Способ измерения пространственных координат цели в многопозиционной системе двухкоординатных рлс

Изобретение относится к радиолокации и может быть применено для измерения пространственных координат цели, включая высоту цели, при использовании двухкоординатных радиолокационных станций (РЛС), определяющих пеленг и дистанцию до цели, объединенных в многопозиционную систему РЛС. Достигаемый технический результат - увеличение точности измерения пространственных координат цели при использовании двухкоординатных РЛС, объединенных в систему. Способ заключается в определении рассогласований между координатами цели, спроецированными на плоскость, вызванными ненулевой высотой ее нахождения и вычисленными с помощью каждой из двухкоординатных РЛС, и определении высоты нахождения цели, наилучшим образом соответствующей всем имеющимся рассогласованиям координат на плоскости. 2 ил.

 

Изобретение относится к радиолокации и может быть применено для измерения пространственных координат цели, включая высоту цели, при использовании двухкоординатных радиолокационных станций (РЛС), определяющих пеленг и дистанцию до цели, объединенных в многопозиционную систему РЛС.

Известны способы определения координат цели с применением трехкоординатных обзорных РЛС [1]. В данном типе РЛС обзор пространства обеспечивается механическим вращением антенной системы, которая образует V-образную диаграмму направленности, состоящую из двух лучей, один из которых расположен в вертикальной плоскости, а другой - в плоскости, расположенной под углом 45° к вертикальной. Каждая диаграмма направленности, в свою очередь, формируется двумя лучами, образованными на разных несущих частотах и имеющими ортогональную поляризацию. В многолучевых трехкоординатных РЛС трехмерный обзор пространства выполняется с помощью расположенного в вертикальной плоскости под фиксированными углами места пучка иглообразных лучей, непрерывно совместно вращающихся по азимуту.

Известен также интерферометрический фазовый метод измерения угла места в каждом разрешаемом по дальности и азимуту элементе [2, с. 349-353]. Однако он требует специальной антенной системы - интерферометра. Известны также амплитудный и амплитудно-фазовый моноимпульсный методы измерения угла места с помощью пеленгационной характеристики [3, с. 424-428], получаемой при смещении луча РЛС. Однако все эти способы предполагают использование сложных трехкоординатных РЛС либо наличие фазированных антенных решеток.

Наиболее близким по технической сущности способ определения пространственных координат цели описан в [4]. Этот способ, выбранный в качестве прототипа, описывает определение угла места цели, основанный на использовании двух антенн в вертикальной плоскости, расположенных на разной высоте. Обе антенны имеют идентичные диаграммы направленности и одинаковую ориентацию по углу места. Сущность способа заключается в том, что расстояние между антеннами в процессе пеленгации низколетящих целей регулируется так, чтобы, с одной стороны, разность фаз между сигналами от антипода, принимаемыми двумя антеннами, равнялась π, а с другой - разность фаз между сигналами, отраженными от цели, была отлична от π. В зависимости от амплитуды и фазы сигналов (от цели и антипода), принятых антеннами, формируются сигналы управления сдвигом фазы сигнала (от цели и антипода) и разнесением антенн по высоте. Рассмотренный способ достаточно сложен в конструктивном отношении.

Цель изобретения - возможность применения существующих двухкоординатных РЛС, входящих в состав многопозиционной системы РЛС, в качестве источника трехмерных координат. Технический результат направлен на увеличение точности измерения пространственных координат цели при использовании двухкоординатных РЛС, объединенных в систему.

Предлагается способ измерения пространственных координат цели в многопозиционной системе двухкоординатных РЛС при известных взаимных координатах РЛС, при этом РЛС могут находиться на одной или разных взаимных высотах.

Технический результат предлагаемого технического решения достигается тем, что способ измерения пространственных координат цели заключается в оценивании рассогласований принимаемых плоскостных координат целей от нескольких РЛС, вызванных ненулевой высотой расположения цели.

Допустим, известны N станций с координатами (хс1,yс1), (хс2,yс2),…,(xcN,ycN). По обнаруженным целям с известными пеленгами λ12,…,λN и действительными дальностями от проекции цели до каждой РЛС dg1,dg2,…,dgN определяем координаты точки пересечения линий проекции для каждой пары станций.

Пусть для двух станций, расположенных на разных высотах (например, над уровнем моря) zc1 и zc2, известны координаты станций (xc1,ycl,zc1), (xc2,yc2,zc2). Пусть цель имеет координаты x, y, z, где z - высота над уровнем моря, которые необходимо определить с помощью измерений дистанций и пеленгов. Тогда для двухкоординатных станций совмещенные на плоскости отметки цели будут иметь вид, показанный на фиг. 1, в виде отметок Ц1 и Ц2 от одной и той же цели на индикаторах кругового обзора двух станций.

Заметим, что отметки от цели Ц1 и Ц2 изображены в плоскостях, расположенных на уровнях zc1 и zс2 соответственно. Рассогласование координат этих отметок объясняется ненулевой высотой z≠0 цели. Действительно,

где d1 и d2 - дистанции от каждой из РЛС до точек с координатами (х, y, zc1) и (х, y, zc2) соответственно. Для пояснения этих формул на фиг. 2 показано сечение пространства вдоль линии визирования первой РЛС и цели.

Связь координат цели с измеряемыми РЛС и пеленгами λ1 и λ2 и дистанциями dg1 и dg2 задается уравнениями:

Вычитая их друг из друга, получаем систему линейных уравнений относительно dg1 и dg2:

Единственное решение существует, если определитель

то есть, если цель находится в общей зоне действия двух РЛС. Тогда

,

где , .

После этих вычислений, находим из уравнений (1), (2) два значения высоты цели:

При абсолютно точных измерениях пеленгов и дистанций значения совпадают z1=z2=z. В реальных условиях каждая из РЛС имеет погрешности измерения дальности δd1 δd2 и пеленга δα1 и δα2, которые могут быть пересечены в среднеквадратические погрешности δz1 и δz2 измерения высот z1 и z2 соответственно. Тогда наилучшая оценка высоты с учетом этих погрешностей будет иметь вид:

При этом дисперсия ошибки такого оценивания

Объединяя попарно все данные от нескольких РЛС и усредняя с учетом погрешностей оценивания, получим объединенную оценку трех координат цели по данным любого, большего или равного двум, числа двухкоординатных РЛС.

Источники информации

1. Справочник по радилокации. Под ред. М. Сколника. Нью-Йорк, 1970. Пер. с англ. (в четырех томах) под общей ред. К.Н. Трофимова. Том 4. Радиолокационные станции и системы. Под ред. М.М. Вейсбейна, М., «Сов. радио», 1978, с. 68-87.

2. Кондратенков Г.С., Фролов А.Ю. Радиовидение. Радиолокационные системы дистанционного зондирования Земли. Учебное пособие для вузов. / Под ред. Г.С. Кондратенкова. - М.: “Радиотехника”, 2005, 368 с.

3. Финкельштейн М.И. Основы радиолокации: Учебник для вузов. - М.: Радио и связь, 1983, 536 с.

4. Леонов А.И., Фомичев К.И. Моноимпульсная радиолокация. М., Радио и связь, 1984, с. 121-124.

Способ измерения пространственных координат цели в многопозиционной системе двухкоординатных РЛС на основе наблюдений нескольких двухкоординатных РЛС с известными позициями, заключающийся в определении рассогласований между координатами цели, спроецированными на плоскость, вызванными ненулевой высотой ее нахождения и вычисленными с помощью каждой из двухкоординатных РЛС, и определении высоты нахождения цели, наилучшим образом соответствующей всем имеющимся рассогласованиям координат на плоскости.



 

Похожие патенты:

Изобретение относится к области пассивной локации и может быть использовано для определения направления и дальности до разноизлучающих удаленных объектов. Достигаемый технический результат - упрощение устройства.

Предлагаемая группа изобретений относится к области вооружения и военной техники, в частности к стрельбе комплекса вооружения боевой машины (БМ) по цели. Предлагаемый способ стрельбы вооружения БМ по цели включает обнаружение и распознавание цели, взятие на сопровождение и сопровождение цели с одновременным дальнометрированием, определение угловых поправок стрельбы из математических выражений с использованием в качестве входных параметров, в частности, значений угловых скоростей, поступающих с органов управления наводчика или командира.

Изобретение относится к области пассивной радиолокации и может быть использовано для определения параметров движения источника радиоизлучения (ИРИ). .

Изобретение относится к области пассивной локации и может быть использовано в системах определения дальности. .

Изобретение относится к радиотехнике, в частности к системам для определения дальности без использования отражения или вторичного излучения, и может быть использовано для определения дальности до пространственно распределенных источников излучения.

Изобретение относится к радиоэлектронным системам сопровождения, в частности к следящим системам по направлению (измерителям углов и угловых скоростей линии визирования), в которых используется инерционный привод антенны, и может быть использовано для эффективного управления инерционными следящими системами по направлению в режиме сопровождения различных воздушных объектов, включая интенсивно маневрирующие. Достигаемый технический результат - высокоточное устойчивое сопровождение сверхманевренных целей по направлению при использовании обычных инерционных приводов антенн, без требования изменения конструкции привода антенны. Предлагаемый способ позволяет учесть в законе управления угловую скорость линии визирования, курс носителя и их производные, при этом инерционные свойства привода антенны позволяют обеспечить устойчивое и точное сопровождение интенсивно маневрирующего объекта (ИМО). При этом сигнал управления формируется в системе управления определенным образом. 5 ил.

Изобретение относится к радиолокации, в частности к способам определения параметров положения цели при прямолинейном равномерном движения в окрестности радиолокационной станции (РЛС), и может быть использовано для получения дополнительных данных по перемещению объектов в пространстве, в том числе высоты, при использовании двухкоординатных РЛС, осуществляющих круговой или секторный обзор пространства. Технический результат - расширение функциональных возможностей существующих двухкоординатных РЛС. Указанный результат достигается за счет того, что в двухкоординатную РЛС между блоком вторичной обработки информации и блоком индикации информации вводят блок постобработки данных траектории цели, состоящий из вычислителя, вычитателя и компаратора, на вход блока постобработки данных траектории цели из блока вторичной обработки информации поступают отфильтрованные замеры положения цели, из которых отбирают три последовательных замера, обрабатывают их в вычислителе, выбирают и сохраняют в вычитателе одно достоверное значение предполагаемой высоты цели при прямолинейной траектории, затем в случае проведения первой итерации переходят на обработку в вычислителе следующих замеров положения цели, а при проведении второй и последующих итераций в вычитателе определяют отклонение вновь полученной предполагаемой высоты от ранее вычисленной, в компараторе фиксируют отклонение, проводят оценку правильности гипотезы прямолинейности и равномерности, принимают вычисленное значение высоты, которое передают в блок индикации информации и далее переходят на обработку следующих замеров, поступивших в блок постобработки данных траектории цели. 4 ил.

Изобретение относится к радиотехнике, а именно к методам и системам пассивной радиолокации, и предназначено для получения точных оценок местоположения заходящего на посадку летательного аппарата по излучаемому с его борта радиосигналу, и представляет собой комплекс радиоэлектронных средств, который содержит не менее двух узкобазовых подсистем, соединенных высокоскоростными линиями передачи информации с центральным пунктом обработки. Достигаемый технический результат – повышение точности оценки вектора координат, описывающего местоположение источника радиоизлучения. Указанный результат достигается за счет того, что узкобазовая подсистема оснащена активной фазированной многокольцевой антенной решеткой и осуществляет прием радиосигналов, их синхронную демодуляцию многоканальным квадратурным приемником и преобразование в цифровую форму посредством многоканального аналого-цифрового преобразователя, при этом центральный пункт обработки производит оценку местоположения источника излучения на основе совместной обработки всех принятых сигналов с использованием комбинированного одноэтапного алгоритма, состоящего в формировании решающей функции на основе метода максимального правдоподобия и ее последующей оптимизации и исключающего выполнение промежуточных вычислений временных и фазовых задержек и углов пеленга. 3 н.п. ф-лы, 8 ил.

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения координат местоположения источников радиоизлучения (КМПИРИ) ультракороткого–сверхвысокочастотного (УКВ-СВЧ) диапазонов как цифровых, так и аналоговых видов связи, сведения о которых отсутствуют в базе данных (например, государственной радиочастотной службы). Достигаемый технический результат - определение КМПИРИ одним постом радиоконтроля (РКП) и n, равно или более трех, виртуальных постов (ВП) без применения пеленгаторов и радиоприемников с автокорреляторами. Указанный результат достигается тем, что в основе способа лежит энергетический принцип, заключающийся в измерении (или вычислении) напряженности поля ИРИ и в нескольких точках пространства с известными координатами их местоположения. При этом напряженность поля ИРИ на РКП измеряют, а в дополнительной точке (точках) вычисляют. В качестве дополнительной точки в способе предложен виртуальный пост (ВП), координаты которого и параметры его виртуальной антенны (диаграмма направленности и высота подвеса) задаются. При использовании n ВП они «размещаются» не на одной прямой с РКП и «отстоят» от него по широте и (или) по долготе на несколько угловых минут. Вычисление напряженности на ВП основано на принципе корреляционной зависимости (КЗ) напряженностей полей, создаваемых в заданном диапазоне частот множеством источников радиоизлучения, находящихся согласно базе данных в зоне электромагнитной доступности РКП и вычисляемых, как для РКП, так и для всех заданных ВП по определенной программе. 5 ил., 1 табл.

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения координат местоположения источников радиоизлучения (КМПИРИ) УКВ-СВЧ диапазонов как цифровых, так и аналоговых видов связи, сведения о которых отсутствуют в базе данных (например, государственной радиочастотной службы). Достигаемый технический результат - определение КМПИРИ одним постом радиоконтроля (РКП) и n, равно или более двух, виртуальных постов (ВП) без применения пеленгаторов и радиоприемников с автокорреляторами. Указанный результат достигается тем, что в основе способа лежит энергетический принцип, заключающийся в измерении (или вычислении) напряженности поля ИРИ и в нескольких точках пространства с известными координатами их местоположения. При этом напряженность поля ИРИ на РКП измеряют, а в дополнительной точке (точках) вычисляют. В качестве дополнительной точки в способе предложен виртуальный пост (ВП), координаты которого и параметры его виртуальной антенны (диаграмма направленности и высота подвеса) задаются. При использовании n ВП их размещают не на одной прямой с РКП и «отстоят» от него по широте и (или) по долготе на несколько угловых минут. Вычисление напряженности на ВП основано на принципе корреляционной зависимости (КЗ) напряженностей полей, создаваемых множеством источников радиоизлучения в заданном диапазоне частот, находящихся согласно базе данных в зоне электромагнитной доступности РКП и вычисляемых как для РКП, так и для всех заданных ВП по определенной программе.1 з.п. ф-лы, 8 ил.

Изобретение относится к области радиотехники и может быть использовано при создании многопозиционных комплексов радиотехнического наблюдения. Достигаемым техническим результатом изобретения является повышение точности определения местоположения источников квазинепрерывного широкополосного сигнала комплексом радиотехнического наблюдения и уменьшение времени местоопределения источников радиоизлучения. Способ заключается в: приеме антенной решеткой квазинепрерывного широкополосного сигнала на каждой приемной позиции комплекса радиотехнического наблюдения, формировании интервалов наблюдения длительностью tн, на которых рассчитывается корреляционная матрица сигналов Rxx(m) входной реализации квазинепрерывного широкополосного сигнала по определенной формуле, расчете разностной корреляционной матрицы сигналов ΔRxx(m)=Rxx(m)-Rxx(m+l), расчете определителя разностной корреляционной матрицы с последующим формированием и нормированием зависимости для построения линий положений; вычислении взаимной корреляционной функции зависимости по соответствующей формуле, определении разности хода для каждой позиции по максимуму огибающей взаимной корреляционной функции системой взаимной корреляционной обработки, оценке координат источника квазинепрерывного широкополосного сигнала разностно-дальномерным способом на основе анализа временной зависимости определителя разностно-корреляционных матриц сигналов формируемых в элементах антенных решеток приемных пунктов комплекса радиотехнического наблюдения. 5 ил.

Изобретение относится к пассивной радиолокации и может быть использовано в двух- и многопозиционных измерительных комплексах для определения пространственных координат местоположения источников радиоизлучения (ИРИ). Достигаемый технический результат - определение пространственных координат местоположения ИРИ, наблюдаемого под малыми углами места, с высокой точностью. Указанный результат достигается за счет того, что способ осуществляют на базе пассивного двухпозиционного измерительного комплекса., при этом на двух приемных позициях комплекса измеряют мощности излучения ИРИ и на одной из них - угловые координаты ИРИ для одного момента времени. Далее проводят совместную обработку угловых и энергетических измерений и получают пространственные координаты местоположения ИРИ с учетом влияния подстилающей поверхности на результаты энергетических измерений, причем, если ИРИ находится на большой дальности, то учитывают также и кривизну Земли. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения местоположения источников импульсных радиоизлучений. Достигаемый технический результат – упрощение путем определения пространственных координат местоположения источников радиоизлучений (ИРИ) четырьмя стационарными постами без привлечения уравнений линий положения. Способ основан на использовании измерений значений моментов прихода сигналов на четыре стационарных радиоконтрольных поста, при этом на основе измеренных моментов времени прихода сигналов вычисляют разности времени распространения сигналов от ИРИ до постов, формируют определитель Кэли-Менгера размерностью 6×6, который для любых пяти точек евклидова пространства обращается в ноль, причем численное решение этого определителя дает значения расстояний от источника до постов и на основе пропорциональной зависимости отношений расстояний от поста до ИРИ и соответствующих им отношений величин запаздывания импульсных сигналов получают все сочетания мультипликативных разностей этих отношений, обработка мультипликативных разностей отношений выполняется дихотомическим методом или методами ускоренного спуска, в основе которого лежит принцип последовательного определения параметров местоположения ИРИ: широты - Xi, долготы - Yi и высоты - Zi по критерию минимума разностей отношений расстояний местоположения ИРИ до постов радиоконтроля, не расположенных на одной прямой, и соответствующих отношений величин запаздываний сигналов, измеренных на постах. 4 ил.
Наверх