Способ получения микрокапсул лекарственных препаратов



Способ получения микрокапсул лекарственных препаратов
Способ получения микрокапсул лекарственных препаратов
Способ получения микрокапсул лекарственных препаратов

 


Владельцы патента RU 2582274:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Курский государственный университет" (RU)

Изобретение относится к области фармацевтики. Описан способ получения микрокапсул лекарственных препаратов путем диспергирования капсулируемого вещества в растворе полимера и осаждения полимера на поверхности частиц дисперсии. В качестве капсулируемого вещества используют лекарственный препарат, выбранный из фурацилина, тетрациклина, дибазола и метронидазола. В качестве раствора полимера - 1,0% раствор альгината натрия в воде или 0,5% раствор гуаровой камеди в воде. В качестве диспергатора - неионогенное поверхностно-активное вещество, представляющее собой оксиэтилированный спирт (ОС-20). При этом раствор указанного препарата в диметилформамиде диспергируют в растворе указанного полимера, осаждение осуществляют при температуре 3-5°C избытком ацетона или этанола, в полтора раза превышающим объем раствора полимера. Изобретение обеспечивает упрощение и ускорение процесса получения микрокапсул малорастворимых в воде лекарственных препаратов. 1 з.п. ф-лы, 5 пр., 4 ил.

 

Изобретение относится к области получения микрокапсул малорастворимых в воде лекарственных препаратов с целью перевода их в форму, способную образовывать устойчивые водные дисперсии.

Известен способ получения микрокапсул пестицидов методом осаждения нерастворителем (патент RU 2488437, 2012), где в качестве материала оболочки используется натрийкарбоксиметилцеллюлоза. Недостатками являются низкие выходы и использование бутанола, который в дальнейшем необходимо удалять из готового продукта.

Известен способ получения микрокапсул коревой вакцины (патент RU 2210361, 2003) с использованием в качестве оболочки микрокапсул, в том числе альгината натрия. Недостатком является техническая сложность выполнения способа.

Известен способ получения микрокапсул (патент RU 2107542, 1998), в котором эмульгирование материала ядра проводят в растворе модифицированного желатина с последующим его осаждением на поверхности капель эмульсии с формированием оболочек. К недостаткам способа можно отнести техническую сложность процесса, т.к. необходимо использовать распылительную сушку, а также использование органических компонентов, которые в дальнейшем необходимо удалять из продукта.

Наиболее близким по технической сущности к предлагаемому методу является способ получения микрокапсул (патент RU 2316390, 2008) в котором для формирования оболочки использовалась метилцеллюлоза с содержанием метоксильных групп от 27,5 до 32%. Недостатком является необходимость использования метилцеллюлозы со строго определенным содержанием метоксильных групп, длительность процесса и точное соблюдение температурного режима, что ведет к его усложнению.

Цель изобретения - упрощение и ускорение процесса получения микрокапсул малорастворимых в воде лекарственных препаратов в оболочках из водорастворимых биодеградируемых полимеров с заданным набором свойств.

Технический результат достигается тем, что в известном способе получения микрокапсул лекарственных препаратов путем диспергирования капсулируемого вещества в растворе полимера и осаждения полимера на поверхности частиц дисперсии, согласно изобретению в качестве капсулируемого вещества используют лекарственный препарат, выбранный из фурацилина, тетрациклина, дибазола и метронидазола, в качестве раствора полимера - 1,0% раствор альгината натрия в воде или 0,5% раствор гуаровой камеди в воде, а в качестве диспергатора - неионогенное поверхностно-активное вещество (ПАВ), представляющее собой оксиэтилированный спирт (ОС-20), при этом раствор указанного препарата в диметилформамиде диспергируют в растворе указанного полимера, осаждение осуществляют при температуре 3-5°C избытком ацетона или этанола, в полтора раза превышающим объем раствора полимера. Диспергирование реакционной смеси осуществляют с использованием ультразвукового диспергатора.

Выбор полимеров обусловлен широким использованием альгината натрия и гуаровой камеди, например, в медицине (в качестве антацида), пищевой промышленности (загустители) и в косметологии. Применение альгината натрия основано на его способности образовывать гели, желеобразные вещества, а также он широко применяется как оболочка для микрокапсулирования. Гуаровая камедь (или гуаран) помимо использования в пищевой промышленности в качестве стабилизатора, загустителя и структуратора обладает биологическим действием как физиологическое слабительное, нормализующее кишечную проницаемость и кишечную микрофлору, как детоксифицирующее и снижающее уровень холестерина средство, а также как средство, тормозящее развитие атеросклероза и ожирения.

Используемые в качестве капсулируемых лекарственных препаратов вещества: фурацилин, тетрациклин, дибазол и метронидазол относятся к различным классам химических соединений и обладают различным фармакологическим действием. Среди них - антибиотики широкого спектра действия, антибактериальные, спазмолитические, имуномоделирующие, антипротозойные средства. Указанные лекарственные средства очень мало растворимы в воде, лучше растворимы в этаноле и некоторых других органических растворителях, чувствительны к свету. Поэтому их капсулирование в водорастворимые полимеры обеспечит им защиту от негативного влияния окружающей среды, а также придаст этим препаратам способность образовывать в воде устойчивые дисперсии.

Применение в качестве ПАВ оксиэтилированного спирта ОС-20 позволит стабилизировать образующуюся дисперсию, предотвратить слипание микрокапсул и облегчить процесс выделения микрокапсул.

Используемые в качестве осадителя полимеров этанол и ацетон легко удаляются из микрокапсулированного продукта уже на стадии фильтрования и далее в процессе высушивания, так как обладают достаточно низкими температурами кипения.

Работа при температурах 3-5°C обеспечивает максимально полное осаждение формирующейся дисперсии микрокапсул. Использование полуторного избытка осадителя (ацетона или этанола) позволяет полимеру полностью перейти из водного раствора в твердую фазу и закрепиться на поверхности капсулируемого вещества.

Применение ультразвукового диспергатора «ULTRASONIK GENERATOR IL10 - 0,63» вместо магнитной мешалки для диспергирования реакционной системы при капсулировании в гуаровую камедь позволяет значительно сократить время проведения процесса (в 2-3 раза) и уменьшить размеры образующихся микрокапсул.

Способ осуществляется следующим образом.

К 0,5-1% водному раствору полимера при непрерывном перемешивании добавляют раствор капсулируемого вещества. Количество полимера и вещества варьируется в соответствии с поставленной задачей. Диспергирование системы осуществляют с помощью ультразвукового диспергатора «ULTRASONIK GENERATOR IL10 - 0,63». Процесс ведут в присутствии поверхностно-активного вещества, взятого в количестве 1-1,5% масс. от массы капсулируемого вещества. Таким образом, методом переосаждения получают тонкую дисперсию капсулируемого вещества в водном растворе полимера. Не останавливая диспергирование и постоянно охлаждая реактор, в реакционную смесь по каплям приливают осадитель - этиловый спирт или ацетон. По окончании осаждения полимера сформировавшиеся капсулы отфильтровывают на фильтре Шота (ВФ-1-40 пор. 16), промывают спиртом или ацетоном, сушат на воздухе или в сушильном шкафу.

Количественный анализ микрокапсул осуществлялся методом градуировочного графика на спектрометре УФ/видимой области спектра UV - 1800 (фирмы «Shimadzu») в интервале длин волн 500-190 нм в кювете с длиной светопоглощающего слоя 1 см, в интервале оптической плотности 0,0÷3,5.

Параллельно количественный анализ микрокапсулированных продуктов проводили методом ВЭЖХ с масс- и УФ-детекторами на хроматографе Waters MSD SQD - ESI (офВЭЖХ; детекторы: спектрофотометрический, 220 нм, масс-спектрометрический, ESI, 95-700 Da, source t - 140°, desolvataion t - 400°, cone 40V, capillare 3kV; колонка Acquity ВЕН C18 2.1 mm×50 mm*1.7 um; подвижная фаза: вода (0,1% муравьиная кислота) - ацетонитрил (0,1% муравьиная кислота); режим элюирования - градиентный: 0,4 мл/мин).

Структура полученных продуктов подтверждалась методом инфракрасной спектроскопии с использованием РЖ-Фурье спектрометра типа IR-200, оснащенного приставкой нарушенного полного внутреннего отражения (HUBO). ИК НПВО использовали для регистрации спектров поверхности полученных микрокапсул (фиг. 2, 3). ИК-спектры капсулируемых веществ снимали в таблетке KBr (фиг. 1).

Анализ полученных данных показал, что конфигурация и расположение основных полос поглощения в спектрах, приведенных на фиг. 1, 2, совпадают с аналогичными параметрами библиотечных спектров альгината натрия (фиг. 2) и гуаровой камеди (фиг. 3). При этом в спектрах поверхности микрокапсул отсутствуют полосы поглощения, характерные для исходных веществ, например в областях 1705, 1580 см-1 для фурацилина (фиг. 1). Указанный факт свидетельствует о том, что вещество преимущественно сосредоточено внутри капсулы и отсутствует в поверхностном слое.

Размер полученных капсул подтверждался методом электронной микроскопии при помощи сканирующего электронного микроскопа «QUANTA FEG 650» (фиг. 4).

Размер микрокапсул фурацилина в альгинате натрия колеблется от 1,5 до 6 мкм, в гуаровой камеди - от 50 до 260 мкм. Размер микрокапсул тетрациклина в альгинате натрия составляет 2,5÷7 мкм, в гуаровой камеди - 55÷260 мкм. Размер микрокапсул дибазола в альгинате натрия составляет 1,5÷5,5 мкм, в гуаровой камеди - 45÷220 мкм. Размер микрокапсул метронидазола в альгинате натрия составляет 1,5÷6,0 мкм, в гуаровой камеди - 50÷240 мкм.

Способ иллюстрируется следующими примерами.

Пример 1. Получение микрокапсул фурацилина в оболочке из альгината натрия. В реактор, снабженный мешалкой, вносят 50 мл 1%-ного раствора альгината натрия и 1 мл 1%-ного раствора поверхностно-активного вещества (ОС-20). Включают перемешивание. Не останавливая перемешивание, в реактор медленно вносят 0,5 г фурацилина, растворенного в 2-3 мл диметилформамида, и раствор аммиака до pH 8-9. К полученной суспензии при непрерывном перемешивании по каплям приливают 60 мл ацетона в качестве осадителя полимера. Полученную суспензию микрокапсул отфильтровывают на фильтре Шотта (кл. пор 16), промывают ацетоном, сушат на воздухе или в сушильном шкафу. Выход - 76%.

Структура выделенных продуктов подтверждалась методом инфракрасной спектроскопии с использованием ИК-Фурье спектрометра типа IR-200, оснащенного приставкой нарушенного полного внутреннего отражения (НПВО) (фиг. 2-3).

Размер полученных капсул подтверждался методом электронной микроскопии при помощи сканирующего электронного микроскопа «QUANTA FEG 650» (фиг. 4).

Пример 2. Получение микрокапсул тетрациклина в оболочке из альгината натрия. В реактор, снабженный мешалкой, вносят 50 мл 1%-ного раствора альгината натрия и 1 мл 1%-ного раствора поверхностно-активного вещества (ОС-20). Включают перемешивание. Не останавливая перемешивание, в реактор медленно вносят 0,5 г тетрациклина, растворенного в 2-3 мл диметилформамида. К полученной суспензии при непрерывном перемешивании по каплям приливают 60 мл ацетона в качестве осадителя полимера. Полученную суспензию микрокапсул отфильтровывают на фильтре Шотта (кл. пор 16), промывают ацетоном, сушат на воздухе или в сушильном шкафу. Выход - 77,5%.

Пример 3. Получение микрокапсул дибазола и метронидазола. В качестве капсулируемых лекарственных веществ используют дибазол и метронидазол. Выходы 71,7% и 48% соответственно. Способ осуществляют, как в примере 2.

Пример 4. Получение микрокапсул фурацилина в оболочке из гуаровой камеди.

В реактор, снабженный мешалкой, вносят 100 мл 0,5%-ного раствора гуаровой камеди и 1 мл 1%-ного раствора поверхностно-активного вещества (ОС-20). Включают перемешивание. Не останавливая перемешивание, в реактор медленно вносят 0,5 г фурацилина, растворенного в 2-3 мл диметилформамида, и раствор аммиака до pH 8-9. К полученной суспензии при непрерывном перемешивании по каплям приливают 60 мл ацетона в качестве осадителя полимера. Полученную суспензию микрокапсул отфильтровывают на фильтре Шотта (кл. пор 16), промывают ацетоном, сушат на воздухе или в сушильном шкафу. Выход - 73,5%.

Пример 5. Получение микрокапсул тетрациклина, дибазола и метронидазола. В качестве капсулируемых веществ используют тетрациклин, дибазол и метронидазол. Выходы 78%, 72% и 58,5% соответственно. Способ осуществляют, как в примере 4.

Пример 6. В качестве осадителя полимера и растворителя для промывки микрокапсул используется этиловый спирт. Способ осуществляют, как в примерах 1-5.

Заключение малорастворимых в воде веществ в оболочку из водорастворимых полимеров приводит к получению продуктов, способных образовывать водные суспензии, устойчивые в большей или меньшей степени. Особенно это актуально в отношении малорастворимых в воде лекарственных субстанций. Придание же указанным соединениям способности растворяться в воде позволит повысить их биодоступность и облегчит способ их применения. Фурацилин, тетрациклин, дибазол и метронидазол, закапсулированные в оболочку из альгината натрия или гуаровой камеди, значительно более устойчивы к действию факторов окружающей среды, а приобретенная ими способность образовывать устойчивые нанодисперсные суспензии, визуально не отличающиеся от истинных растворов, может служить источником для создания новых лекарственных форм.

1. Способ получения микрокапсул лекарственных препаратов путем диспергирования капсулируемого вещества в растворе полимера и осаждения полимера на поверхности частиц дисперсии, отличающийся тем, что в качестве капсулируемого вещества используют лекарственный препарат, выбранный из фурацилина, тетрациклина, дибазола и метронидазола, в качестве раствора полимера - 1,0% раствор альгината натрия в воде или 0,5% раствор гуаровой камеди в воде, а в качестве диспергатора - неионогенное поверхностно-активное вещество (ПАВ), представляющее собой оксиэтилированный спирт (ОС-20), при этом раствор указанного препарата в диметилформамиде диспергируют в растворе указанного полимера, осаждение осуществляют при температуре 3-5°C избытком ацетона или этанола, в полтора раза превышающим объем раствора полимера.

2. Способ по п. 1, отличающийся тем, что диспергирование реакционной смеси осуществляют с использованием ультразвукового диспергатора.



 

Похожие патенты:
Изобретение относится к способу получения микрокапсул цефотаксима. Указанный способ характеризуется тем, что к 1% водному раствору интерферона человеческого лейкоцитарного в альфа- или бета-форме добавляют порошок цефотаксима и препарат Е472с в качестве поверхностно-активного вещества, полученную смесь перемешивают, после растворения компонентов реакционной смеси до образования прозрачного раствора медленно по каплям приливают бутанол в качестве первого осадителя, а затем ацетон - в качестве второго осадителя, полученную суспензию микрокапсул отфильтровывают, промывают ацетоном и сушат.

Изобретение относится к области нанотехнологии, фармакологии, фармацевтики и ветеринарной медицины. Технической задачей изобретения является упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе.

Изобретение относится в области нанотехнологии, медицины, фармакологии и ветеринарной медицины. Технической задачей изобретения является упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе.

Изобретение относится к области медицины, а именно к контрастным средствам, предназначенным для увеличения контрастности визуализируемого изображения при МРТ-диагностике печени и может быть использовано в экспериментальных и клинических исследованиях.

Изобретение относится в области нанотехнологии, в частности к способу получения нанокапсул антисептика-стимулятора Дорогова (АСД) 2 фракция в оболочке натрий карбоксиметилцеллюлозе, характеризующемуся тем, что АСД 2 фракция диспергируют в суспензию натрий карбоксиметилцеллюлозы в бензоле в присутствии препарата Е472с, приливают ацетонитрил в качестве осадителя, полученную суспензию отфильтровывают и сушат при комнатной температуре.

Изобретение относится в области нанотехнологии, медицины, фармакологии и ветеринарной медицины. Технической задачей изобретения является упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе.

Изобретение относится в области нанотехнологии, в частности растениеводства. Технической задачей изобретения является упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе.

Изобретение относится в области нанотехнологии и пищевой промышленности. Технической задачей изобретения является упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе.
Изобретение относится в области нанотехнологии. Технической задачей изобретения является упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. Отличительной особенностью предлагаемого способа является использование кверцетина и дигидрокверцетина, оболочки нанокапсул хитозана, а также использование осадителя - 1,2-дихлорэтана при получении нанокапсул физико-химическим методом осаждения нерастворителем.
Изобретение относится к способу инкапсуляции препарата методом осаждения нерастворителем, отличающийся тем, что в качестве ядер нанокапсул используется ферроцен, в качестве оболочки - каррагенан, при этом ферроцен медленно добавляют в суспензию каррагенана в бутаноле в присутствии поверхностно-активного вещества Е472с при перемешивании 1200 об/сек, далее приливают гексан, полученную суспензию отфильтровывают и сушат при комнатной температуре.

Изобретение относится к порошку растворимого при низкой температуре полисахарида и полиола, частицы которого имеют по существу несферическую форму, причем полисахарид и полиол физически связаны друг с другом, полисахарид имеет форму частиц и полиол преимущественно имеет кристаллическую форму.

Изобретение относится к области инкапсуляции. Описан способ получения нанокапсул антибиотиков.
Изобретение относится к фармацевтической промышленности, а именно к производству лекарственных средств, содержащих Пророксан. Состав таблетированной формы лекарственного средства с действующим веществом Пророксан включает в себя в качестве активного компонента Пророксан и целевые вспомогательные вещества и характеризуется тем, что в пересчете на одну таблетку содержит Пророксан - 15 мг и вспомогательные вещества: Ludipress - 84,2 мг, кальция стеарат - 0,8 мг.

Изобретение относится к области нанотехнологии. Способ получения нанокапсул рибофлавина в оболочке из альгината натрия осуществляют физико-химическим методом осаждения нерастворителем, при этом рибофлавин диспергируют в суспензию альгината натрия в изопропаноле в присутствии препарата Е472с.

Изобретение относится к способу получения нанокапсул флавоноидов шиповника. Указанный способ характеризуется тем, что флавоноиды шиповника диспергируют в суспензию альгината натрия в бензоле в присутствии препарата Е472с при перемешивании, затем приливают хлороформ, полученный осадок отфильтровывают и сушат при комнатной температуре, при этом флавоноиды шиповника и альгинат натрия берут в соотношении 1:3, 1:1 или 5:1.

Изобретение относится к нанотехнологии, в частности к растениеводству, и заключается в способе получения нанокапсул 6-аминобензилпурина, который характеризуется тем, что в качестве оболочки нанокапсул используют альгинат натрия, а в качестве ядра используют 6-аминобензилпурин, при осуществлении способа к альгинату натрия в бутаноле добавляют сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и с одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества, полученную смесь перемешивают, порошок 6-аминобензилпурина по порциям добавляют в суспензию альгината натрия в бутаноле, после образования самостоятельной твердой фазы очень медленно по каплям добавляют метиленхлорид, полученную суспензию нанокапсул отфильтровывают, промывают метиленхлоридом и сушат, соотношение 6-аминобензилпурина : альгинат натрия составляет 1:3.

Изобретение относится к нанотехнологии, в частности к пищевой промышленности, и представляет собой способ получения нанокапсул флаваноидов шиповника, характеризующийся тем, что в качестве оболочки используется альгинат натрия, а в качестве ядра используются флаваноиды шиповника, при осуществлении способа флаваноиды шиповника диспергируют в суспензию альгината натрия в бензоле в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и с одной-двумя молекулами лимонной кислоты при перемешивании, приливают этилацетат, выпавший осадок отфильтровывают и сушат при комнатной температуре, при этом соотношение флаваноиды шиповника : альгинат натрия составляет 1:3, или 1:1, или 5:1.

Изобретение относится к медицине и представляет собой способ получения нанокапсул лозартана калия, характеризующийся тем, что в качестве оболочки используется альгинат натрия, а в качестве ядра используется лозартан калия, при осуществлении способа лозартан калия диспергируют в суспензию альгината натрия в гексане в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и с одной-двумя молекулами лимонной кислоты при перемешивании, приливают 1,2-дихлорэтан, выпавший осадок отфильтровывают и сушат при комнатной температуре, при этом соотношение альгинат натрия : лозартан калия составляет 3:1.

Изобретение относится к области медицины, а именно к контрастным средствам, предназначенным для увеличения контрастности визуализируемого изображения при МРТ-диагностике печени и может быть использовано в экспериментальных и клинических исследованиях.

Группа изобретений относится к медицине, а именно к оториноларингологии, и может быть использована для лечения среднего отита путем введения текучей композиции моксифлоксацина с вязкостью 100,000 спз при температуре 25°C в ухо.

Группа изобретений относится к сфере лекарственных препаратов, в частности к новому способу лечения рака молочной железы, предусматривающему парентеральное введение пациенту терапевтически эффективного количества (R)-4,11-дигидрокси-3-[(пирролидин-3-иламино)метил]-1H-нафто[2,3-f]индол-5,10-диона формулы I или его фармацевтически приемлемой соли. Кроме того, группа изобретений относится к противоопухолевым фармацевтическим композициям для парентерального применения соединения формулы I, содержащим соединение I, фармакологически приемлемый носитель и один или несколько эксципиентов, выбранных из сорастворителей, солюбилизаторов, наполнителей, эмульгаторов, консервантов, антиоксидантов, буферных соединений, веществ для поддержания изотоничности.
Наверх