Двухпроводной дифференциальный магнитоимпедансный датчик

Изобретение относится к измерительной технике и представляет собой двухпроводной дифференциальный магнитоимпедансный датчик. Датчик содержит два магнитоимпедансных детектора, изготовленных по бескаркасной намоточной технологии, т.е. детектирующие катушки детекторов намотаны непосредственно на сами магнитоимпедансные проводники со слоем защитной маски каждый. Детектирующие катушки детекторов включены встречно, при этом магнитоимпедансный проводник одного из детекторов не возбуждается, а замкнут сам на себя. Техническим результатом является повышение амплитуды выходного сигнала сенсора, уменьшение температурной зависимости выходного сигнала, увеличение точности измерений и расширение пределов измерительной шкалы. 5 ил.

 

Изобретение относится к области построения высокочувствительных магнитных сенсоров, основанных на магнитоимпедансном (МИ) эффекте.

Эффект магнитного импеданса хорошо известен уже довольно давно, однако наиболее сильный интерес к нему возник сравнительно недавно, что объясняется ростом общего уровня развития сенсорных технологий в промышленности. МИ эффект выражается в зависимости поверхностного импеданса от магнитной структуры проводника. Поверхностный импеданс является коэффициентом пропорциональности в векторном соотношении между тангенциальными составляющими электрического и магнитного полей на поверхности проводника и определяет обобщенное напряжение, снимаемое непосредственно с проводника или с катушки, намотанной на проводник. Принцип работы датчика основан на измерении зависимости этого напряжения от внешних факторов, например, от внешнего магнитного поля. При этом датчики, не снабженные операционным усилителем, имеют чрезвычайно малую амплитуду выходного сигнала, а применение операционного усилителя с большим коэффициентом усиления приводит к усилению не только полезного сигнала, но и шумов, что сильно снижает точность измерения.

Конструкция датчика, наиболее похожего на разрабатываемое устройство, описана в аналоге (Патент US 8587300 B2, опубл. 19.11.2013 г., Магнитоимпедансный элемент и его производство). В указанном патенте рассматриваются однопроводной и многопроводной варианты конструкции сенсора с различными способами расположения магнитоимпедансных проводников. Основными недостатками которого являются невысокая чувствительность, сложность конструкции и температурная нестабильность работы.

Наиболее близким аналогом (прототипом) является многопроводная конструкция, описанная в патенте (US 8587300 B2, опубл. 19.11.2013 г., Магнитоимпедансный элемент и его производство), работает следующим образом: через МИ проводники пропускают высокочастотный импульсный ток (возбуждающий сигнал); внешнее магнитное поле, воздействующее на МИ проводник и вызывающее разворот статической намагниченности, изменяет его поверхностный импеданс, вследствие чего на детектирующей катушке возникает наведенный сигнал. Поскольку амплитуда сигнала очень мала, ее необходимо усилить при помощи операционного усилителя.

Конструкция вышеописанного датчика собрана на подложке с предварительно нанесенными токопроводящими проводниками и площадками. На подложку эпоксидной смолой приклеиваются МИ проводники, после чего производится напыление проводников, образующих вторую половину детектирующих катушек. Катушки и МИ проводники коммутируются при помощи проводников и контактных площадок подложки согласно приведенной в патенте Фиг. 1.

Недостатком описанной разработки является высокая температурная нестабильность. В результате выходной сигнал датчика сильно зависит от изменений температуры окружающей среды.

Настоящее техническое решение направлено на увеличение амплитуды выходного сигнала датчика путем изменения конструкции самого чувствительного элемента датчика.

Технический результат изобретения состоит в следующем: повышение амплитуды выходного сигнала сенсора, улучшение соотношения сигнал/шум, улучшение температурной стабильности, упрощение технологии сборки в условиях промышленного производства.

Технический результат достигается следующим образом. Двухпроводной магнитоимпедансный датчик, содержит два магнитоимпедансных детектора. Детекторы изготовлены по бескаркасной намоточной технологии и включенных встречно. Особенность конструкции состоит в том, что детектирующая катушка намотана непосредственно на сам магнитоимпедансный проводник со слоем защитной маски, а катушки магнитоимпедансных детекторов включены встречно, и МИ проводник одного из детекторов не возбуждается, а замкнут сам на себя.

Изобретение поясняется чертежами, где на Фиг. 1 показана конструкция магнитоимпедансного детектора на которой изображены: 1 - стеклянная оболочка, 2 - МИ проводник, 3 - защитная маска, 4 - детектирующая катушка. На Фиг. 2 показана блок схема двухпроводного дифференциального магнитоимпедансного элемента, на которой изображены: 5 - постоянный ток для подмагничивания, 6 - сигнал возбуждения, 7 - МИ проводник в стеклянной изоляции и маске, 8 - подмагничивающая катушка, 9 - первая детектирующая катушка, выполняет роль детектирования сигнала, далее в тексте «детектирующая катушка», 10 - вторая детектирующая катушка, выполняет роль компенсации шумов в сигнале, далее в тексте «компенсационная катушка». 11 - вывод выходного сигнала. На Фиг. 3 показана конструкция двухпроводного дифференциального магнитоимпедансного элемента, на которой изображены: 7 - МИ проводник в стеклянной изоляции и маске, 8 - подмагничивающая катушка, 9 - детектирующая катушка, 10 - компенсационная катушка». На Фиг. 4 показана зависимость амплитуды выходного сигнала от величины магнитного поля, на которой изображены две кривые: 12 - до проведения термической обработки, 13 - после проведения термической обработки. На Фиг. 5 показана зависимость амплитуды выходного сигнала в относительных единицах от температуры, на которой изображены две кривые: 14 - до проведения термической обработки, 15 - после проведения термической обработки.

Техническое решение изобретения осуществляется следующим образом. Предложена конструкция бескаркасного МИ детектора (Фиг. 1). В данной конструкции детектирующая катушка наматывается непосредственно на сам МИ проводник на намоточном станке. В качестве МИ проводника был выбран аморфный провод в стеклянной изоляции, провод обмотки - медный в лаковой изоляции. Было замечено, что намотка детектирующей катушки вызывает повреждение стеклянной оболочки МИ микропровода даже при минимальном натяжении медного проводника. Повреждения возникают при физическом соприкосновении и трении проводников. Для предупреждения повреждений оболочки МИ проводника перед намоткой катушки на его поверхность наносится тонкий слой (≈5 мкм) защитной маски, которая исключает возникновение трения между проводниками. Защитная маска выполнена на полиуретановой основе, обладает высокой эластичностью, не обладает магнитными свойствами и электропроводностью. Сушка маски проводится под ИК нагревателем при температуре +40…+60°C в течение 10 минут. Детектор может быть дополнен дополнительной подмагничивающей катушкой, которая наматывается сверху на детектирующую катушку. Эта катушка создает постоянное магнитное поле и предназначена для расширения пределов измерительной шкалы датчика и для осуществления обратной связи.

Полученные таким образом МИ детекторы устанавливаются на подложку датчика, по два в один датчик. Детектирующая катушка помимо регистрации полезного сигнала, также детектирует внешние помехи и радиошумы. Для компенсации наведенных помех была разработана конструкция датчика с двумя МИ детекторами, показанная на Фиг. 2.

В данной конструкции обмотки МИ детекторов включены встречно и расположены параллельно друг другу, а ток возбуждения пропускается только лишь через один МИ детектор. Именно он регистрирует магнитное поле, а второй МИ детектор выполняет роль компенсатора внешних помех, в котором выводы МИ проводника замыкаются между собой токопроводящим проводником подложки. Поскольку в схеме используются две абсолютно идентичные обмотки, то внешние помехи, наводящиеся в них, компенсируют друг друга максимально точно, что позволяет существенно снизить уровень помех. Расположение и подключение МИ детекторов в датчике показано на Фиг. 3.

Для увеличения чувствительности магнитного датчика была предложена его температурная обработка, в результате которой происходит релаксация механических напряжений в МИ проводнике, полученных в процессе сборки МИ детектора и датчика в целом. Обработке подвергается уже полностью собранный датчик. Температура обработки составляет 200°C, время обработки 5 минут. Кривые зависимости выходного сигнала датчика от магнитного поля до (кривая 1) и после температурной обработки (кривая 2) показаны на Фиг. 4.

Релаксация механических напряжений в МИ проводнике, проведенная посредством отжига всей конструкции датчика, также значительно уменьшает температурную нестабильность работы датчика. При соответствующем подборе режима отжига возможно многократное уменьшение уровня температурной нестабильности. Кривые зависимости изменения выходного сигнала (в процентах) от температуры для одного и того же датчика до (кривая 3) и после температурной обработки (кривая 4) показаны на Фиг. 5.

Подтверждение воспроизводимости результатов эксперимента по температурной обработке было проведено на 5 образцах, разброс параметров не превысил 10%.

Таким образом, можно отметить следующие отличительные признаки предложенной конструкции датчика и способа его изготовления:

- увеличение выходного сигнала и чувствительности к магнитному полю;

- улучшенная температурная стабильность работы;

- повышение уровня (или степени) компенсации помех.

Использование указанных отличительных признаков для выполнения поставленной цели ранее авторам неизвестно.

Пример 1

Конструкция МИ детектора, собранная на МИ аморфном проводнике в стеклянной изоляции сечением 40 мкм, с нанесенной защитной маской толщиной 5 мкм и детектирующей катушкой из медного провода в лаковой изоляции с сечением металлической жилы 40 мкм и числом витков, равным 60. В конструкции двупроводного датчика используются два элемента со встречно включенными катушками. При этом сигналом возбуждения заводится на один из детекторов, тогда как второй детектор замкнут на себя. Для улучшения характеристик датчика вся конструкция после сборки проходит термообработку. Основными техническими характеристиками конструкции являются: рабочая частота сигнала возбуждения 20 МГц, чувствительность МИ элемента 500 мВ/Э, максимальная амплитуда выходного сигнала 770 мВ, предел измерительной шкалы 1,5 Э.

На Фиг. 4 приведена зависимость амплитуды выходного сигнала (в относительных единицах) от величины внешнего поля (кривая 1 - до термообработки, кривая 2 - после термообработки).

Пример 2

Конструкция МИ детектора, собранная на МИ аморфном проводнике в стеклянной изоляции сечением 40 мкм, с нанесенной защитной маской толщиной 5 мкм и детектирующей катушкой из медного провода в лаковой изоляции с сечением металлической жилы 7 мкм и числом витков, равным 80. В конструкции двупроводного датчика используются два элемента со встречно включенными катушками. При этом сигнал возбуждения заводится на один из детекторов, тогда как второй детектор замкнут на себя. Для улучшения характеристик датчика вся конструкция после сборки проходит термообработку. Основными техническими характеристиками конструкции являются: рабочая частота сигнала возбуждения 20 МГц, чувствительность МИ элемента 700 мВ/Э, максимальная амплитуда выходного сигнала 900 мВ, предел измерительной шкалы 1,3 Э.

Пример 3

Конструкция МИ детектора, собранная на МИ аморфном проводнике в стеклянной изоляции сечением 40 мкм, с нанесенной защитной маской толщиной 5 мкм и детектирующей катушкой из медного провода в лаковой изоляции с сечением металлической жилы 40 мкм и числом витков, равным 60. Поверх детектирующей катушки тем же проводом, что и детектирующая катушка, в 2 слоя намотана подмагничивающая катушка, содержащая 120 витков. В конструкции двупроводного датчика используются два элемента со встречно включенными катушками. При этом сигнал возбуждения заводится на один из детекторов, тогда как второй детектор замкнут на себя. Для улучшения характеристик датчика вся конструкция после сборки проходит термообработку. Основными техническими характеристиками конструкции являются: рабочая частота сигнала возбуждения 20 МГц, максимальная чувствительность МИ элемента 500 мВ/Э, максимальная амплитуда выходного сигнала 770 мВ, предел измерительной шкалы 5 Э.

Двухпроводной магнитоимпедансный датчик, содержащий два магнитоимпедансных детектора, выполненных по бескаркасной намоточной технологии и включенных встречно, отличающийся тем, что детектирующая катушка намотана непосредственно на сам магнитоимпедансный проводник со слоем защитной маски, а катушки магнитоимпедансных детекторов включены встречно и один из детекторов не возбуждается, а замкнут сам на себя.



 

Похожие патенты:

Изобретение относится к средствам информирования и ориентации инвалидов по зрению при их передвижении по городской территории. Способ состоит в размещении на стационарных объектах стационарных радиоинформаторов и размещении на инвалидах носимых абонентских устройств, автоматической передаче носимым абонентским устройством в радиоэфир сигнала запроса, по получении которого каждый стационарный радиоинформатор, находящийся в данный момент в зоне действия абонентского устройства, передает в радиоэфир ответ, содержащий его персональные данные, а абонентское устройство поочередно получает и запоминает полученные ответы от всех стационарных радиоинформаторов, находящихся в данный момент в зоне действия этого абонентского устройства, и автоматически направляет сигнал запроса на передачу информации стационарному радиоинформатору, который по получении этого сигнала запроса передает в радиоэфир сообщение о стационарном объекте, на котором он установлен, а абонентское устройство воспроизводит полученную от этого стационарного радиоинформатора информацию в виде звуковых повторяющихся сообщений.

Изобретение относится к средствам для ориентации инвалидов по зрению. Способ информирования инвалидов о прибывающих на остановку транспортных средствах общего пользования состоит в размещении на транспортных средствах общего пользования радиомодулей, пультов водителей и звукоизлучателей и размещении на инвалидах носимых абонентских устройств, при этом абонентское устройство инвалида автоматически передает в радиоэфир сигнал запроса, после чего радиомодуль каждого транспортного средства, находящегося в данный момент в зоне действия абонентского устройства, по получении сигнала запроса передает в радиоэфир ответ на полученный сигнал запроса, абонентское устройство поочередно получает и запоминает полученные ответы от всех радиомодулей, находящихся в данный момент в зоне действия этого абонентского устройства, и автоматически направляет сигнал запроса на передачу информации радиомодулю транспортного средства, который по получении этого сигнала запроса на передачу информации передает в радиоэфир сообщение о транспортном средстве, на котором он установлен, а абонентское устройство воспроизводит полученную от этого радиомодуля информацию в виде звуковых повторяющихся сообщений, затем радиомодуль выбранного инвалидом транспортного средства передает на пульт водителя сигнал для водителя и подает команду на установленный на транспортном средстве звукоизлучатель, который воспроизводит звуковой сигнал ориентирования, по которому инвалид определяет необходимое направление движения к открытой двери транспортного средства.

Изобретение предназначено для исследования структуры аксиально-симметричных магнитных полей. Устройство конструктивно представляет собой серию коаксиальных измерительных катушек, расположенных на малом расстоянии друг от друга.

Изобретение относится к измерительной технике и представляет собой способ получения изображений в растровой электронной микроскопии. Суть изобретения состоит в сегментации магнитного контраста микрообъектов путем исключения из полного РЭМ-изображения во вторичных электронах вклада, обусловленного топографическим контрастом.

Изобретение относится к измерительной технике и представляет собой сверхчувствительный интеллектуальный магнитометрический датчик (МИ датчик) с расширенным диапазоном рабочих температур области.

Изобретение относится к области измерительной техники и может быть использовано в магнитной навигации, в частности, для определения углов пространственной ориентации летательных аппаратов (ЛА).

Изобретение относится к судовым средствам магнитной защиты надводного или подводного объекта. Маневренный стенд для измерения и настройки магнитного поля надводного или подводного объекта включает измерительные датчики магнитного поля, устройства определения их координат для передачи сигналов с датчиков на стенд или надводный или подводный объект.

Изобретение относится к феррозондовым навигационным магнитометрам. Цифровой феррозондовый магнитометр содержит задающий генератор, выход которого соединен с входом логического блока управления, первый выход которого соединен с входом формирователя синусоиды, выход которого соединен с первыми входами трех феррозондов, выходы которых соединены с входами трех избирательных усилителей, первые выходы которых соединены с первыми входами трех устройств выборки-хранения, первые выходы которых соединены со вторыми входами трех феррозондов, а вторые входы соединены со вторым выходом логического блока управления, третий выход которого соединен со вторыми входами аналого-цифровых преобразователей, дополнительно в него введены три суммирующих усилителя и три устройства выборки-хранения квадратурного напряжения, первые входы которых соединены с четвертым выходом логического блока управления, вторые входы соединены со вторыми выходами избирательных усилителей, а выходы соединены со вторыми входами суммирующих усилителей, выходы которых соединены с первыми входами аналого-цифровых преобразователей, а первые входы соединены с вторыми выходами устройств выборки хранения.

Изобретение относится к измерительной технике, представляет собой феррозондовый магнитометр и способ измерения компонент индукции магнитного поля при помощи векторной компенсации и может использоваться в точных измерениях компонент индукции магнитного поля.

Изобретение относится к области электротехники и может быть использовано при исследовании физической природы так называемого магнитного трения и его связи с магнитной восприимчивостью ферромагнетика, помещенного в изменяющееся внешнее магнитное поле.

Изобретение относится к геофизике. Сущность: система датчиков электрического и магнитного поля для измерения магнитотеллурического поля Земли состоит из двух пар заглубленных электродов с единой базой L. Одна пара электродов размещена в приповерхностном слое земли, а другая пара электродов находится с первой парой в одной плоскости, но уже на глубине h. При этом потенциал первой пары, соответствующий напряженности электрического поля, вычитают из потенциала заглубленной пары для получения соответствия напряженности магнитного поля. Технический результат: повышение точности измерения магнитотеллурического поля. 1 ил.

Изобретение относится к управлению временем переключения устройства, включающего в себя магнитную цепь и по меньшей мере одну проводящую обмотку. Способ управления временем переключения устройства, содержащего магнитную цепь (1) и по меньшей мере одну проводящую обмотку (2), отличающийся тем, что содержит этапы, на которых получают по меньшей мере один результат измерения магнитного поля, создаваемого остаточным потоком в упомянутой магнитной цепи (1), с помощью по меньшей мере одного датчика (10а, 10b, 10с) магнитного поля, установленного в непосредственной близости к магнитной цепи (1); обрабатывают полученные результаты измерений магнитного поля для того, чтобы вывести из них остаточный поток в магнитной цепи (1), по остаточному потоку определяют оптимальное время переключения для подачи питания в устройство; причем все упомянутые этапы выполняют после отключения устройства. Технический результат заключается в более надежном предотвращении чрезмерного тока при любых переключениях устройства, содержащего магнитную цепь и проводящую обмотку. 5 н. и 6 з.п. ф-лы, 5 ил.

Изобретение относится к области магнитной защиты надводных или подводных объектов. Измерения параметров магнитного поля надводного или подводного объекта на стационарном магнитном стенде выполняют не менее чем в двух его различных фиксированных положениях относительно стенда. Расположение объекта в начальном и последующем фиксированных положениях относительно стенда осуществляют путем швартовки объекта к бону, который зафиксирован относительно стенда и имеет не менее двух мест для швартовки объекта. Места для швартовки обеспечивают при швартовке к ним объекта заданное смещение относительно стенда. Достигается обеспечение возможности использования стенда для измерения параметров магнитного поля объектов различного водоизмещения с требуемой точностью. 3 ил.

Группа изобретений относится к автоматическому управлению трактором для контурной вспашки. Способ местоопределения тракторного агрегата заключается в том, что измеряют величину напряженности магнитного поля, сравнивают измеренное значение с компенсационным и формируют сигнал траекторного рассогласования как разность сравниваемых значений. Значение компенсационного сигнала формируют путем определения напряженности магнитного поля в точке требуемого нахождения тракторного агрегата по параметрам источника магнитного поля и расстояния между тракторным агрегатом и поворотной полосой. Устройство для формирования сигнала траекторного рассогласования содержит индукционный преобразователь, датчик пути, вычислитель и схему сравнения. Датчик пути выдает вычислителю расстояние от поворотной полосы до текущего места нахождения тракторного агрегата. Вычислитель определяет значение напряженности на требуемом удалении от источника магнитного поля. Технический результат заключается в повышении точности автоматического вождения тракторного вождения по требуемой траектории в переменном магнитом поле. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области магнитных измерений и может быть использовано для измерений компонент и полного вектора индукции магнитного поля Земли. Сущность изобретения заключается в том, что предлагается способ определения температурных характеристик трехкомпонентного магнитометра (ТМ), в котором нагреванием или охлаждением ТМ в заданном диапазоне температур оказывают на него воздействие температуры до полного установления ее внутри ТМ для необходимого количества значений диапазона температур и при каждом значении определяют параметры характеристики преобразования ТМ ориентацией его геометрических осей относительно осей опорной системы координат. Затем по результатам определения параметров при соответствующих температурах вычисляют его температурные характеристики. При этом измерение параметров характеристики преобразования ТМ осуществляют ориентацией его геометрических осей в магнитном поле Земли относительно осей базовой плоскости с помощью немагнитного поворотного устройства прямоугольной формы, а тепловое воздействие на ТМ осуществляют теплоемким телом поворотного устройства, которое с внешних сторон теплоизолируют после его нагрева или охлаждения. Также предложено устройство для определения температурных характеристик трехкомпонентного магнитометра (ТМ), содержащее немагнитное поворотное устройство, камеру тепла и холода, подключенный к выходу испытуемого ТМ персональный компьютер, датчик температуры и подключенный к его выходу измеритель температуры, выход которого подключен ко второму входу персонального компьютера. Причем поворотное устройство прямоугольной формы выполнено из немагнитного материала, являющегося теплоемким телом, ребра которого коллинеарны соответствующим осям его собственной ортогональной системы координат. Поверхность расположения поворотного устройства в рабочем положении является базовой плоскостью, ориентированной собственными осями относительно вектора индукции магнитного поля Земли, причем на большей части поверхности каждой грани поворотного устройства выполнено равномерное прямоугольное углубление, в которое вставляется теплоизоляционная накладка, а остальная ребристая часть поверхности грани в виде узких полос по всему периметру углубления, прилегающих к ребрам поворотного устройства, покрыта тонким слоем нетеплопроводного покрытия (краской). Внутри теплоемкого тела поворотного устройства установлен температурный датчик, а также предусмотрено место и крепление для установки и фиксации испытуемого ТМ с направлением его собственных осей коллинеарно соответствующим осям системы координат поворотного устройства. Технический результат - упрощение средств определения температурных характеристик ТМ, обеспечивающих точность их температурной калибровки. 2 н.п. ф-лы, 1 ил.

Изобретение относится к электромагнетизму и может быть использовано для одновременного исследования магнитного, электронного и кристаллического микросостояния объектов. Способ создания в исследуемых объектах локальных электрических и магнитных полей содержит этапы, на которых осуществляют размещение объекта либо внутри соленоида, либо между обкладок конденсатора управляемого колебательного LC-контура, при этом вначале с помощью источника тока заряжают соленоид, затем отключают источник тока и подключают к соленоиду конденсатор, при этом созданное в соленоиде магнитное поле изменяется по закону , а электрическое поле в конденсаторе по закону , где Hi,j и Ei,j - заданные напряженности магнитного и электрического полей, Ω - заданная частота колебаний, β - заданная скорость затуханий колебаний, t - время, i, j=0, 1, 2, … N, где N целое число, а фаза является фиксированной и равной нулю. Технический результат – повышение точности измерения и улучшение пространственного разрешения магнитных и электрических микроскопов. 3 ил.

Изобретение относится к магнитоизмерительной технике и может быть использовано при исследовании магнитных свойств веществ и материалов в областях физики магнитных явлений, геофизики. Способ определения напряженности намагничивающего поля в магнитометрах со сверхпроводящим соленоидом, включающий в себя определение значения напряженности Н намагничивающего поля по силе электрического тока I, протекающего через обмотку соленоида, при этом в магнитометр помещают образец, обладающий безгистерезисной зависимостью магнитного момента от магнитного поля, регулируют силу электрического тока так, чтобы регистрируемая магнитометром величина магнитного момента равнялась нулю, измеряют значение силы электрического тока I0, соответствующее нулевому магнитному моменту, и напряженность намагничивающего поля определяют по формуле Н=const⋅(I-I0), где Н - напряженность намагничивающего поля; const - константа соленоида; I - сила электрического тока, протекающего через обмотку соленоида; I0 - сила электрического тока, при которой магнитный момент равен нулю. Технический результат – повышение точности определения напряженности намагничивающего поля в магнитометрах со сверхпроводящим соленоидом. 4 ил.

Изобретение относится к электрическим испытаниям на восприимчивость к электромагнитному полю. Способ испытаний электрооборудования автотранспортных средств на восприимчивость к электромагнитному полю, при котором испытуемое электрооборудование устанавливают в бортовую сеть транспортного средства и подвергают поочередно электромагнитное поле воздействиям в заданном диапазоне частот сформированными амплитудно-модулированным, импульсно-модулированным и гармоническим сигналами. Причины нарушения работоспособности электрооборудования на некоторой частоте определяют на основании анализа: максимальной амплитуды поля, максимальной амплитуды гармонического сигнала поля, действующего уровня поля, действующего уровня гармонического сигнала поля, глубины модуляции поля; скважности. Повышается достоверность выявления канала распространения электромагнитных помех. 4 ил.

Изобретение относится к устройствам, обеспечивающим снижение магнитного поля объектов морской техники, например судов. Предложен маневренный стенд для измерения и настройки магнитного поля объектов морской техники, включающий измерительные датчики магнитного поля, лазерные излучатели, указывающие место установки и положения датчиков, поворачиваемую балку, на которой установлены датчики и излучатели, погружаемую платформу с регулируемой плавучестью, на которой установлена балка с датчиками, буксируемую до выбранного места акватории, дистанционно управляемые конструктивно связанные с платформой домкраты, позволяющие устанавливать платформу на грунте и фиксировать это положение, а также конструкцию, перемещающуюся по поверхности воды в районе установленной платформы, с приемниками лазерного излучения, с аппаратурой спутниковой навигации, определяющей координаты конструкции, и с аппаратурой, передающей сигналы о положении измерительных датчиков. Технический результат заключается в повышении точности измерения магнитного поля объектов морской техники. 1 ил.

Изобретение относится к автотранспортным средствам с повышенной помехозащищенностью бортового электрооборудования. Автотранспортное средство включает в себя шасси, кузов, содержащий моторный и пассажирский отсеки, объекты бортового электрооборудования, расположенные в кузове, а также радиатор системы охлаждения и расположенную в моторном отсеке энергетическую установку. Кузов и моторный отсек выполнены из экранирующего материала. Кузов и моторный отсек выполнены гальванически соединенными. Объекты бортового электрооборудования управления двигателем размещены в моторном отсеке. Транспортное средство снабжено радиопоглощающим покрытием, нанесенным на три взаимно ортогональные части внутренней поверхности моторного отсека. Кузов выполнен с вертикальной относительно плоскости горизонта ориентацией щелей. Каждая из щелей является прямоугольным волноводом. Транспортное средство снабжено перемычками, разнесенными вдоль периметра щели. Каждая из перемычек гальванически соединена с формирующими щель частями транспортного средства. Повышается защита от электромагнитного поля. 6 з.п. ф-лы, 6 ил.

Изобретение относится к измерительной технике и представляет собой двухпроводной дифференциальный магнитоимпедансный датчик. Датчик содержит два магнитоимпедансных детектора, изготовленных по бескаркасной намоточной технологии, т.е. детектирующие катушки детекторов намотаны непосредственно на сами магнитоимпедансные проводники со слоем защитной маски каждый. Детектирующие катушки детекторов включены встречно, при этом магнитоимпедансный проводник одного из детекторов не возбуждается, а замкнут сам на себя. Техническим результатом является повышение амплитуды выходного сигнала сенсора, уменьшение температурной зависимости выходного сигнала, увеличение точности измерений и расширение пределов измерительной шкалы. 5 ил.

Наверх