Сплав на основе титана

Изобретение относится к области металлургии, в частности к титановым сплавам, и может быть использовано для изготовления конструкций, работающих в агрессивных средах, такой как морская вода, при повышенных температурах. Сплав на основе титана содержит, мас. %: алюминий 3,0-4,2, цирконий 2,0-3,0, кремний 0,02-0,12, железо 0,05-0,25, кислород 0,03-0,14, азот 0,01-0,04, углерод 0,05-0,10, водород 0,001-0,006, рутений 0,05-0,15, ниобий 0,7-1,5, ванадий 0,7-1,5, титан - остальное. Сплав характеризуется высокими характеристиками прочности, стойкости против щелевой, питтинговой и горячей солевой коррозии в агрессивных солесодержащих средах с pH>2 и температурой до 250°C. 2 табл.

 

Изобретение относится к области цветной металлургии, а именно к созданию сплавов титана, обладающих повышенной прочностью, коррозионной стойкостью и используемых в авиастроении, судостроении, атомной энергетике и других отраслях промышленности, связанных с работой конструкций в агрессивной среде, такой как морская вода, при повышенных температурах.

Известен сплав на основе титана марки ПТ-7М по ГОСТ 19807, содержащий в масс. %: алюминий 1,8-2,5, цирконий 2,0-3,0, кремний не более 0,12, железо не более 0,25, кислород не более 0,15, водород не более 0,006, азот не более 0,04, углерод не более 0,10, титан - остальное.

Сплав обладает высокой пластичностью, благодаря чему способен деформироваться в холодном состоянии, хорошо сваривается без последующей термической обработки.

Основным недостатком этого сплава является низкий уровень прочностных свойств. Недостатком труб из этого сплава является склонность к питтинговой, щелевой и горячей солевой коррозии при использовании их в качестве теплопередающих элементов водяных парогенераторов при повышенном солеотложении на носителях.

Наиболее близким по технической сущности к предлагаемому является сплав на основе титана (прототип), содержащий в масс. %: алюминий 1,8-2,5, цирконий 2,0-3,0, кремний 0,02-0,10, железо 0,05-0,15, кислород 0,03-0,13, водород 0,001-0,006, азот 0,01-0,03, углерод 0,01-0,10, рутений 0,05-0,12, титан - остальное (патент РФ №2426808, МПК C22C 14/00, опубл. 20.08.2011 г.).

Сплав обладает высокой стойкостью против щелевой и питтинговой коррозии при температуре до 250°C.

Однако недостатком этого сплава является низкий уровень прочностных свойств при комнатной температуре и пониженная стойкость против горячей солевой коррозии при температуре 250°C.

Техническим результатом предлагаемого изобретения является создание титанового сплава, обладающего более высокой прочностью при комнатной температуре и стойкостью против горячей солевой коррозии в условиях температуры до 250°C при сохранении высокой стойкости против щелевой и питтинговой коррозии при температуре до 250°C.

Технический результат достигается за счет того, что титановый сплав, содержащий алюминий, цирконий, кремний, железо, кислород, водород, азот, углерод, рутений, титан - остальное, дополнительно содержит ванадий и ниобий и более высокое содержание алюминия при следующем соотношении компонентов, мас. %:

Алюминий 3,0-4,2
Цирконий 2,0-3,0
Кремний 0,02-0,12
Железо 0,05-0,25
Кислород 0,03-0,14
Азот 0,01-0,04
Углерод 0,05-0,10
Рутений 0,05-0,15
Ванадий 0,7-1,5
Ниобий 0,7-1,5
Водород 0,001-0,006
Титан остальное

Ванадий и ниобий в указанных пределах вводятся для повышения прочностных характеристик. Ванадий является изоморфным бета-стабилизатором и влияет как на повышение прочности, так и повышение пластичности. Ниобий является технологической добавкой для введения углерода и ванадия в титановый сплав.

Алюминий в указанных пределах 3,0-4,2% вводится для повышения прочностных свойств. Алюминий является альфа-стабилизатором и основным легирующим элементом в титановых сплавах, он эффективно упрочняет сплавы при сохранении удовлетворительной пластичности. При содержании алюминия менее 3,0% прочность титанового сплава относительно низкая, при содержании алюминия более 4,2% возможно снижение стойкости сплава к горячей солевой коррозии. Также снижается технологическая пластичность, что может привести к потере способности к холодному деформированию при изготовлении труб.

Увеличенное до 0,15% количество рутения вводится для повышения стойкости труб против горячей солевой коррозии в хлорсодержащих средах при температурах до 250°C. Рутений является бета-стабилизатором и обеспечивает устойчивую пассивность титанового сплава за счет снижения перенапряжения реакции выделения водорода. Вследствие этого электрохимический потенциал смещается в область устойчивой пассивности сплава, что исключает опасность питтинговой, щелевой и солевой коррозии. При содержании рутения менее 0,05% устойчивой пассивности не происходит в титановых сплавах и вероятность щелевой и питтинговой коррозии возрастает. При содержании рутения более 0,15% стабилизируется устойчивое пассивное состояние за счет перенапряжения выделения водорода, что способствует стабилизации в пассивной области титанового сплава в условиях засоления.

Для исследования свойств в вакуумной дуговой печи методом двойного переплава были выплавлены слитки из заявленного сплава и сплава-прототипа (таблица 1). Слитки деформировали для получения поковок толщиной 52 мм, из которых затем изготавливали специальные образцы:

- образцы размерами 4×35×35 мм для проведения испытаний на щелевую и питтинговую коррозии;

- образец, имитирующий трубу, с внешним диаметром 15 мм, толщиной стенки 2,5 мм и длиной 30 мм для испытаний на горячую солевую коррозию.

Механические свойства проверяли с помощью стандартных механических испытаний на растяжение по ГОСТ 1497 и ударный изгиб по ГОСТ 9454 при комнатной температуре.

Испытания на щелевую и питтинговую коррозию проводили в автоклаве в водной среде 20% раствора NaCl при температуре 250°C в течение 2000 часов.

Испытания на горячую солевую коррозию проводили в автоклаве в среде смеси кристаллических солей NaCl и KBr, взятых в соотношении 300:1 при температуре 250°C в течение 500 часов.

Результаты испытаний приведены в таблице 2.

Оценка склонности к щелевой коррозии произведена по результатам измерения потери массы образцов (10-4 г/дм2 час).

Оценка склонности к питтинговой коррозии выполнена визуально путем осмотра поверхности образцов, а также с использованием оптического микроскопа при двенадцатикратном увеличении (поражений не обнаружено).

Оценка склонности к горячей солевой коррозии проведена по результатам измерения потери массы и результатам пересчета ее на скорость коррозии (оценочно скорость коррозии предлагаемого сплава 0,005 мм/час, а прототипа - 0,02 мм/час).

Представленные результаты показывают, что по стойкости против щелевой и питтинговой коррозии предлагаемый сплав находится на уровне известного сплава-прототипа, а вот по стойкости к горячей солевой коррозии предлагаемый сплав превосходит известный сплав-прототип. Прочностные свойства предлагаемого сплава значительно выше, чем известного сплава-прототипа.

Технико-экономическая эффективность от использования предложенного сплава по сравнении со сплавом-прототипом выразится в повышении в 10 раз ресурса эксплуатации труб предлагаемого сплава в солесодержащих растворах и в местах солеотложения при температурах до 250°C, за счет увеличения стойкости к горячей солевой коррозии.

Сплав на основе титана, содержащий алюминий, цирконий, кремний, железо, кислород, азот, углерод, рутений, водород и титан, отличающийся тем, что он дополнительно содержит ванадий и ниобий при следующем соотношении компонентов, мас. %:

Алюминий 3,0-4,2
Цирконий 2,0-3,0
Кремний 0,02-0,12
Железо 0,05-0,25
Кислород 0,03-0,14
Азот 0,01-0,04
Углерод 0,05-0,10
Рутений 0,05-0,15
Ванадий 0,7-1,5
Ниобий 0,7-1,5
Водород 0,001-0,006
Титан остальное



 

Похожие патенты:

Изобретение относится к области металлургии, в частности к крепежным изделиям, выполненным из альфа/бета титанового сплава. Крепежное изделие, выполненное из альфа/бета титанового сплава, подвергнутого горячей прокатке, обработке на твердый раствор и старению, содержащего, мас.

Изобретение относится к области металлургии, а именно к способу термомеханической обработки титана или титанового сплава. Способ включает многоосную ковку с высокой скоростью деформации и регулированием температуры.

Изобретение относится к области металлургии, а именно к способам выплавки титановых сплавов и может быть использовано при производстве полуфабрикатов, предназначенных для изготовления деталей газотурбинных двигателей, силовых установок, агрегатов авиационного, топливно-энергетического и морского назначения.

Группа изобретений относится к способу и устройству получения содержащего алюминий и титан сплава - интерметаллида. Способ включает получение сплава из водной суспензии частиц руд, содержащих соединения алюминия и титана.

Изобретение относится к цветной металлургии, в частности к получению сплавов. Способ получения сплава, содержащего титан, медь и кремний, из водной суспензии частиц руд, содержащих соединения титана, меди и кремния, включает генерацию магнитных полей, накладываемых на порции перерабатываемой сырьевой массы.

Изобретение относится к области металлургии, а именно к изготовлению мелкозернистых листовых титановых сплавов, которые являются подходящими для использования при сверхпластическом формовании.

Группа изобретений относится к порошковой металлургии. Порошковая смесь для получения титанового сплава включает порошок титанового сплава, содержащий алюминий и ванадий или содержащий в дополнение к алюминию и ванадию по меньшей мере один из циркония, олова, молибдена, железа и хрома, и по меньшей мере один металлический порошок, выбранный из порошка меди, порошка хрома и порошка железа, смешанного с порошком титанового сплава.

Изобретение относится к области металлургии, а именно к высокопрочным титановым сплавам, используемым для изготовления деформированных полуфабрикатов. Сплав на основе титана содержит, мас.

Группа изобретений относится к получению сплава на основе титана из водной суспензии частиц руд, содержащих соединения титана. Способ включает генерацию магнитных полей, накладываемых на порции перерабатываемой сырьевой массы, восстановление металлов из руд при непрерывном перемешивании сырьевой массы с последующим накоплением и формированием продукта в виде кольцевого столбчатого монокристалла, состоящего из интерметаллида, выбранного из ТiАl3, TiFeAl2, TiAl2Fe, TiFe3, и его выгрузку.

Изобретение относится к металлургии, а именно к производству титановых сплавов, и может быть использовано для изготовления деформированных полуфабрикатов, а также отливок, предназначенных для изготовления деталей энергетического и транспортного машиностроения, авиационной и космической техники с рабочими температурами в интервале от -196 до 450°C.

Изобретение относится к области металлургии, а именно к сплавам на основе титана. Высокотемпературный сплав на основе титана содержит, мас.%: алюминий от 4,5 до 7,5; олово от 2,0 до 8,0; ниобий от 1,5 до 6,5; молибден от 0,1 до 2,5; кремний от 0,1 до 0,6; титан - остальное. Сплав характеризуется высокими показателями коррозийной стойкости, механической прочности при повышенных температурах до 750°С, свариваемостью, а также высокими характеристиками способности к деформации в горячем/холодном состоянии и к сверхпластичному формированию. 4 н. и 17 з.п. ф-лы, 8 ил., 12 табл.

Изобретение относится к области цветной металлургии, а именно к титановым сплавам, полученным из вторичного сырья и обладающим заданными характеристиками прочности и пластичности. Сплав содержит Al 0,1-3,0, Fe 0,3-3,0, Cr 0,1-1,0, Ni 0,05-1,0, Si 0,02-0,3, N 0,02-0,2, O 0,05-0,5, C 0,02-0,1, Ti - остальное. Величины прочностных молибденового [ M o ] э к в п р и алюминиевого [ A l ] э к в п р эквивалентов и приведенной суммы эквивалентов определены по выражениям: =Al + 20·O +33·N + 12·C + 3,3·Si, мас.%, = Cr/0,8 + Fe/0,7 + Ni, мас.%, Σ э к в п р = 1,11· + 0,92·, причем величина приведенной суммы Σ э к в п р эквивалентов составляет 5-22. Величина приведенной суммы Σ э к в п р эквивалентов составляет от 5 до 10 для сварных конструкций, от 10 до 18 - для плоского проката, от 18 до 22 - для конструкционного назначения. Сплав характеризуется высокими значениями прочности и пластичности. 3 з.п. ф-лы, 11 табл., 3 пр.

Изобретение относится к обработке металлов давлением, а именно к способам изготовления особо тонких листов из высокопрочного псевдо-альфа титанового сплава Ti-6,5Al-2,5Sn-4Zr-1Nb-0,7Mo-0,15Si. Способ получения особо тонких листов из титанового сплава Ti-6,5Al-2,5Sn-4Zr-1Nb-0,7Mo-0,15Si включает предварительную обработку слитка ковкой или штамповкой слитка в β-области с получением сляба, горячую прокатку сляба в подкат ведут в 4 этапа, причем на первом этапе - при температуре (ТПП+120÷ТПП+150)°C с суммарной степенью деформации 50-70%, на втором этапе - при температуре (ТПП-30÷ТПП-60)°C с суммарной степенью деформации 40-65%, на третьем этапе - при температуре (ТПП+80÷ТПП+120)°C с суммарной степенью деформации 40-60%, а на четвертом этапе - при температуре (ТПП-30÷ТПП-70)°C с суммарной степенью деформации 40-80%. Далее осуществляют резку подката на листовые заготовки, их сборку в пакет и пакетную прокатку в листовую заготовку при температуре (ТПП-60÷ТПП-100)°C с суммарной деформацией пакета 60-80%, холодную прокатку в листы с промежуточными и окончательным отжигами и адьюстажными обработками на этапах. Повышается технологичность и качество изготавливаемых особо тонких листов. 1 ил., 1 табл.

Изобретение относится к области металлургии, а именно к сплавам на основе титана, и предназначено для использования в паротурбинных установках и высоконагруженных сварных конструкциях, эксплуатируемых при повышенной температуре. Сплав на основе титана содержит, мас. %: алюминий 4,3-6,3; молибден 1,5-2,5; углерод 0,05-0,14; цирконий 0,2-1,0; кислород 0,06-0,14; кремний 0,02-0,12; железо 0,05-0,25; ниобий 0,03-1,20; гафний 0,01-0,5; титан - остальное. Сплав обладает повышенным пределом ползучести при температуре 500°С и заданной остаточной деформации 0,2% при сохранении высоких механических характеристик и коррозионной стойкости сварных конструкций. 1 табл.

Изобретение относится к области металлургии, а именно к интерметаллидным сплавам на основе титана, предназначенным для изготовления деталей газотурбинного двигателя таких, как лопатки, диски, корпуса и проставки, работающие при повышенных температурах. Сплав на основе титана содержит, мас.%: Al 9,5-12,0, Nb 38,0-42,0, Zr 1,5-2,5, Та 0,7-1,5, W 0,5-1,0, Mo 0,3-0,6, Si 0,1-0,25, Re 0,1-0,5, С 0,03-0,08, В 0,01-0,1, Ti и примеси - остальное. Сплав характеризуется повышенной стойкостью к окислению при температурах выше 700°С. Обеспечивается надежная работа конструкции, выполненной с использованием сплава на основе титана в течение всего ресурса. 2 н. и 4 з.п. ф-лы, 2 табл., 4 пр.

Изобретение относится к области металлургии, а именно к созданию жаропрочных сплавов на основе титана, используемых для изготовления широкой номенклатуры деформированных полуфабрикатов и деталей. Жаропрочный сплав на основе титана содержит, мас.%: алюминий 10,5-12,5; ниобий 38,5-42,0; молибден 0,5-1,5; ванадий 0,5-1,5; цирконий 1,0-2,5; вольфрам 0,3-1,0; тантал 0,3-1,0; кремний 0,1-0,25; гадолиний 0,02-0,6; титан и примеси - остальное. Сплав характеризуется высокими значениями прочности при комнатной и повышенных температурах до 700°С. 2 н. и 1 з.п. ф-лы, 1 табл., 3 пр.

Изобретение относится к изготовлению сплавов на основе никелида титана, применяемых для медицинских имплантатов. Способ изготовления литых изделий включает переплав металлического полуфабриката индукционной центробежной плавкой в карборундовом тигле. Предварительно проводят выплавку образцов из сплава на основе никелида титана с различными концентрациями легирующей добавки в диапазоне 0,5-2%, испытывают образцы на память формы и сверхэластичность, определяют путем интерполяции оптимальную концентрацию легирующей примеси и с этой концентрацией выплавляют готовое изделие. В качестве металлического полуфабриката используют пористую заготовку, которую готовят диффузионным спеканием в вакууме смеси порошка никелида титана ПН55ПТ45 с легирующей добавкой при температуре 1230-1270°C в течение 0,5-5 минут, после чего подвергают ее холодной обработке давлением до пористости 25-30 об.%. Обеспечивается равномерное распределение легирующей добавки в сплаве. 2 ил.
Изобретение относится к термоводородной обработке полуфабрикатов и изделий из пористого материала на основе титана и его сплавов для медицинских имплантатов. Способ включает термодиффузионное насыщение водородом и вакуумный отжиг. Термодиффузионное насыщение водородом ведут при температуре 700-900°С до концентрации водорода 0,2-0,4 мас.%, а затем при температуре 500-650°С до концентрации водорода 0,5-0,9 мас.%. Вакуумный отжиг ведут при температуре 550-700°С до концентрации водорода не более 0,01 мас.%. Обеспечивается повышение прочностных характеристик пористого материала за счет увеличения доли физических контактов волокон между собой. 2 пр.

Изобретение относится к области металлургии, а именно к высокотемпературным припоям на основе титана, которое может найти применение при изготовлении паяных деталей горячего тракта газотурбинных двигателей. Припой на основе титана для пайки сплава на основе интерметаллида ниобия с температурой плавления не ниже 1350°С содержит, мас.%: алюминий 18,0-25,0, молибден 1,0-10,0, кремний 3,0-6,0, хром 10,0-15,0, гафний 1,0-5,0, титан - остальное. Припой обеспечивает привес при температуре 1350°С не выше, чем у сплава на основе интерметаллида ниобия, и величину эрозионной активности по отношению сплаву на основе интерметаллида ниобия не более 50 мкм при температуре 1500°С. 4 з.п. ф-лы, 1 табл., 4 пр.

Изобретение относится к титановым лопаткам большого размера последних ступеней паротурбинных двигателей. Лопатка содержит сплав на основе титана и имеет переднюю кромку, включающую оксид титана, содержащий поры и верхний герметизирующий слой, заполняющий поры, выбранный из группы, состоящей из хрома, кобальта, никеля, полиимида, политетрафторэтилена и сложного полиэфира. Рассмотрен способ изготовления такой лопатки и изделие, включающее сплав на основе титана и содержащее переднюю кромку. Изобретение обеспечивает повышение долговечности, и уменьшение потерь от эрозии, и высокую экономическую эффективность. 3 н. и 17 з.п. ф-лы, 4 ил., 1 табл.
Наверх