Устройство для определения концентрации кислорода

Изобретение относится к измерительной технике и аналитическому приборостроению и может быть использовано в системах управления технологическими процессами. Устройство для определения концентрации кислорода содержит первичный преобразователь, представляющий собой магнитную систему с рабочим и сравнительным чувствительными элементами, подключенными по мостовой схеме к двум сопротивлениям, соединенный входом с первым блоком питания и измеритель. Устройство дополнительно содержит второй блок питания, микроволновой генератор с варакторной перестройкой частоты и усилитель напряжения, причем выход первичного преобразователя через усилитель напряжения соединен с первым входом микроволнового генератора с варакторной перестройкой частоты, второй вход которого подключен ко второму блоку питания, выход микроволнового генератора с варактоной перестройкой частоты соединен с входом измерителя. Изобретение обеспечивает повышение точности измерения концентрации кислорода за счет повышения стабильности ее измерения. 1 ил.

 

Предлагаемое изобретение относится к области измерительной техники и аналитического приборостроения и может быть использовано в системах управления технологическими процессами.

Известно устройство для измерения концентрации кислорода, содержащее нагреватель, термопару и пробирку из твердого электролита, обладающую при температуре от 950 до 1100 K кислород-ионной проводимостью. В этом устройстве (см. патент на полезную модель МПК №63534, 2007 г.), использующем в качестве датчика кулонометрическую ячейку с элементами из порошка мелкодисперсной платины, нанесенными на внутреннюю и внешнюю часть пробирки, измерением тока переноса ионов кислорода определяют массовую концентрацию кислорода.

Недостатком этого известного технического решения является низкая точность, связанная с изменением объемного расхода анализируемого газа. Наиболее близким техническим решением к предлагаемому является принятая автором за прототип измерительная система газоанализатора кислорода в газовой смеси (см. патент на полезную модель МПК: G01N №71771, 2008 г.). Данная измерительная система содержит герметичную камеру, внутри которой жестко закреплены полюса постоянных и ложных магнитов, рабочий и сравнительный чувствительные элементы, выполненные в виде спиралей, расположенных в зазорах наконечников постоянных и ложных магнитов соответственно. Камера в боковых стенках для прохождения газовой смеси имеет отверстия. Рабочий и сравнительный чувствительные элементы соединенны последовательно между собой и подключены по мостовой схеме к дополнительным элементам (сопротивлениям). При подаче на вход мостовой схемы (в первую диагональ моста) напряжения, по выходному (вторая диагональ моста) ее напряжению, из-за изменения омического сопротивления рабочего чувствительного элемента (рассогласование моста), можно получить информацию о величине концентрации кислорода в газовой смеси.

Недостатком этого технического решения можно считать нестабильность измерения концентрации кислорода напряжением, изменяющимся из-за влияния возмущающихся факторов окружающей среды.

Техническим результатом заявляемого технического решения является повышение стабильности измерения концентрации кислорода.

Технический результат достигается тем, что устройство для определения концентрации кислорода, содержащее первичный преобразователь, представляющий собой магнитную систему с рабочим и сравнительным чувствительными элементами, подключенными по мостовой схеме к двум сопротивлениям, соединенный входом с первым блоком питания, и измеритель, отличается тем, что в него введены второй блок питания, микроволновой генератор с варакторной перестройкой частоты и усилитель напряжения, причем выход первичного преобразователя через усилитель напряжения соединен с первым входом микроволнового генератора с варакторной перестройкой частоты, второй вход которого подключен ко второму блоку питания, выход микроволнового генератора с варактоной перестройкой частоты соединен с входом измерителя.

Сущность заявляемого изобретения, характеризуемого совокупностью указанных выше признаков, состоит в том, что измерение частоты микроволнового генератора с варакторной перестройкой частоты дает возможность определить концентрацию кислорода.

Наличие в заявляемом способе совокупности перечисленных существующих признаков позволяет решить задачу определения концентрации кислорода на основе проведения измерения частоты микроволнового генератора с варакторной перестройкой частоты с желаемым техническим результатом, т.е. повышением стабильности измерения концентрации кислорода. На чертеже представлена функциональная схема предлагаемого устройства. Данное устройство содержит первый блок питания 1, соединенный с входом первичного преобразователя 2, усилитель напряжения 3, микроволновой генератор с варакторной перестройкой частоты 4, второй блок питания 5 и измеритель 6.

Предлагаемое устройство работает следующим образом. При отсутствии кислорода в зоне измерения, с выхода первого блока питания 1 подают напряжение на вход первичного преобразователя 2, представляющего собой мостовую схему с рабочим, сравнительным чувствительными элементами и дополнительными сопротивлениями R1 и R2. При этом сопротивления R1 и R2 (регулируемые) включены параллельно сравнительному чувствительному элементу и рабочему чувствительному элементу соответственно. После этого настраивают мост таким образом, чтобы на выходе моста (вход усилителя напряжения 3) отсутствовало напряжение (сбалансированный мост). При наличии в зоне измерения кислорода омическое сопротивление рабочего чувствительного элемента изменяется и на выходе первичного преобразователя появляется напряжение (разбаланс моста). В рассматриваемом случае при постоянном входном напряжении первичного преобразователя его выходное напряжение будет меняться в зависимости от изменения омического сопротивления рабочего чувствительного элемента, т.е. изменения концентрации кислорода в газовой смеси в камере. Далее этот выходной сигнал первичного преобразователя поступает на вход усилителя напряжения 3. Здесь сигнал усиливается и подается на первый вход (вход варактора) микроволнового генератора с варакторной перестройкой частоты 4. Предварительно, с выхода второго блока питания 5 подают напряжение на второй вход (вход питания) микроволнового генератора с варакторной перестройкой частоты.

Из принципа функционирования микроволновых генераторов с варактроной перестройкой частоты известно, что изменением напряжения на варакторном входе можно перестроить частоту колебаний генератора. Следовательно, если при нулевом напряжении на входе варактора обозначить частоту колебаний генератора fо, а при появлении напряжения на входе варактора частоту колебаний - fп, то по разности этих величин можно вычислить разность частот при перестройке микроволнового генератора по частоте. Отсюда следует, что изменение частоты микроволнового генератора, связанное с изменением напряжения на варакторном входе микроволнового генератора, может быть использовано для оценки изменения напряжения на выходе усилителя напряжения. Согласно предлагаемому устройству, так как входным сигналом усилителя напряжения служит выходной сигнал первичного преобразователя, изменяющийся пропорционально изменению концентрации кислорода в зоне измерения, то частота микроволнового генератора с варакторной перестройкой частоты может быть использована для вычисления концентрации кислорода.

В данном устройстве для измерения частоты колебаний микроволнового генератора, связанной с концентрацией кислорода, выходной сигнал генератора поступает на вход измерителя 6. Здесь измеряют частоту и определяют величину концентрации кислорода. В качестве измерителя в данном случае может быть использован частотомер. При этом при отсутствии кислорода в зоне измерения (нулевое напряжение на входе варактора микроволнового генератора) частота, измеренная измерителем, будет соответствовать нулевому значению концентрации кислорода. Изменение (увеличение) концентрации кислорода в зоне измерения (при наличии в камере газовой смеси) приведет к пропорциональному изменению (увеличению напряжения на входе варактора микроволнового генератора и его частоты) частоты микроволнового генератора, которая далее в измерителе частоты 6 даст возможность судить о текущем значении концентрации кислорода в газовой смеси.

Таким образом, в предлагаемом техническом решении, на основе измерения частоты микроволнового генератора с варакторной перестройкой частоты, можно обеспечить повышение стабильности определения концентрации кислорода в газовой смеси.

Предлагаемое устройство успешно может быть применено на объектах энергетики для обеспечения пожарной безопасности и в потенциально опасных для людей замкнутых пространствах.

Кроме того, одним из преимуществ данного технического решения по сравнению с прототипом является то, что выходной информативный сигнал устройства в виде частоты может быть передан на расстояние дистанционно.

Устройство для определения концентрации кислорода, содержащее первичный преобразователь, представляющий собой магнитную систему с рабочим и сравнительным чувствительными элементами, подключенными по мостовой схеме к двум сопротивлениям, соединенный входом с первым блоком питания, и измеритель, отличающееся тем, что в него введены второй блок питания, микроволновой генератор с варакторной перестройкой частоты и усилитель напряжения, причем выход первичного преобразователя через усилитель напряжения соединен с первым входом микроволнового генератора с варакторной перестройкой частоты, второй вход которого подключен ко второму блоку питания, выход микроволнового генератора с варакторной перестройкой частоты соединен с входом измерителя.



 

Похожие патенты:

Группа изобретений относится к измерительной технике, в частности к измерению влажности капиллярно-пористых материалов. Способ определения влажности капиллярно-пористых материалов заключается в том, что осуществляют контакт с образцом с помощью двух электродов, расположенных вдоль линии, перпендикулярной волокнам образца, на фиксированном расстоянии друг от друга.

Способ может быть использован в сканирующей зондовой микроскопии для определения электрического напряжения, модуля упругости, твердости, вязкости, пластичности пьезоэлектрических материалов, компонентов микро- и наноэлектромеханических систем, а также биомикроэлектромеханических устройств.

Предложены способ и система определения периода схватывания химически активного материала. Способ включает непрерывное измерение электрического свойства материала для получения временной зависимости удельного сопротивления или его представления.

Изобретение может быть использовано при изготовлении летательных аппаратов. Способ определения электрической характеристики композитного материала для изготовления летательного аппарата, в котором, по меньшей мере, к одному образцу, выполненному из композитного материала, прижимают две накладки, осуществляя плотную подгонку, по меньшей мере, одной из накладок и отверстия этого или каждого образца, определяют значение электрического сопротивления сборки, образованной накладками и образцом, и выводят на основании полученного значения значение электрического сопротивления композитного материала.

(57) Изобретение относится к устройству для измерения электрических параметров твердых или жидких геологических образцов, таких как, например, горные породы, предпочтительно из нефтяных или газовых пластов-коллекторов, и насыщающие их текучие среды, содержащему полый корпус, выполненный из первой верхней половины и второй нижней половины, которые коаксиально скользят одна внутри другой, причем в указанном корпусе расположено гнездо для размещения по существу цилиндрического образца, при этом к указанному гнезду обращены две пары электродов, предназначенные для подвода тока в образец и для измерения напряжения на концах указанного образца, и отличающемуся тем, что указанные пары электродов являются парами копланарных электродов, каждая из которых расположена на одном конце указанного гнезда.

Изобретение относится к измерительной технике, в частности к измерению влажности капиллярно-пористых материалов. Предложен способ определения влажности древесины, в котором осуществляют контакт с образцом с помощью двух электродов, расположенных вдоль линии, перпендикулярной волокнам образца, на фиксированном расстоянии друг от друга, прикладывают напряжение на измерительную ячейку, состоящую из последовательно включенных влажного материала и эталонного сопротивления, измеряют падение напряжения на эталонном сопротивлении и определяют влажность, при этом в фиксированный момент времени измеряют амплитуду напряжения, тока и крутизны соответствующих импульсных динамических характеристик, по которым регистрируют их комплекс информативных параметров: постоянную времени и предельное напряжение, начальный ток и его крутизну, которые служат для определения влажности по калибровочной характеристике, а калибровку проводят априори на границах адаптивного диапазона по образцу с известной влажностью и нормируемыми параметрами: постоянной времени и предельным напряжением, начальным током и крутизной при измерении в фиксированный момент времени амплитуд напряжения, тока и крутизны соответствующих нормированных импульсных динамических характеристик.

Изобретение относится к способу нанесения покрытия из оксида алюминия на деталь, имеющую поверхность из карбида кремния (SiC) и используемую в высокотемпературных областях техники.

Изобретение относится к методам и средствам для измерения состава парогазовых сред и может быть использовано для контроля атмосферы в помещениях промышленных предприятий, в частности, для обеспечения водородной взрывобезопасности под защитной оболочкой атомных электрических станций.

Изобретение относится к устройствам для измерения электропроводности влажных дисперсных природных и искусственных материалов, а именно к конструкциям измерительных сосудов и электродов, и может найти применение для определения электропроводности влажных грунтов и почв, керамических масс, цементных паст, концентрированных суспензий и других влажных дисперсных материалов.

Изобретение относится к области сенсоров и сенсорных устройств для обнаружения и контроля по меньшей мере одного параметра окружающей среды или условия окружающей среды, воздействию которого подвергается медикамент или упаковка медикамента. Сенсорное устройство для контроля по меньшей мере одного параметра (24) окружающей среды, причем сенсорное устройство содержит первый слой (12), проявляющий первую электропроводность, и по меньшей мере второй слой (14), проявляющий вторую электропроводность, отличающуюся от первой электропроводности, и находящийся по меньшей мере частично в прямом контакте с первым слоем (12), третий слой (16), находящийся по меньшей мере частично в прямом контакте с поверхностью второго слоя (14), который обращен в противоположную от первого слоя (12) сторону, причем первый и второй слои (12, 14) в исходной конфигурации содержат разные концентрации способного к диффузии компонента (22), влияющего на проводимость первого и/или второго слоя (12, 14), и причем по меньшей мере один из первого и третьего слоя (12, 16) содержит по меньшей мере две геометрические не перекрывающиеся структуры, лежащие на плоскости соответствующего слоя (12, 16) и отделенные заполняющим материалом или пустым пространством. Изобретение обеспечивает возможность предоставления качественной и количественной информации о реальном состоянии медикамента. 2 н. и 11 з.п. ф-лы, 7 ил.

Изобретение относится к области диагностики, в частности к контролю состояния металлических трубопроводов, и может быть использовано для контроля затяжки ниппельных соединений трубопроводов. Сущность: измеряют активное электрическое сопротивление на доступном участке ниппельного соединения и сопротивление на доступном участке трубы известной длины, равной длине недоступной части трубопровода ниппельного соединения. Затем путем вычитания из измеренного общего сопротивления соединения сопротивления, измеренного на доступном участке трубы, непосредственно определяют значение электрического сопротивления самого ниппельного соединения. Далее сравнивают полученное значение сопротивления с сопротивлением, измеренным таким же образом на контрольном образце. По величине расхождения полученного значения от нормируемого значения судят о необходимости дополнительной затяжки соединения. Технический результат: повышение качества и скорости контроля затяжки соединения. 1 ил.

Изобретение относится к многослойным самолетным или аэрокосмическим иллюминаторам и касается прозрачного изделия с датчиком влаги. Включает в себя один или более датчиков влаги мониторинга проникновения влаги, чтобы контролировать эксплуатационные показатели влагостойкого барьера. Датчик влаги включает в себя корродирующий от влаги предмет или элемент-датчик, например полоску или провод, сопротивление которого изменяется в зависимости от коррозии. Датчик может также включать в себя два разнородных металла, например биметаллический датчик, или два сходных металла, имеющих различные физические размеры. Изобретение обеспечивает создание изделия с датчиком мониторинга проникновения влаги, которые позволяют контролировать эксплуатационные показатели лобового стекла, характеристики которого оказываются вне допустимых пределов. 2 н. и 18 з.п. ф-лы, 13 ил.

Изобретение относится к области автоматического измерения физико-химических параметров жидкостей. Устройство содержит блок регистрации и управления, состоящий из вычислителя с программным обеспечением, включающего в себя алгоритм вычисления численных значений степени засоленности ДЭГ, который соединен передающими кабелями с терминалом ввода и отображения информации, дискретного модуля для управления установкой абсорбционной осушки газа и аналогового модуля для преобразования сигнала, полученного от кондуктометрического датчика, соединенных с вычислителем и блоком питания, измерительный модуль, состоящий из преобразователя сигналов и кондуктометрического датчика, соединенный с преобразователем сигналов специальным кабелем. Достигаемый технический результат изобретения выражается в обеспечении безопасности процесса измерения, увеличении сроков службы, снижении затрат на ремонт и обслуживание технологического оборудования, сокращении времени принятия решения в случае возникновения нештатных ситуаций, а также возможности прогнозирования процессов накопления неорганических примесей. 6 з.п. ф-лы, 3 ил.
Наверх