Способ испытания на сульфидное растрескивание металла электросварных и бесшовных труб

Изобретение относится к измерительной технике для промышленности и может быть применено для испытаний продольных и поперечных образцов основного металла труб, образцов со сварными швами, в том числе ремонтным сварным швом, для изучения свойств напыленных материалов, органических покрытий, для оценки сталей к сульфидному растрескиванию под напряжением. Сущность: осуществляют нагружение образца испытуемой трубы, закрепленного симметрично на 4-точечный изгиб, между двумя внутренними опорами и двумя наружными опорами. Перед нагружением испытуемый образец помещают в замкнутый контур корпуса держателя между парой внутренних цилиндрических опор, размещенных, для точной фиксации пары верхних точек опоры образца, в выемках нижней части подвижной планки, и парой наружных цилиндрических опор, размещенных, для точной фиксации пары нижних точек опоры образца, в выемках в нижней части корпуса держателя. Первоначальное расчетное усилие нагружения на испытуемый образец прикладывают сверху через переводник домкратом по динамометру сжатия к подвижной планке, изгибая середину образца двумя внутренними цилиндрическими опорами, расположенными в выемках подвижной планки симметрично относительно центра образца и наружных опор. Точное доведение прилагаемого усилия до расчетной величины прогиба образца и его уравнивание между симметричными внутренними опорами производят поворотом левого и правого винтов, перемещая подвижные клинья вдоль скосов к центру подвижной планки, передавая усилия от винтов через подвижные клинья планке и через внутренние опоры на испытываемый образец. Исключают смещение подвижных клиньев по скосам, для сохранения точности нагружения образца в процессе испытаний, для чего подвижные клинья, при достижении расчетной, определяемой геометрическими параметрами трубы величины прогиба образца, надежно фиксируют винтами между планкой и верхней частью корпуса держателя. Технический результат: увеличение точности определения (улавливания) начала процесса зарождения и развития коррозионных трещин в образцах металла бесшовных и электросварных труб, в том числе, с большой толщиной стенки. 3 ил.

 

Способ испытания на сульфидное растрескивание металла электросварных и бесшовных труб относится к измерительной технике для промышленности и может быть применен для испытаний продольных и поперечных образцов основного металла труб, образцов со сварными швами, в том числе ремонтным сварным швом, для изучения свойств напыленных материалов, органических покрытий, для оценки сталей к сульфидному растрескиванию под напряжением.

Для точности измерений процесса зарождения и развития трещин в металле труб и сварных соединениях в течение всего времени проведения испытаний образцов основного металла труб, образцов со сварными швами, для изучения свойств напыленных материалов, органических покрытий, для оценки сталей к сульфидному растрескиванию, необходимо создать расчетное напряжение в исследуемых образцах путем нагружения и надежно его зафиксировать на все время проведения испытаний в агрессивной среде, с тем чтобы зафиксированные в процессе испытаний деформации можно было отнести к моменту зарождения и развития трещин.

Известен «Способ испытаний на релаксацию напряжения при изгибе» по патенту RU 2357224 04.10.2007, опубликованному 27.05.2009, МПК G01N 3/20 (2006.01), заключающийся в том, что помещают образец между четырьмя нагружающими опорами, перемещают подвижные опоры поступательно к неподвижным опорам, сохраняя симметричность нагружения, до конечного положения опор, задаваемого жесткими ограничителями перемещения, выдерживают образец при заданных условиях испытания, перемещают подвижные опоры поступательно от неподвижных опор, перемещают с заданной скоростью подвижные опоры поступательно к неподвижным опорам, регистрируют прикладываемое усилие, получают зависимость усилия от перемещения и определяют релаксирующее напряжение по усилию в точке перелома указанной зависимости, причем две наружные опоры подвижные, а две внутренние опоры неподвижные.

Известен 2368888 «Способ испытания труб на коррозионную стойкость» от 28.03.2008, опубликованый 27.09.2009, МПК G01N 17/02 (2006.01), при котором из трубы вырезают образец в виде полукольца, на поверхности образца выполняют первый надрез - концентратор, к концам образца прилагают усилие, образец помещают в коррозионную среду и выдерживают в ней в течение заданного времени, а о коррозионной стойкости металла судят по характеру коррозионного разрушения, отличающийся тем, что в качестве образца трубы выбирают образец, содержащий сварной шов, на наружной поверхности образца дополнительно выполняют второй надрез, идентичный первому, один из надрезов располагают на сварном шве, а второй - на основном металле параллельно первому надрезу, причем оба надреза располагают симметрично относительно оси симметрии образца и ступенчато относительно друг друга, а о коррозионной стойкости металла сварного шва судят в сравнении с коррозионной стойкостью основного металла; образцы, не разрушившиеся при выдержке в коррозионной среде, подвергают дополнительному нагружению до разрушения на воздухе; в процессе испытания записывают сигналы акустической эмиссии, по которым определяют динамику коррозионного разрушения металла шва и основного металла; при дополнительном нагружении до разрушения записывают диаграмму зависимости деформации от усилия нагружения одновременно с сигналами акустической эмиссии, а о коррозионной стойкости металла шва и основного металла судят по совокупности полученных данных.

Способ сложен в использовании, длителен по времени и требует наличия большого количества разной аппаратуры.

Известны способы создания напряжения нагружением образцов на 4-точечный изгиб для оценки сталей к сульфидному растрескиванию под напряжением, изложенные в международном стандарте ISO 7539-2:1989 (ISO = the International Organization for Standartization), стандартной методике G 39-99 (2005) «подготовки и использования образцов в форме изогнутой балки для испытания на коррозию под напряжением» и нагружение по методу «Д».

При нагружении по методу «Д» стандарта ISO 7539-2, при оценке материала толстостенных труб к сульфидному растрескиванию под напряжением, точность испытания низкая, ввиду неконтролируемой пластической деформации материала вкладыша и материала образца.

Наиболее близкими к заявляемому техническому решению является способ нагружения образцов в условиях номинально постоянной деформации метод «С» по стандарту ISO 7539-2, ASTM С 39-99 «Стандартная методика подготовки и использования образцов в виде изогнутой балки для испытания на коррозию под напряжением» рис. 1c (Приложение 1).

При нагружении по методу «С» стандарта ISO 7539-2 для проведения испытаний массивных образцов, необходимо применять массивную, тяжелую оснастку, в которой сложно обеспечить точность определения (улавливания) начала процесса зарождения и развития коррозионных трещин в образцах металла, поскольку агрессивную среду подают на часть образца.

Задачей предлагаемого технического решения является повышение точности измерений процесса зарождения и развития трещин в металле труб и сварных соединениях в течение всего времени проведения испытаний.

Задача решена за счет способа испытания на сульфидное растрескивание металла электросварных и бесшовных труб путем нагружения образца испытуемой трубы закрепленный симметрично на 4-точечный изгиб, между двумя внутренними опорами и двумя наружными опорами, при этом перед нагружением испытуемый образец помещают в замкнутый контур корпуса держателя, между парой внутренних цилиндрических опор, размещенных, для точной фиксации пары верхних точек опоры образца, в выемках нижней части подвижной планки, и парой наружных цилиндрических опор, размещенных, для точной фиксации пары нижних точек опоры образца, в выемках в нижней части корпуса держателя; первоначальное расчетное усилие нагружения на испытуемый образец прикладывают сверху через переводник домкратом по динамометру сжатия к подвижной планке, изгибая середину образца двумя внутренними цилиндрическими опорами, расположенными в выемках подвижной планки симметрично относительно центра образца и наружных опор; точное доведение прилагаемого усилия до расчетной величины прогиба образца и его уравнивание между симметричными внутренними опорами производят поворотом левого и правого винтов, перемещая подвижные клинья вдоль скосов к центру подвижной планки, передавая усилия от винтов через подвижные клинья планке и через внутренние опоры на испытываемый образец; исключают смещение подвижных клиньев по скосам, для сохранения точности нагружения образца в процессе испытаний, для чего подвижные клинья, при достижении расчетной, определяемой геометрическими параметрами трубы величины прогиба образца, надежно фиксируют винтами между планкой и верхней частью корпуса держателя.

Способ испытания на сульфидное растрескивание металла электросварных и бесшовных труб осуществляют следующим образом.

Способ осуществляют с использованием установки для нагружения образцов, изображенной на чертежах, где на фиг. 1 - вид держателя с образцом, на фиг. 2 - стенд для нагружения, на фиг. 3 - схема нагружения.

На фиг. 1, 2, 3 изображены: корпус держателя 1, замкнутый по контуру, образец 2, опоры наружные 3, опоры внутренние 4, винты 5, подвижный клин 6, подвижная планка 7, домкрат 8, динамометр сжатия 9, переводник 10, скосы 11 подвижной планки, σ - приложенная сила, t - толщина образца, А - расстояние между внутренней и наружной опорами, h - расстояние между внутренними опорами, H - расстояние между наружными опорами, y - наибольший прогиб (между наружными опорами).

До помещения в агрессивную среду испытуемый образец нагружают до определенной, рассчитанной по известной формуле сопротивления материалов (1) величине прогиба образца, необходимого для получения заданного уровня напряжения на внешней поверхности образца, для проведения испытаний, и жестко фиксируют образец для сохранения прогиба в течение всего времени проведения испытаний.

Нагружают образец по схеме 4-точечного нагружения, изображенной на фиг. 3, где образец 2, наружные опоры 3, внутренние опоры 4, подвижная планка 7, σ - приложенная сила, t - толщина образца, А - расстояние между внутренней и наружной опорами, h - расстояние между внутренними опорами, Н - расстояние между наружными опорами, y - наибольший прогиб (между наружными опорами).

Перед нагружением определяют величину прогиба образца, необходимого для получения заданного уровня напряжения на внешней поверхности образца, по известной формуле сопротивления материалов (1)

где

σ - наибольшее напряжение растяжения;

E - модуль упругости;

t - толщина образца;

y - наибольший прогиб (между наружными опорами);

H - расстояние между наружными опорами;

A - расстояние между внутренней и наружной опорами.

Для сохранения рассчитанной величины прогиба образца и заданного уровня напряжения на внешней поверхности образца в течение всего времени проведения испытаний перед нагружением испытуемый образец 2 помещают в корпус держателя, замкнутый по контуру в виде неправильного овала и открытый с двух противолежащих сторон, изготовленный из материалов, стойких к сульфидному растрескиванию под напряжением, поверхность держателя покрыта антикоррозионным покрытием, нейтральным и стойким к воздействию коррозионной среды.

Испытуемый образец 2 вставляют в корпус держателя с открытой стороны между парой внутренних цилиндрических опор 4, размещенных, для точной фиксации пары верхних точек опоры образца, в выемках нижней части подвижной планки 7, и парой наружных цилиндрических опор 3, размещенных, для точной фиксации пары нижних точек опоры образца, в выемках корпуса держателя 1.

Для передачи первоначального (максимального по величине) усилия нагружения на испытуемый образец, на подвижную планку 7, сверху по центру через переводник 10 домкратом 8 по динамометру сжатия 9 задают расчетное усилие, нагружая (изгибая) середину образца 2 двумя внутренними цилиндрическими опорами 4, расположенными в выемках подвижной планки 7 симметрично относительно центра образца 2 и наружных опор 3.

Точное доведение прилагаемого усилия до расчетной величины прогиба образца 2 и его уравнивание между симметричными двумя внутренними опорами 4 и двумя наружными опорами 3, зафиксированными от смещения в выемках, производят поворотом левого и правого винтов 5, перемещая подвижные клинья 6 вдоль обеспечивающих точность усилия нагружения скосов 11 к центру подвижной планки 7, передавая усилия от винтов 5 через подвижные клинья 6 планке 7 и через внутренние опоры 4 на испытываемый образец 2.

Для обеспечения исключения смещения подвижных клиньев 6 по скосам 11 и сохранения точности нагружения образца 2 в процессе испытаний подвижные клинья 6 после перемещения в нужное положение при достижении расчетной, определяемой геометрическими параметрами трубы величины изогнутости (прогиба) образца (R) надежно фиксируют с помощью винтов 5 между планкой 7 и верхней частью корпуса держателя, что предотвращает любое смещение образца в держателе и обеспечивает сохранение зафиксированной нагрузки на весь период испытаний.

Предложенным способом испытывают прямолинейные образцы в виде пластин прямоугольного сечения, или в виде изогнутого темплета размерами до 260×25×t мм (где размер t соответствует полной толщине стенки трубы (от 5 мм до 50 мм)), в том числе образцы со сварным швом (с ремонтным сварным швом), располагающимся по центру образца.

Способ пригоден для испытаний продольных и поперечных образцов основного металла труб, образцов со сварными швами, в том числе и с ремонтным сварным швом, для изучения свойств напыленных материалов, органических покрытий и других.

Технический результат заключается в увеличении точности определения (улавливания) начала процесса зарождения и развития коррозионных трещин в образцах металла бесшовных и электросварных труб, в том числе, с большой толщиной стенки, за счет точности нагружения образцов в замкнутом контуре держателя, более плавного, и с высокой точностью уравнивания нагрузки между двумя внутренними опорами и двумя наружными опорами, зафиксированными от смещения в выемках, а также надежной фиксацией образца, исключающих его смещение в держателе, для удерживания необходимого прогиба образца в течение базового времени проведения испытаний.

Способ испытания на сульфидное растрескивание металла электросварных и бесшовных труб путем нагружения образца испытуемой трубы, закрепленного симметрично на 4-точечный изгиб, между двумя внутренними опорами и двумя наружными опорами, отличающийся тем, что
перед нагружением испытуемый образец помещают в замкнутый контур корпуса держателя между парой внутренних цилиндрических опор, размещенных, для точной фиксации пары верхних точек опоры образца, в выемках нижней части подвижной планки, и парой наружных цилиндрических опор, размещенных, для точной фиксации пары нижних точек опоры образца, в выемках в нижней части корпуса держателя;
первоначальное расчетное усилие нагружения на испытуемый образец прикладывают сверху через переводник домкратом по динамометру сжатия к подвижной планке, изгибая середину образца двумя внутренними цилиндрическими опорами, расположенными в выемках подвижной планки симметрично относительно центра образца и наружных опор;
точное доведение прилагаемого усилия до расчетной величины прогиба образца и его уравнивание между симметричными внутренними опорами производят поворотом левого и правого винтов, перемещая подвижные клинья вдоль скосов к центру подвижной планки, передавая усилия от винтов через подвижные клинья планке и через внутренние опоры на испытываемый образец;
исключают смещение подвижных клиньев по скосам, для сохранения точности нагружения образца в процессе испытаний, для чего подвижные клинья, при достижении расчетной, определяемой геометрическими параметрами трубы величины прогиба образца, надежно фиксируют винтами между планкой и верхней частью корпуса держателя.



 

Похожие патенты:

Изобретение относится к измерительной технике для промышленности и может быть применено для испытаний продольных и поперечных образцов основного металла труб, образцов со сварными швами, в том числе ремонтным сварным швом, для изучения свойств напыленных материалов, органических покрытий, для оценки сталей к сульфидному растрескиванию под напряжением.

Изобретение относится к области испытательной техники, а именно к установкам для испытаний образцов и фрагментов пространственных коробчатых (сварных, клеесварных, клепанных или клееклепанных) конструкций.

Изобретение относится к технологии напыления теплозащитных керамических покрытий, а более точно касается определения времени теплового воздействия, необходимого для релаксации остаточных напряжений в покрытии, а также энергии, требующейся для релаксации.

Изобретение относится к области эксплуатации нефтедобывающего оборудования, а именно, к способу и устройству, применяемым для контроля состояния насосных штанг нефтедобывающих скважин.

Изобретение относится к испытательной технике, а именно к устройствам для экспериментальных исследований прочностных свойств и процессов накопления усталостных повреждений в поверхностных слоях образцов из конструкционных материалов в зависимости от закона изменения на поверхности образца напряжения и его градиента.

Изобретение относится к определению механических характеристик труб, а именно к моделям, предназначенным для испытаний материалов труб малого диаметра на трещиностойкость, и может быть использовано при производстве и эксплуатации труб.

Изобретение относится к машиностроению, а именно к испытательной технике, используемой при испытаниях на усталость. Зажимное устройство содержит стягиваемые с помощью винтов опорные детали, между которыми размещен испытуемый образец и переходные детали, расположенные по обе стороны концевой части испытуемого образца и имеющие участок, выступающий за зону их контакта с опорными деталями в сторону рабочей части образца.

Изобретение относится к испытательной технике и может быть использовано для испытания образцов строительных материалов на совместное действие усилий растяжения, среза и изгиба, и позволяет испытывать образцы материалов при различных комбинациях нагружения их усилиями растяжения, среза и изгиба в совокупности с разрывной машиной.

Изобретение относится к области машиностроения и авиационно-космической отрасли промышленности и может быть использовано при проведении наземных испытаний оболочек типа тел вращения.

Изобретение относится к области испытательной техники, а именно к устройствам для определения упругих характеристик материалов при изгибе, и может быть использовано для определения зависимости модуля упругости конструкционных материалов как от температуры, так и от величины изгибающих напряжений.

Изобретение относится к способам определения механических характеристик материалов, конкретно - к способу определения модуля упругости, предела прочности и предельной деформации. Сущность: осуществляют формование полого трубчатого изделия на оправке, вырезку из него образцов, нагружение образцов до разрушения с измерением силы и перемещения и последующий расчет значений механических характеристик. Образцы получают путем разрезки полого неотвержденного изделия на оправке вдоль и поперек оси с последующей разверткой и отверждением листа на плоской оправке, вырезкой из него образцов заданных размеров с толщиной листа вдоль и поперек первоначальной оси изделия и определения механических свойств (модуля упругости, прочности и предельной деформации) в осевом и окружном направлениях известными методами испытаний на растяжение, сжатие, изгиб, преимущественно методом продольного изгиба. Технический результат: разработка универсального способа определения механических характеристик (прочности, предельной деформации и модуля упругости) в осевом и окружном направлениях полых трубчатых изделий из композиционных материалов, повышение точности (достоверности) результатов испытаний и снижение их трудоемкости. 4 ил.

Изобретение относится к исследованиям остаточных напряжений в детали. Сущность: осуществляют закрепление детали в первой точке и во второй точке на расстоянии от первой точки, выполнение первой операции съема материала в третьей точке, расположенной между первой и второй точками, освобождение детали во второй точке, измерение первой деформации детали, определение остаточных напряжений в детали на основе измерения первой деформации. Устройство содержит первый зажим, второй зажим, расположенный на расстоянии от первого зажима, металлорежущий инструмент, сконфигурированный с возможностью выполнения операции съема материала с детали, закрепленной в зажимах, в точке, расположенной между зажимами, устройство для измерения прогиба, расположенное между первым и вторым зажимами. Технический результат: упрощение измерения остаточных напряжений в детали. 2 н. и 6 з.п. ф-лы, 5 ил.

Изобретение относится к области измерительной техники и может быть использовано для определения в натурных условиях деформационных и прочностных характеристик ровного ледяного покрова при изгибе. Заявленный способ предусматривает применение судна (ледокольного типа), которое оказывает кратковременное силовое воздействие форштевнем на ледяное поле вплоть до его разрушения или создание судном на чистой воде свободной волны, направленной на кромку ледяного поля. При этом на ледяной покров устанавливаются в линию по ходу движения судна на нескольких пикетах (точках) сейсмометр, деформометр, наклономер и вмораживается датчик напряжения, а в носовой части судна устанавливается акселерометр для определения момента разрушения льда. Таких пикетов на льду организуют от одного до трех и больше. Расстояние между пикетами выбирается в зависимости от толщины льда и характера воздействия на ледяное поле. В случае силового воздействия судна форштевнем на край льдины осуществляют один из двух режимов: медленное непрерывное движение судна по линии установки датчиков на пикетах или одиночные разрушения льда изгибом с остановками движения судна между воздействиями. При этом в носовой части судна устанавливается акселерометр, который фиксирует момент разрушения льда. В случае создания свободной волны необходимо, чтобы перед ледяным полем был участок чистой воды, на котором судно могло бы набрать скорость и затормозить перед кромкой поля, что приведет к распространению в ледяном поле изгибно-гравитационной волны. В результате определяются следующие параметры: момент разрушения льда при изгибе, критические наклоны ледяного поля, относительные деформации и напряжения в поверхностном слое льда. При образовании трещины во льду в непосредственной близости от любого пикета можно получить напряжения разрушения ледяной пластины. Технический результат – повышение точности получаемых данных. 2 ил.

Изобретение относится к области метрологии, а именно к средствам получения чистого изгиба эталонной балки для испытаний тензодатчиков. Устройство содержит основание, эталонную балку постоянного сечения с системой измерения деформаций и механическую систему нагружения балки, включающую два симметрично расположенных рычага, шарнирно связанных с движителем. При этом в каждом рычаге попарно сверху и снизу от эталонной балки установлены четыре опорных ролика, между роликами и эталонной балкой, также сверху и снизу от нее, размещены пластины-«подушки» с выступами полуцилиндрической формы на противоположных краях, контактирующие с эталонной балкой непосредственно по образующим цилиндрических поверхностей этих выступов. Нормаль в точках контакта роликов с плоской поверхностью пластин-«подушек» проходит через точку контакта эталонной балки с цилиндрическим выступом пластины-«подушки». Рычаги установлены горизонтально и шарнирно связаны с основанием посредством двух симметрично расположенных шатунов, а также шарнирно соединены между собой и с движителем посредством коромысла, своим центром симметрии шарнирно связанным с ползуном, кинематически связанным с вертикальной направляющей и с движителем. Технический результат заключается в расширении диапазона кривизны эталонной балки, существенном уменьшении габаритов устройства при значительном снижении массы конструкции, снижении прилагаемых усилий для получения необходимой деформации при сохранении высокой степени точности измерения деформаций. 2 ил.

Изобретение относится к области строительства и предназначено для испытаний плоских и пространственных рамно-стержневых конструктивных систем на живучесть. Сущность: в проектное положение закрепляют неподвижные и выключающуюся центральную несущие стойки конструктивной системы, затем на них устанавливают ригели, монтируют нагрузочные устройства. Выключающаяся центральная стойка выполняется в виде шарнирно-стержневого механизма из двух вертикально расположенных шарнирно соединенных между собой несущих элементов, удерживаемых в проектном положении горизонтальной связью, которая выключается при заданном уровне нагружения конструктивной системы и создает горизонтальное усилие, мгновенно выключающее центральную стойку из работы конструктивной системы. Устройство содержит центральную стойку конструктивной системы, содержащую шарнирно-стержневой механизм. В состав устройства входят опорные элементы, шпилька, на которую жестко закреплен нижний несущий элемент шарнирно-стержневого механизма, сверху на элементе установлена пластина с профрезированной полусферой для центрального шарового шарнира, в которую установлен металлический шар, на котором сверху через пластину, аналогичную пластине, присоединен верхний несущий элемент, вверху этого элемента расположен специальный регулировочный болт, на котором установлена опорная пластина, имеющая сверху профрезированную полусферу, в полусфере пластины установлен металлический шар, который сверху накрыт опорной пластиной, которая с помощью регулировочного болта подведена под нижнюю плоскость ригеля, установлена неподвижная стойка для фиксации нижнего и верхнего несущих шарнирно опертых стержневых элементов, в верхней зоне которой установлена шпилька, которая закручена в нижний несущий элемент, удерживая его в вертикальном положении, сжатая пружина, с помощью которой обеспечена упругая фиксация в проектном положении среднего шарнира механизма. Технический результат: возможность точно определить нагрузку, при которой происходит выключение несущего элемента испытываемой конструктивной системы, динамические догружения в оставшихся в работе элементах конструктивной системы и выключаемого несущего элемента. 2 н.п. ф-лы, 5 ил.

Изобретение относится к способам испытания балок. Сущность: изготавливается рычажная установка привариванием к металлической стойке металлических кронштейнов, на концах кронштейнов вырезаются овальные отверстия и устанавливаются валы со шкивами, рычажная установка жестко закрепляется в основании. Изготавливается испытываемый образец с устроенным в одном конце стержнем плеча пары сил, зафиксированным хомутом, другой конец образца защемлен в устройстве для защемления балочного момента. К стержню плеча пары сил прикрепляются тросы, а к тросам, перекинутым через шкивы, подвешиваются горизонтальные площадки, на которые укладываются грузы для создания сосредоточенного изгибающего момента. Технический результат: возможность определить несущую способность балок на сосредоточенный изгибающий момент и обеспечить постоянство действующего момента во времени при деформациях испытываемых элементов. 1 ил.

Изобретение относится к испытательной технике и может быть использовано для испытаний стальных обетонированных труб больших диаметров для магистральных газо- и нефтепроводов. Стенд содержит опоры и гидравлическую систему для нагружения испытуемой трубы изгибом. Стенд снабжен измерительной системой, содержащей 2n жидкостных индикаторов изменения положения испытуемой трубы и n жидкостных индикаторов перемещения испытуемой трубы, подключенных к линии подачи жидкости, на которой последовательно установлены n запорных кранов. Индикаторы изменения положения испытуемой трубы связаны гидравлически и механически попарно, каждая из пар упомянутых индикаторов закреплена на испытуемой трубе симметрично относительно ее оси и гидравлически сообщена с одним из соответствующих индикаторов перемещения испытуемой трубы. Испытуемая труба размещена на двух фундаментных и двух домкратных опорах, а гидравлическая система для нагружения испытуемой трубы изгибом включает насос высокого давления и два манометра. Насос высокого давления через манометры подключен параллельно к двум домкратным опорам. Технический результат: упрощение конструкции при одновременном повышении достоверности результатов испытаний, а также расширение арсенала технических средств для проведения испытаний обетонированных труб. 4 ил.

Изобретение относится к конструкции стенда, который обеспечивает возможность проведения испытаний на механическую прочность конструкции летательного аппарата. Устройство содержит оснастку для фиксации испытываемой конструкции и систему нагружения. Система нагружения размещена под зоной установки указанной конструкции и включает приводную траверсу, связанную с силовым приводом, установленным на основании, и смонтированные на ней распределительные траверсы. Распределительные траверсы служат для передачи нагрузки на испытываемую конструкцию через распределительные балки, каждая пара которых связана посредством тяг с соответствующей распределительной траверсой. На стойке установлена вертикально перемещающаяся вдоль нее каретка. На каретке закреплена консоль, расположенная над распределительными балками. Перемещаясь вверх, консоль поднимает распределительные балки в верхнее положение, при котором осуществляется монтаж частей стенда. При движении консоли вниз балки синхронно опускаются в нижнее положение, при котором обеспечивается контакт балок с испытываемой конструкцией. Технический результат заключается в упрощении обслуживания стенда, создании нагрузки на испытываемую конструкцию в широком диапазоне и обеспечении бесступенчатой регулировки нагрузки. 6 з.п. ф-лы, 4 ил.

Изобретение относится к области усталостных испытаний материалов на изгиб и предназначено для охлаждения образцов в процессе подготовки и проведения усталостных испытаний на изгиб. Предложено автоматизированное устройство для охлаждения образцов при усталостных испытаниях на изгиб при пониженных температурах, согласно которому процесс охлаждения осуществляется комбинированно, как за счет передачи холода по хладопроводу, так и за счет подачи охлажденного воздуха в криокамеру. При этом процессы, описанные выше, полностью автоматизированы за счет регулирования температуры посредством открытия/закрытия заслонки камеры и нагревания до необходимой (устойчивой) температуры зажима хладопровода. Кроме этого, дополнительно непосредственно на образце устанавливается датчик акустической эмиссии, а на приводное устройство - счетчик количества циклов с выходом на ЭВМ для оценки степени разрушения образца в ходе испытаний и выявления зависимостей количества циклов испытания от напряжения, возникающего в опасном сечении образца. Технический результат - ускорение и автоматизация процесса охлаждения образцов в процессе проведения испытаний на усталость и процесса построения диаграмм изменения параметров акустической эмиссии в зависимости от количества циклов нагружения. 1 ил.

Изобретение относится к испытательной технике, а именно к способам испытаний плоских образцов на изгиб. Сущность: концы образцов закрепляют на опоре, изгибают и определяют величину прогиба в условиях сложного изгиба. Опора выполняется в виде замкнутой рамы с двумя подвижными распорками, а нагружение осуществляется посредством нагружающего гидроцилиндра, передающего давление на сжимающий или разжимающий гидроцилиндр, осуществляющий деформирование опоры в горизонтальной плоскости. В образце и распорной конструкции создается уровень номинальных напряжений, пропорциональный поперечной нагрузке на образец. Технический результат: возможность испытания образцов в условиях сложного изгиба с переменным в процессе нагружения уровнем номинальных напряжений и, соответственно, коэффициентом распора, зависящим от величины поперечной нагрузки, приложенной к образцу. 2 ил.

Изобретение относится к измерительной технике для промышленности и может быть применено для испытаний продольных и поперечных образцов основного металла труб, образцов со сварными швами, в том числе ремонтным сварным швом, для изучения свойств напыленных материалов, органических покрытий, для оценки сталей к сульфидному растрескиванию под напряжением. Сущность: осуществляют нагружение образца испытуемой трубы, закрепленного симметрично на 4-точечный изгиб, между двумя внутренними опорами и двумя наружными опорами. Перед нагружением испытуемый образец помещают в замкнутый контур корпуса держателя между парой внутренних цилиндрических опор, размещенных, для точной фиксации пары верхних точек опоры образца, в выемках нижней части подвижной планки, и парой наружных цилиндрических опор, размещенных, для точной фиксации пары нижних точек опоры образца, в выемках в нижней части корпуса держателя. Первоначальное расчетное усилие нагружения на испытуемый образец прикладывают сверху через переводник домкратом по динамометру сжатия к подвижной планке, изгибая середину образца двумя внутренними цилиндрическими опорами, расположенными в выемках подвижной планки симметрично относительно центра образца и наружных опор. Точное доведение прилагаемого усилия до расчетной величины прогиба образца и его уравнивание между симметричными внутренними опорами производят поворотом левого и правого винтов, перемещая подвижные клинья вдоль скосов к центру подвижной планки, передавая усилия от винтов через подвижные клинья планке и через внутренние опоры на испытываемый образец. Исключают смещение подвижных клиньев по скосам, для сохранения точности нагружения образца в процессе испытаний, для чего подвижные клинья, при достижении расчетной, определяемой геометрическими параметрами трубы величины прогиба образца, надежно фиксируют винтами между планкой и верхней частью корпуса держателя. Технический результат: увеличение точности определения начала процесса зарождения и развития коррозионных трещин в образцах металла бесшовных и электросварных труб, в том числе, с большой толщиной стенки. 3 ил.

Наверх