Мемристорный материал



Мемристорный материал
Мемристорный материал
Мемристорный материал
H01L45/00 - Приборы на твердом теле для выпрямления, усиления, генерирования или переключения, не имеющие потенциального барьера, на котором имеет место скачкообразное изменение потенциала, или поверхностного барьера, например диэлектрические триоды; приборы с эффектом Овшинского; способы и устройства, предназначенные специально для изготовления или обработки вышеуказанных приборов или их частей (приборы, состоящие из нескольких компонентов на твердом теле, сформированных на общей подложке или внутри нее, H01L 27/00; приборы с использованием сверхпроводимости H01L 39/00; пьезоэлектрические элементы H01L 41/00; приборы с эффектом отрицательного объемного сопротивления H01L 47/00)

Владельцы патента RU 2582232:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Иркутский государственный университет" (RU)

Использование: для создания компьютерных систем на основе мемристорных устройств со стабильными и повторяемыми характеристиками. Сущность изобретения заключается в том, что мемристорный материал включает наноразмерный слой фтористого лития, содержащего нанокластеры металла, причем наноразмерный слой выполнен в виде пленки на диэлектрической подложке, а в качестве материала для нанокластеров использована медь. Технический результат: обеспечение возможности упрощения технологии приготовления мемристорного материала и улучшения технических параметров Roff/Ron>103. 2 ил.

 

Предлагаемое изобретение относится к материалам для устройств микро- и наноэлектроники и может быть использовано для создания компьютерных систем на основе мемристорных устройств со стабильными и повторяемыми характеристиками.

С появлением возможности формирования наноразмерных структур сотрудниками Hewlett-Packard впервые было экспериментально показано, что мемристивный эффект возникает в наноразмерных структурах металл-диэлектрик-металл за счет перемещения зарядов в сверхтонком диэлектрическом слое при приложении электрического поля.

Например, при движении вакансий кислорода в слое диоксида титана TiO2 толщиной ~5 нм [D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams. The missing memristor found. Nature 2008, 453, p. 80; Williams R.S., Yang J., Pickett M., Ribeiro G., Strachan J.P. Memristors based on mixed-metal-valence compounds. WO 2011028208. 10.03.2011]. В последние годы механизм резистивного переключения в слоях оксидов титана с симметричными Pt электродами был подробно исследован [J.J. Yang et al. Memristive switching mechanism for metal/oxide/metal nanodevices. Nature Nanotechnology 2008, 3, p. 429; J.P. Strachan, J.J. Yang et al. Nanotechnology, 2009, 20, p. 485701].

Для большинства типов мемристоров, в том числе для мемристоров на основе оксидов переходных металлов, остается нерешенной проблема стабильности и воспроизводимости таких параметров, как напряжение переключения, сопротивление в низкоомном и в высокоомном состояниях. Основной причиной нестабильности характеристик мемристора является неоднородность распределения электрического поля в активном слое мемристора из-за неидеальности активного слоя. Соответственно, существует путь повышения стабильности характеристик мемристора, который заключается в поиске новых материалов.

Только за последние годы были предложены следующие материалы:

Pt/CeOx/TiN - [Muhammad Ismail, Ijaz Talib, Chun-yang Huang et al. Resistive switching characteristics of Pt/CeOx/TiN memory devices // Japan Journal of Appl. Phys. - 2014. - V53. - №6. - 060303].

Pt/TaOx/TiN - [Hujang Jeon, Jingyu Park et al. Stabilized resistive switching behaviors of a Pt/TaOx/TiN RRAM under different oxygen centers // Phys. Stat. Sol (A). - 2014. - V. 211. - №9. - 70256].

Резистивные переключатели на основе пленок BiFe0,95sZn0,05O3 - [Yuan Xue-Yong, Luo Li-Rong, Wu Di et al. Bipolar resistive switching in BiFe0,95Zn0,05O3 - films // Chin. Phys. B. - 2013. - V. 22. - №10. - 107702].

HfxAl1-xOy - [Markeev A., Chouprik A., Egorov K., et al. Multilevel resistive switching in ternary HfxAl1-xOy oxide with graded A1 depth profile // Microelectronic Engineering. - 2013. - v. 109. - p. 342-345]. Эта разработка защищена Российским патентом “Мемристор на основе смешанного оксида металлов” Патент РФ №2472254 H01L 45/00, B82B 1/00, 2011).

Известен мемристор на основе смешанного оксида металлов [патент РФ №2524415, H01L 45/00, В82В 1/00 2014], состоящий из чередующихся слоев, а именно активного слоя, расположенного между двумя токопроводящими слоями, причем активный слой включает смешанный оксид, активный слой состоит из двух подслоев, одним из которых является оксид гафния, а вторым является смешанный оксид, одним из элементов которого является гафний, а вторым - алюминий, а кроме того, между токопроводящим и примыкающим к нему слоем оксида гафния размещен слой оксида рутения, имеющий толщину не менее 0,5 нм, в качестве токопроводящих слоев используется нитрид титана или нитрид вольфрама.

Во всех перечисленных выше аналогах основной механизм электропереноса - дрейф ионов кислорода по анионным вакансиям, то есть пример ионной коммутации. Деградация материала вызвана, как правило, взаимодействием с кислородом атмосферы и заполнением вакансий ионами кислорода.

Наиболее близким по своей технической сущности материалом является мемристор на основе поверхностного слоя кристалла фтористого лития с нанокластерами магния, внедренными в поверхностный слой кристалла путем ионной имплантации [Н.А. Иванов, В.Л. Паперный, Л.И. Щепина и др. Перспективные материалы для резистивных переключателей на основе кристаллов фтористого лития с наноструктурами. // Известия Вуз. Физика. - 2013. - Т. 56. - №2/2. - с. 166-169]. В качестве активного слоя используется поверхностный слой кристалла фтористого лития с нанокластерами магния, внедренными в поверхностный слой кристалла путем ионной имплантации Mg+ с энергией частиц ~100 keV и флюенсом 1,6·1017-3,2·1017 cm-2. С данной энергией глубина проникновения ионов магния в кристалл составляет порядка 100 нм.

Поскольку в поверхностном слое кристалла LiF создаются нанокластеры Mg данный мемристорный материал относится к электронным коммутаторам. Электронные переключатели обладают высокой стабильностью и повторяемостью характеристик мемристора, однако имплантация ионов - самый дорогостоящий процесс к настоящему времени.

Недостатком прототипа является достаточно сложная технология приготовления материала и относительно худшие технические параметры, например Roff/Ron<103.

Задачей данного изобретения является упрощение технологии приготовления мемристорного материала и улучшение технического параметра Roff/Ron > или равно 103.

Решение поставленной задачи достигается тем, что в мемристорном материале, включающем наноразмерный слой фтористого лития, содержащий нанокластеры металла, наноразмерный слой выполнен в виде пленки на диэлектрической подложке, а в качестве материала для нанокластеров используется медь.

Мемристорный материал изготавливают следующим образом:

Пример 1 (прототип). Пример реализации мемристорного материала отличается тем, что в качестве активного слоя используется поверхностный слой кристалла фтористого лития с нанокластерами магния, внедренными в поверхностный слой кристалла путем ионной имплантации Mg+ с энергией частиц ~100 keV и флюенсом 1,6·1017-3,2·1017 cm-2. С данной энергией глубина проникновения ионов магния в кристалл составляет порядка 100 нм.

Имплантация ионов осуществлялась с применением высоковольтной аппаратуры (100 кэВ, ускоряющее напряжение до 50 кВ).

Для формирования нанокластеров (НК) магния кристаллы подвергались отжигу при 650 K в течение 15 min. Контроль над образованием НК осуществлялся методом оптической спектроскопии по полосе поверхностного плазмонного резонанса (ППР) с максимумом ~285 nm в спектре поглощения. Относительная концентрация кластеров магния оценивалась по оптической плотности (D) в полосе ППР, интенсивность которой менялась от 0,3-2,55. Для измерения вольт-амперных характеристик (ВАХ) на поверхность имплантированного слоя наносились верхние серебряные электроды. Измерения ВАХ поверхностной проводимости проводили по стандартной методике с использованием классической схемы Кюри. Ток измерялся с помощью усилителя постоянного тока У5-11. Были получены следующие характеристики: напряжение переключения из высокоомного в низкоомное состояние составило 2,0±0,2 В, параметр Roff/Ron~200, концентрация кластеров магния D=2,17. Учитывая, что имплантация ионов - один из трудоемких и дорогостоящих процессов к настоящему времени, задача изобретения в данном примере не достигнута.

Пример 2. Пример реализации мемристорного материала технически аналогичен второму. Отличие состоит в том, что: мемристорный материал, включающий наноразмерный слой фтористого лития, содержащего нанокластеры металла, выполнен в виде пленки на диэлектрической подложке, а в качестве материала для нанокластеров используется медь. Пленки наносились на стекло методом термовакуумного химического парофазного осаждения (ТВХПО). При процессе химического парофазного осаждения подложка помещается в пары двух веществ, которые, вступая в реакцию и разлагаясь, создают на поверхности подложки необходимое вещество. Суть данного метода состоит в том, что конечный продукт образуется на подложке-мишени. С этой целью использовалась установка, состоящая из группы модулей для ТВХПО, с целью получения наноструктур. По указанным группам классификации установка относится к LPHPCVD (Low Pressure Hybrid Physical-Chemical vapor deposition) без использования газа-носителя для прекурсоров. Установка представляет собой камеру, с использованием Вакуумного Универсального Поста (ВУП-5), и низковольтную аппаратуру, что значительно упрощает процесс приготовления мемристорного материала. Внутри камеры находится зона реактора, в случае использования двух прекурсоров (60 мг меди и 200 мг фтористого лития), зона реактора разделяется диэлектрической перегородкой. В каждой подзоне имеются выводы на два электрода, соединенные между собой танталовой фольгой с вогнутой серединой, образуя собой подобие тиглей. На тигли подается регулируемый ток с ЛАТРов, значения тока фиксируются последовательно включенными амперметрами, таким образом, контролируется скорость распыления веществ в объеме камеры. Выше зоны реактора находится кюветное отделение, где и располагаются подложки на основе SiO2, подготовленные для осаждения нагретых веществ в газовой фазе. Кюветное отделение отгорожено металлической шторкой, которая ограничивает доступ веществ к поверхности, обеспечивая в нужный момент синхронное поступление газов. Над кюветным отделением смонтированы диодные лампы, которые играют роль подсветки подложек и нагрева одновременно, температура подложек контролируется с помощью терморезистора и соответствующей градуировочной шкалы и поддерживается ~300 градусов. Толщина пленок варьировалась от 500 до 700 нм. Контроль за нанокластерами металла осуществляли по спектрам оптического поглощения в полосе плазмонного резонанса в области ~330 нм для нанокластеров Cu. Измеряли вольт-амперные характеристики для установления соотношения сопротивления в момент выключения электрического поля и включения. Были получены следующие характеристики: напряжение переключения из высокоомного в низкоомное состояние составило 2,0±0,2 В, параметр Roff/Ron~2·104, концентрация нанокластеров меди D=2,25. Учитывая, что сам материал имеет простой химический состав и не требует сложных технологий для нанесения пленок фтористого лития с нанокластерами меди, задача изобретения достигнута.

Предлагаемый материал поясняется следующими закономерностями.

Одной из характеристик мемристорного материала является соотношение сопротивлений в выключенном и включенном состояниях (Roff/Ron). Это соотношение должно быть больше или равно 103. На фиг. 1 представлена зависимость Roff/Ron от концентрации нанокластеров меди в пленке фтористого лития. Концентрация меди оценивалась по оптической плотности (D) в полосе плазмонного резонанса на длине волны 330 нм.

Согласно представленной зависимости нижняя граница концентрации нанокластеров меди определяется величиной D=0,94 на длине волны 330 нм. Верхняя граница D=2,2. Дальнейшее увеличение концентрации нанокластеров меди в пленке LiF сопровождается образованием окиси и закиси меди, которые ухудшают характеристики мемристора. Закись меди (Cu2O) увеличивает ток в выключенном состоянии, а окись меди (CuO) увеличивает сопротивление пленки во включенном состоянии.

На фиг. 2 представлена зависимость параметра Roff/Ron от числа циклов переключения для пленки LiF с концентрацией нанокластеров меди D=0,94 на длине волны 330 нм. Наблюдается высокая стабильность и повторяемость характеристик мемристора на основе пленки фтористого лития с нанокластерами меди при минимальных затратах на ее изготовление.

Таким образом, сочетание известных признаков мемристорного материала и отличительных признаков позволяет получить новый технический результат, а именно упростить технологию приготовления мемристорного материала и улучшить технический параметр Roff/Ron>103.

Мемристорный материал, включающий наноразмерный слой фтористого лития, содержащего нанокластеры металла, отличающийся тем, что наноразмерный слой выполнен в виде пленки на диэлектрической подложке, а в качестве материала для нанокластеров используется медь.



 

Похожие патенты:

Изобретение относится к устройствам микро- и наноэлектроники. Мемристорные устройства являются устройствами энергонезависимой памяти и могут быть использованы для создания компьютерных систем на основе архитектуры искусственных нейронных сетей.

Изобретение относится к области электроники. .

Изобретение относится к полупроводниковым приборам и может быть использовано в качестве переключающего элемента (ключа) или управляемого конденсатора в интегральных микросхемах, работающих, в том числе, на частотах выше 10 ГГц.
Изобретение относится к полупроводниковым материалам и может быть использовано в вычислительной технике, средствах связи, автоматике и телемеханике. .
Изобретение относится к медицине. Описан способ нанесения биокерамического покрытия на имплантатах из биосовместимых металлов и сплавов путем смешивания порошка гидроксиапатита с биологически совместимым связующим веществом, в качестве которого используют фосфатные связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, с добавлением в получаемую суспензию наночастиц серебра при соотношении суспензии и наночастиц серебра 1,0-1,1:0,01-0,03.

Использование: для изготовления сверхпроводниковых датчиков излучения. Сущность изобретения заключается в том, что способ изготовления сверхпроводящих многосекционных оптических детекторов, включающий формирование отдельных секций из сверхпроводящих нанопроводов, образующих рисунок в виде меандра, и сверхпроводящих соединительных проводов для соединения секций через токоограничители с контактными площадками, токоограничители формируют путем нанесения на сформированную структуру защитной резистивной маски, вскрытия в ней окон над отрезками соединительных проводов меандра с контактной площадкой и преобразованием их в несверхпроводящие за счет селективного изменения атомного состава воздействием пучка ускоренных частиц через защитную маску.

Изобретение относится к области органической электроники, а именно к устройствам памяти на основе органических полевых транзисторов, изготовленных с использованием фотохромных соединений в составе активного слоя, расположенного на границе между слоем полупроводникового материала и диэлектрика.

Изобретение относится к технологии получения неорганических ультрадисперсных материалов и может быть использовано в химической, металлургической, нефтехимической, электронной и медицинской областях промышленности.

Изобретение относится к области инкапсуляции. Описан способ получения нанокапсул антибиотиков.

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ инкапсуляции лекарственного препарата методом осаждения нерастворителем, отличающийся тем, что в качестве ядер нанокапсул используются цефалоспориновые антибиотики, в качестве оболочки - полудан при соотношении оболочка:ядро 3:1, при этом к водному полудану добавляют порошок цефалоспоринового антибиотика и препарат Е472 с в качестве поверхностно-активного вещества, при перемешивании после растворения компонентов реакционной смеси по каплям приливают петролейный эфир, полученную суспензию нанокапсул отфильтровывают, промывают петролейным эфиром и сушат.

Изобретение относится к нанотехнологиям, а именно к области использования графена (мультиграфена) и может найти широкое применение для изготовления датчиков влажности резистивного типа, применяемых в радиотехнике, электронной промышленности, энергетике и сельском хозяйстве.

Группа изобретений относится к медицине. Описан антисептический многослойный материал, содержащий текстильную основу и покрытие из полимерного волокнистого материала, в котором покрытие представляет собой воздухо- и паропроницаемую наномембрану, сформированную многокомпонентным антимикробным фильтрующим слоем нановолокон из полимерного волокнистого материала, в качестве которого используют полиамид, или полиакрилонитрил, или этиленвинилацетат, или полиэтилентерефталат, или поликапролактан, или поливинилиденфторид, или полиуретан, или полистирол, или полиэтиленоксид, или полиэтилен в сочетании с полимерной составляющей - полигексаметилгуанидин гидрохлоридом, в который между молекулярными структурами полимерного волокнистого материала с полигексаметилгуанидином гидрохлоридом введены наночастицы коллоидного или кластерного серебра, при этом диаметры нановолокон составляют 50-150 нм.

Изобретение относится к обработке текстильных материалов. Способ повышения водоотталкивающих свойств войлочных материалов заключается в обработке войлочного материала в суспензии спирт-нанопорошок гидрофобного диоксида кремния марки Wacker HDK Н20 (Германия) под воздействием акустической кавитации в ультразвуковой ванне.

Изобретение может быть использовано при изготовлении катализаторов, анодов для производства алюминия, процессоров, электронных устройств для хранения данных, датчиков биомолекул, деталей автомобилей и самолётов, спортивных товаров.

Изобретение относится к электронной технике и может быть использовано для изготовления монолитных интегральных схем, оперирующих в сантиметровом и миллиметровом диапазоне длин волн. Согласно изобретению предложена полупроводниковая транзисторная гетероструктура на подложке GaAs с модифицированным стоп-слоем AlxGa1-xAs. Модифицированный стоп-слой AlxGa1-xAs выращивается с градиентом мольной доли алюминия от х=0.23 до х0=0.26÷0.30 и с толщиной 1÷10 нм. Изобретение обеспечивает точный контроль глубины травления с помощью введения стоп-слоя, который не должен оказывать негативное влияние на параметры полевого транзистора, при этом негативное влияние выражается в уменьшении пробивного напряжения и рабочих токов, ухудшении управляемости транзистора, увеличении сопротивление омических контактов. 2 ил.
Наверх