Способ формирования внутреннего теплозащитного покрытия корпуса ракетного двигателя



Способ формирования внутреннего теплозащитного покрытия корпуса ракетного двигателя
Способ формирования внутреннего теплозащитного покрытия корпуса ракетного двигателя

 


Владельцы патента RU 2581516:

Публичное акционерное общество Научно-производственное объединение "Искра" (RU)

Изобретение относится к области машиностроения, в частности, к изготовлению теплозащитных покрытий камер сгорания ракетных двигателей. При формировании внутреннего теплозащитного покрытия корпуса ракетного двигателя в процессе выкладки слоев невулканизованной резины между слоями размещают оптическое волокно для измерения температуры в процессе вулканизации. Оптическое волокно размещают на поверхностях невулканизованной резины спиральными витками с переходом с одного слоя резины на другой слой. Производят точечное закрепление волокна на поверхностях слоев резины с помощью клея холодного отверждения на основе каучуков. Изобретение позволяет повысить качество теплозащитного покрытия. 2 ил.

 

Изобретение относится к области ракетной техники и может быть использовано при изготовлении внутреннего теплозащитного покрытия (ТЗП), корпусов ракетных двигателей (РД), например, на твердом (РДТТ) или пастообразном топливах.

В настоящее время изготовление внутреннего теплозащитного покрытия корпуса РДТТ с силовой оболочкой из композиционных материалов (см. Л.Н. Лавров и др. Конструкции ракетных двигателей на твердом топливе. - М.: Машиностроение, 1993 г., с. 63-64), осуществляют в два этапа. На первом этапе послойно на жесткую оправку укладывают слои невулканизованной резины до получения пакета требуемой толщины и проводят вулканизацию при t=150±5°С для придания пакету монолитности и жесткости, а на втором этапе устанавливают полученный пакет на вымываемую песчано-полимерную оправку (см. также патент РФ №2266201) в составе органо-пластикового корпуса типа «кокон».

Известен также способ изготовления внутреннего теплозащитного покрытия корпуса ракетного двигателя, включающий послойную выкладку на жесткую оправку слоев невулканизованной резины до получения пакета требуемой толщины и вулканизацию полученного пакета с контролем режима по термопреобразователям, установленным в пакете ТЗП (патент РФ №2415289).

Данный способ хорошо себя зарекомендовал на этапе отработки высокодеформативного корпуса РДТТ, в т.ч. и при применении современных резин на основе синтетических каучуков марок СКЭП и СКЭПТ, обладающих повышенной теплостойкостью.

Однако этот способ не обеспечивает в полной мере информацией о конверсии температурных полей на этапе режима вулканизации в условиях одностороннего нагрева при гидроклавном методе формирования по причине невозможности закладки большого числа термопреобразователей в необходимые места ТЗП ввиду их значительных габаритных размеров, нарушающих структуру конструкции. Контроль температурного режима вулканизации осуществляется по единичным показаниям термопреобразователей, устанавливаемых по задаваемой схеме по конкретным дискретным точкам. Информация о распространении температурных конверсионных полей необходима для контроля и оптимизации по известным методикам режима вулканизации для отрабатываемых изделий.

Технической задачей данного изобретения является повышение качества формирования теплозащитного покрытия корпуса ракетного двигателя.

Технический результат достигается тем, что в способе формирования внутреннего теплозащитного покрытия корпуса ракетного двигателя, по которому в процессе выкладки слоев невулканизованной резины между ними размещают оптическое волокно для измерения температуры в процессе вулканизации, оптическое волокно размещают на поверхностях невулканизованной резины спиральными витками с переходом с одного слоя резины на другой слой, при этом производят точечное закрепление волокна на поверхностях слоев резины с помощью клея холодного отверждения на основе каучуков.

Данный способ формирования теплозащитного покрытия позволяет объективно оценивать качество изготовления теплозащитного покрытия с прогнозированием завершенности процесса вулканизации по конверсии температурных полей в интерактивном режиме за счет значительной зоны контроля профиля ТЗП, с оптимизацией процесса вулканизации во время его протекания с использованием получаемой информации по известной методике, с применением одного оптического волокна.

Лабораторно-экспериментальные исследования подтвердили высокую эффективность предлагаемой технологии с использованием оптического волокна, который будучи «интеллектуальным» материалом с информационными функциями позволяет создать рациональный режим вулканизации и отработать толщину ТЗП с минимально необходимым оставшимся слоем в конструкции изделия.

На фиг. 1 показана схема укладки оптического волокна в ТЗП (общий вид), на фиг. 2 - вид А фиг. 1.

Способ осуществляют следующим образом.

Выкладывают на оправку слои сырой резины. Ввод оптического волокна в структуру ТЗП 1 осуществляют после выкладки третьего слоя сырой резины. Ввод оптического волокна 2 начинают с прокладки волокна от нижнего края ТЗП до места на ТЗП, в точке 3 с последующей прокладкой волокна на поверхности слоя резины по спирали (по часовой стрелке), до возврата в точку 4, находящуюся в одной плоскости с точкой 3. Закрепление волокна на поверхности сырой резины осуществляется точечным приклеиванием 5, с необходимым шагом, клеем холодного отверждения на основе каучуков. Далее осуществляют выкладку четвертого слоя резины. В заготовке четвертого слоя резины в точке 4 делают разрез, через который оптическое волокно протягивают на поверхность четвертого слоя в точку 6. Аналогичным способом оптическое волокно закладывают на поверхность необходимого количества слоев, с переходом оптического волокна на другой диаметр ТЗП, из слоя в слой. Вывод волокна осуществляют прокладкой по последнему слою закладки к краю ТЗП в точке 7.

После полной укладки пакета ТЗП устанавливают вакуумную герметизирующую оболочку, устанавливают крышку, и сборочную единицу устанавливают в гидроклав. Выводящие концы оптического волокона подсоединяют к измерительной системе. В процессе вулканизации получают информацию о фактическом распространении конверсионных температурных полей.

По информации, получаемой в режиме реального времени от измерительной системы, согласно известной методике, в процессе вулканизации производят оптимизацию времени поддержания необходимого температурного режима.

Применение данного способа позволяет за счет измерения фактических значений достигаемого уровня температур с помощью оптического волокна, связанного с преобразующей измерительной системой, оптимизировать процесс вулканизации ТЗП по времени и, таким образом, повысить качество изготовления внутреннего теплозащитного покрытия корпуса ракетного двигателя, а также сократить энергозатраты.

Способ формирования внутреннего теплозащитного покрытия корпуса ракетного двигателя, по которому в процессе выкладки слоев невулканизованной резины между ними размещают оптическое волокно для измерения температуры в процессе вулканизации, отличающийся тем, что оптическое волокно размещают на поверхностях невулканизованной резины спиральными витками с переходом с одного слоя резины на другой слой, при этом производят точечное закрепление волокна на поверхностях слоев резины с помощью клея холодного отверждения на основе каучуков.



 

Похожие патенты:

Изобретение относится к ракетной технике и может быть использовано при изготовлении корпусов ракетных двигателей с относительно малым временем работы, например, для двигателей ракетно-артиллерийских боеприпасов.

Камера сгорания силовой установки крылатой ракеты выполнена в виде многослойного изделия и содержит обечайку, несущую механическую нагрузку внутреннего давления, и слой теплозащитного керамического композиционного материала, контактирующего с образующимися при сжигании топлива газами.

При изготовлении внутреннего теплозащитного покрытия с тканевым защитно-крепящим слоем корпуса ракетного двигателя твердого топлива изготавливают, формуют и вулканизируют внутреннее теплозащитное покрытие с тканевым защитно-крепящим слоем.

Изобретение относится к области ракетной техники и может быть использовано в ракетных двигателях твердого топлива с зарядами из смесевых топлив, скрепленных со стенками корпуса.

Изобретение относится к области ракетной техники и может быть использовано в ракетных двигателях твердого топлива с зарядами из смесевых топлив, скрепленных с корпусом по цилиндрической части и раскрепленных манжетами по эллиптическим торцевым поверхностям.

При изготовлении корпуса воспламенителя заряда ракетного двигателя из композиционных материалов выполняют цилиндрическую оболочку. Изготовление всех разнотипных элементов оболочки ведут из разложенного на подогреваемую поверхность расчетного для каждого последовательно выполняемого технологического передела количества препрега легко деформируемой ткани, причем армирующие волокна располагают под углом.

Изобретение относится к технологии изготовления внутреннего теплозащитного покрытия корпусов ракетных двигателей из композиционных материалов. При изготовлении теплозащитного покрытия корпуса ракетного двигателя с удлиненной цилиндрической частью и с закладными элементами наносят на внутреннюю поверхность закладного элемента корпуса покрытие из невулканизованной резины.

Изобретение относится к области машиностроения и может быть использовано в конструкциях корпусов ракетных двигателей твердого топлива из композиционных материалов.

Корпус ракетного двигателя содержит силовую оболочку, облицованную теплозащитным покрытием с раскрепляющими эластичными манжетами. В месте соединения манжеты и теплозащитного покрытия выполнена кольцевая полость, образованная разнесенными эквидистантно кольцевыми поясками, сопряженными со стороны внешних кромок по дуге и снабженными со стороны внутренних кромок коническими участками.

Изобретение относится к области машиностроения, в частности, к изготовлению теплозащитных покрытий камер сгорания ракетных двигателей твердого топлива, имеющих металлические фланцы.
Наверх