных элементов и в антиотражающее просветляющее покрытие солнечных элементов введен оптически активный прозрачный полимер, содержащий антистоксовый люминофор. Верхнее и нижнее защитные покрытия выполнены из оптически активных кислородосодержащих материалов типа монокристаллического α-Al2O3-x, способных к люминесценции, накоплению и высвечиванию светосумм при естественной оптической и термической стимуляции. Технический результат заключается в повышении эффективности при работе в цикле солнечный свет - темнота. 1 з.п. ф-лы. 9 ил. 1 табл.

Изобретение может быть использовано для преобразования солнечной энергии в электроэнергию. Согласно изобретению предложено фотоэлектрическое устройство (1), содержащее солнечный концентратор (2), имеющий кольцеобразную форму, в свою очередь содержащий внешний проводник (3), расположенный вдоль внешней части кольца; внешнюю люминесцентную пластину (22), имеющую трапециевидный профиль и имеющую внешнюю периферийную приемную поверхность, выполненную с возможностью приема светового излучения, падающего и приходящего от проводника (3); внутреннюю люминесцентную пластину (21), расположенную вдоль внутренней части кольца и имеющую трапециевидный профиль; наноструктурный полупроводниковый слой (23), лежащий между двумя пластинами (21, 22) таким образом, что большие основания соответствующих трапециевидных профилей обращены к нему, причем упомянутый полупроводниковый слой (23) выполнен с возможностью приема излучения, переданного внешней и внутренней пластинами (21, 22), и реализации фотоэлектрического эффекта; средство (3, 5) передачи, выполненное с возможностью сбора и концентрации падающего светового излучения на упомянутой периферийной приемной поверхности. Среди главных преимуществ, связанных с настоящим изобретением, можно назвать большую общую компактность; улучшенную архитектурную интеграцию по отношению к классическим панелям в отношении модернизации и уличного оборудования; потенциальное уменьшение батареи аккумуляторов; улучшенное использование солнечного излучения; увеличение мощности по отношению к классическим панелям; работу в ночное время. 2 н. и 19 з.п. ф-лы, 8 ил.

Изобретение относится к области электроники и может быть использовано при конструировании солнечных элементов, которые используются в энергетике, космических и военных технологиях, горнодобывающей, нефтеперерабатывающей, химической отраслях промышленности и др. Солнечный элемент согласно изобретению включает кристаллическую подложку из кремния n-типа (n)с-Si ориентации (100) с фронтальной и тыльной поверхностями, над фронтальной поверхностью последовательно расположены: промежуточный слой аморфного гидрогенизированного карбида кремния в виде твердого раствора; нелегированный слой аморфного гидрогенизированного кремния (i)a-Si:H; р-легированный слой аморфного гидрогенизированного кремния (p)a-Si:H; слой оксида индия-олова (ITO); серебренная контактная сетка. При этом над тыльной поверхностью последовательно расположены: промежуточный слой аморфного гидрогенизированного карбида кремния в виде твердого раствора; нелегированный слой аморфного гидрогенизированного кремния (i)a-Si:H; n-легированный слой аморфного гидрогенизированного кремния (n)a-Si:H; слой оксида индия-олова ITO; слой серебра Ag. Изобретение позволяет улучшить пассивацию поверхности за счет предотвращения частичного эпитаксиального роста во время нанесения слоя аморфного гидрогенизированного кремния толщиной 2-5 нм на кристаллическую подложку, что в свою очередь ведет к увеличению напряжения холостого хода и, как следствие, эффективности преобразования солнечного излучения. 13 з.п. ф-лы, 3 ил.

Способ формирования туннельного перехода (112) в структуре (100) солнечных элементов, предусматривающий попеременное осаждение вещества Группы III и вещества Группы V на структуре (100) солнечных элементов и управление отношением при осаждении указанного вещества Группы III и указанного вещества Группы V. Также предложено фотоэлектрическое устройство, включающее подложку (102); первый солнечный элемент (108), расположенный над подложкой (102); контакт (116), расположенный над первым солнечным элементом (108); туннельный переход (112), образованный между первым солнечным элементом (108) и контактом (116), и в котором туннельный переход (112) изготовлен методом эпитаксии со стимулированной миграцией (МЕЕ); буферный слой (106), расположенный между указанной подложкой (102) и указанным первым солнечным элементом (108); и слой (104) зарождения, расположенный между указанным буферным слоем (106) и указанной подложкой (102). Изобретение обеспечивает улучшение качества материала туннельного перехода, что обеспечивает высокую кристаллическую чистоту солнечных элементов над туннельным переходом, которая в свою очередь обеспечивает повышение эффективности преобразования солнечного излучения. 2 н. и 10 з.п. ф-лы, 4 ил.

Изобретение относится к области электротехники, а именно к устройству каскадной солнечной батареи. Каскадная солнечная батарея выполнена с первой полупроводниковой солнечной батареей, причем в первой полупроводниковой солнечной батарее имеется р-n переход из первого материала с первой константой решетки, и со второй полупроводниковой солнечной батареей, причем во второй полупроводниковой солнечной батарее имеется р-n переход из второго материала со второй константой решетки, и причем первая константа решетки меньше, чем вторая константа решетки, и у каскадной солнечной батареи имеется метаморфный буфер, причем метаморфный буфер включает в себя последовательность из первого, нижнего слоя AlInGaAs или AlInGaP, и второго, среднего слоя AlInGaAs или AlInGaP, и третьего, верхнего слоя AlInGaAs или AlInGaP, и метаморфный буфер сформирован между первой полупроводниковой солнечной батареей и второй полупроводниковой солнечной батареей, и константа решетки метаморфного буфера изменяется по толщине (по координате толщины) метаморфного буфера, и причем между по меньшей мере двумя слоями метаморфного буфера константа решетки и содержание индия увеличивается, а содержание алюминия уменьшается. Снижение остаточного напряжения в солнечной батарее, а также повышение коэффициента ее полезного действия является техническим результатом изобретения. 14 з.п. ф-лы, 7 ил.

Изобретение относится к полупроводниковой электронике и может быть использовано для создания солнечных элементов. Метаморфный фотопреобразователь включает подложку (1) из GaAs, метаморфный буферный слой (2) и по меньшей мере один фотоактивный p-n-переход (3), выполненный из InGaAs и включающий базовый слой (4) и эмиттерный слой (5), слой (6) широкозонного окна из In(AlxGa1-x)As, где x=0,2-0,5, и контактный субслой (7) из InGaAs. Метаморфный фотопреобразователь, выполненный согласно изобретению, имеет повышенные величину фототока и КПД. 5 з.п. ф-лы, 4 ил.

Солнечный концентраторный модуль (1) содержит боковые стенки (2), фронтальную панель (3) с линзами (4) Френеля на внутренней стороне фронтальной панели (3), тыльную панель (9) с фоконами (6) и солнечные элементы (7), снабженные теплоотводящими основаниями (8). Теплоотводящие основания (8) прикрепляют солнечные элементы (7) к тыльной стороне (9) тыльной панели (5) так, что центр фотоприемной площадки (10) каждого солнечного элемента (7) лежит на одной оси с центром (11) соответствующей линзы Френеля и совпадает с фокусом этой линзы. Солнечный концентраторный модуль (1) имеет повышенную энергопроизводительность и улучшенную разориентационную характеристику. 5 з.п. ф-лы, 3 ил.

Штабелевидная интегрированная многопереходная солнечная батарея с первым элементом батареи, причем первый элемент батареи включает в себя слой из соединения InGaP с первой константой решетки и первой энергией запрещенной зоны, а толщина слоя превышает 100 нм, и слой выполнен как часть эмиттера, и/или как часть базы, и/или как часть расположенной между эмиттером и базой области объемного заряда, и вторым элементом батареи, причем второй элемент батареи включает в себя слой из соединения InmРn со второй константой решетки и второй энергией запрещенной зоны, а толщина слоя превышает 100 нм, и слой выполнен как часть эмиттера, и/или как часть базы, и/или как часть расположенной между эмиттером и базой области объемного заряда, и третьим элементом батареи, причем третий элемент батареи включает в себя слой из соединения InxGa1-xAs1-yPy с третьей константой решетки и третьей энергией запрещенной зоны, а толщина слоя превышает 100 нм, и слой выполнен как часть эмиттера, и/или как часть базы, и/или как часть расположенной между эмиттером и базой области объемного заряда, и четвертым элементом батареи, причем четвертый элемент батареи включает в себя слой из соединения InGaAs с четвертой константой решетки и четвертой энергией запрещенной зоны, а толщина слоя превышает 100 нм, и слой выполнен как часть эмиттера, и/или как часть базы, и/или как часть расположенной между эмиттером и базой области объемного заряда, причем для значений энергии запрещенной зоны справедливо соотношение Eg1>Eg2>Eg3>Eg4, и между двумя элементами батареи сформирована область сращения плат. Изобретение обеспечивает возможность повышения эффективности преобразования солнечного света. 16 з.п. ф-лы, 6 ил.

Заявленное изобретение относится к технике преобразования световой энергии в электрическую и предназначено для преобразования световой энергии в электрическую. Заявленная оптопара содержит излучатель, фотоприемный элемент, закрепленные на корпусе, причем в качестве излучателя света использована шаровая лампа, в качестве фотоприемного элемента использована батарея солнечных элементов, корпус выполнен в виде трубы из диэлектрического материала, на внешней боковой поверхности которого имеются распределители потенциала. Заявленная оптопара дополнительно включает сферическую отражающую поверхность, имеющую отверстие в боковой поверхности в виде круга и линзу с эллипсоидальной поверхностью, причем сферическая отражающая поверхность, линза с эллипсоидальной поверхностью, шаровая лампа и батарея солнечных элементов расположены на одной оптической оси, совпадающей с осью корпуса. В одном торце корпуса расположена сферическая отражающая поверхность, линза с эллипсоидальной поверхностью и шаровая лампа, а во втором торце – батарея солнечных элементов. Шаровая лампа расположена в центре сферической отражающей поверхности, линза с эллипсоидальной поверхностью расположена в отверстии шаровой сферической поверхности. Внутренние поверхности сферической отражающей поверхности и корпуса имеют зеркальное покрытие, батарея солнечных элементов выполнена на основе многослойных структур, обеспечивающих каскадное преобразование оптического излучения шаровой лампы. Технический результат - увеличение мощности, электрической прочности и снижение потери энергии в оптопаре. 1ил.
Наверх