Устройство для измерения электропроводности жидкости

Изобретение относится к области электроизмерений и может быть использовано для измерения электропроводности жидких сред. Устройство для измерения электропроводности жидкости содержит генератор синусоидальных сигналов, управляемый делитель частоты, питающий трансформатор с обмоткой возбуждения, измерительный трансформатор с измерительной обмоткой, замкнутый виток из электропроводящей исследуемой жидкости, аналого-цифровой преобразователь (АЦП), виток, охватывающий трансформатор возбуждения, виток, охватывающий измерительный трансформатор, ключ, образцовую проводимость известной величины, схему управления, вычислительное устройство. Изобретение позволяет повысить точность измерений электропроводности жидких сред за счет устранения влияния погрешностей, связанных с нестабильностью напряжения и частоты источника питания, магнитной проницаемости сердечников трансформаторов, а также позволяет исключить помеху, которая может представлять собой наводку в сердечниках трансформаторов. 4 ил.

 

Изобретение относится к области электроизмерений и может быть использовано для измерения электропроводности жидких сред в различных целях.

Известно устройство для измерения электропроводности жидкости, состоящее из генератора синусоидальных сигналов, питающего трансформатора с обмоткой возбуждения, измерительного трансформатора с измерительной обмоткой, замкнутого витка из электропроводящей исследуемой жидкости, фазочувствительного нуль-органа, дополнительных многосекционных компенсационных обмоток с секциями и ключами, магазина проводимостей и схемы управления, причем генератор соединен с обмоткой возбуждения питающего трансформатора, к секциям компенсационных обмоток через ключи подключен магазин проводимостей, к входу которого подсоединена схема управления, которая подключена к фазочувствительному нуль-органу, на вход которого подключены измерительная обмотка измерительного трансформатора и генератор. Ключи, соединяющие магазин проводимостей с секциями компенсационных обмоток, также подсоединены к схеме управления [Патент на полезную модель РФ №122777, кл. G01R 27/22].

Для реализации данного устройства необходим многоразрядный магазин проводимости высокого класса точности, также в данном устройстве невозможно добиться полной компенсации магнитных потоков из-за помех, связанных с наводкой в обмотках трансформаторов.

Наиболее близким по технической сущности к предлагаемому изобретению является устройство для измерения электропроводности жидкости, состоящее из генератора синусоидальных сигналов, управляемого делителя напряжения, питающего трансформатора с обмоткой возбуждения, измерительного трансформатора с измерительной обмоткой, замкнутого витка из электропроводящей исследуемой жидкости, аналого-цифрового преобразователя (АЦП), витка, охватывающего трансформатор возбуждения, витка, охватывающего измерительный трансформатор, ключа, образцовой проводимости известной величины, схемы управления, вычислительного устройства, причем генератор соединен через управляемый делитель напряжения с обмоткой возбуждения питающего трансформатора, к дополнительным виткам через ключ подключена образцовая проводимость известной величины, ключ подключен к схеме управления, которая также подключена к делителю напряжения, АЦП и вычислительному устройству. Измерительная обмотка подключена к АЦП, который, в свою очередь, подключен к вычислительному устройству [Патент на полезную модель РФ №143663, кл. G01R 27/22].

В данном устройстве сложно реализовать точный управляемый делитель напряжения из-за нестабильности элементов делителя, а также влияния делителя на напряжение генератора.

Задачей изобретения является создание устройства для измерения электропроводности жидкости с достижением следующего технического результата: повышение точности измерения электропроводности жидких сред за счет устранения влияния нестабильности делителя напряжения путем замены его управляемым делителем частоты. Управляемый делитель частоты может быть реализован с более высокой точностью, чем делитель напряжения, на коэффициент деления которого влияет стабильность элементов делителя напряжения.

Сущность предлагаемого изобретения заключается в том, что в устройство, содержащее генератор синусоидальных сигналов, питающий трансформатор с обмоткой возбуждения, измерительный трансформатор с измерительной обмоткой, замкнутый виток из электропроводящей исследуемой жидкости, схему управления, образцовую проводимость известной величины, ключ, дополнительные витки, охватывающие питающий и измерительный трансформаторы, аналого-цифровой преобразователь (АЦП) и вычислительное устройство, введен управляемый делитель частоты. При этом генератор соединен через управляемый делитель частоты переменного напряжения с обмоткой возбуждения питающего трансформатора, к дополнительным виткам через ключ подключена образцовая проводимость известной величины, ключ подключен к схеме управления, которая также подключена к делителю частоты переменного напряжения, АЦП и вычислительному устройству. Измерительная обмотка подключена к АЦП, который, в свою очередь, подключен к вычислительному устройству.

Изобретение позволяет повысить точность измерений электропроводности жидких сред за счет устранения влияния нестабильности делителя напряжения путем замены его управляемым делителем частоты. Управляемый делитель частоты может быть реализован с более высокой точностью, чем делитель напряжения, на коэффициент деления которого влияет стабильность элементов делителя напряжения.

На фиг. 1 изображено устройство для измерения электропроводности жидкости, на фиг. 2 изображена схема, иллюстрирующая первый такт работы прибора, на фиг. 3 изображена схема, иллюстрирующая второй такт работы прибора, на фиг. 4 изображена схема, иллюстрирующая четвертый такт работы прибора.

Сущность изобретения поясняется на фиг. 1.

Устройство для измерения электропроводности жидкости состоит из генератора 1 синусоидальных сигналов, управляемого делителя 2 частоты переменного напряжения, обмотки 3 возбуждения, питающего трансформатора 4, замкнутого витка 5 из электропроводящей исследуемой жидкости, измерительного трансформатора 6, измерительной обмотки 7, аналого-цифрового преобразователя 8, дополнительных витков 9, 10, ключа 11, образцовой проводимости 12 известной величины, схемы 13 управления, вычислительного устройства 14.

Устройство работает следующим образом.

Напряжение от генератора 1 поступает через управляемый делитель 2 частоты переменного напряжения на обмотку 3 возбуждения питающего трансформатора 4, причем напряжение передается либо с коэффициентом k=1 либо k<1 (U1=kUг). При этом в жидкостном витке 5 и дополнительном витке 9, 10 наводятся ЭДС. ЭДС, действующая в жидкостном витке 5, вызывает ток, величина которого зависит от электропроводности жидкости и который индуцирует напряжение в измерительной обмотке 7 измерительного трансформатора 6. ЭДС, действующая в дополнительном витке 9, 10, в зависимости от положения ключа 11 может создавать ток через образцовую проводимость 12, если ключ замкнут, или этот ток равен нулю, если ключ разомкнут. Схема 13 управления позволяет выбрать режим работы делителя 2 частоты переменного напряжения, положение ключа 11, а также управляет работой АЦП 8 и вычислительного устройства 14. Измерение проводится в три такта через короткие промежутки времени t→0. В первый такт коэффициент деления управляемого делителя 2k=1, частота переменного напряжения после делителя 2 равна частоте генератора 1, ключ 11 разомкнут, и ток через него не проходит. АЦП 8 определяет напряжение на измерительной обмотке 7 и его значение заносится в память вычислительного устройства 14. Во втором такте измерение проводится при коэффициенте деления управляемого делителя 2k<1, частота на возбуждающей обмотке 3 в k раз меньше, чем частота генератора 1, ключ 11 разомкнут. АЦП 8 определяет значение напряжения на измерительной обмотке 7 и его значение заносится в память вычислительного устройства 14. В третьем такте измерение проводится, когда коэффициент деления управляемого делителя 2k=1, частота после делителя 2 равна частоте переменного напряжения генератора 1, ключ 11 замкнут, токи в жидкостном витке 5 и в дополнительном витке 9, 10 имеют одинаковое направление. АЦП 8 определяет напряжение на измерительной обмотке 7 и его значение заносится в память вычислительного устройства 14. После трех тактов схема 13 управления подает сигнал на вычислительное устройство 14, в котором определяется значение электрической проводимости жидкости в жидкостном витке 5.

Рассмотрим работу прибора.

1) Первый такт. Коэффициент деления управляемого делителя частоты переменного напряжения k=1. Частота переменного напряжения после делителя равна частоте генератора, ключ разомкнут (фиг. 2):

система уравнений, описывающих работу схемы:

где Uг - напряжение источника питания;

U21 - напряжение в измерительной обмотке измерительного трансформатора в первом такте;

I1 - ток в возбуждающей обмотке питающего трансформатора;

Ix - ток в жидкостном витке;

Id - ток в дополнительном витке;

L1 - индуктивность возбуждающей катушки;

Lx - индуктивность жидкостного витка;

Ld - индуктивность дополнительного витка;

М12 - взаимная индуктивность возбуждающей обмотки и жидкостного витка;

М23 - взаимная индуктивность измерительной обмотки и жидкостного витка;

М14 - взаимная индуктивность возбуждающей и дополнительного витка;

М34 - взаимная индуктивность измерительной и дополнительного витка;

Gx - проводимость жидкостного витка;

Gd - образцовая проводимость в дополнительном витке;

ω - частота гармонических синусоидальных колебаний.

Решая систему уравнений, получаем, что выходной сигнал, измеряемый вольтметром, равен [Иванов, В.В., Латышев, Л.Н. Анализ методов и средств измерения электропроводности жидких сред // Нефтегазовое дело 2013 №2. - Уфа: УГНТУ, 2013. - С. 93.]:

2) Второй такт. Коэффициент деления управляемого делителя частоты переменного напряжения k<1. Частота переменного напряжения на возбуждающей обмотке в kраз меньше, чем частота генератора, ключ разомкнут (фиг. 3):

система уравнений, описывающих работу схемы:

где U22 - напряжение в измерительной обмотке измерительного трансформатора во втором такте.

Решая систему уравнений, получаем

3) Третий такт. Коэффициент деления управляемого делителя частоты переменного напряжения k=1. Частота переменного напряжения после делителя равна частоте генератора, ключ замкнут (фиг. 4):

система уравнений, описывающих работу схемы:

где U23 - напряжение в измерительной обмотке измерительного трансформатора в третьем такте.

Решая систему уравнений, получим значение выходного сигнала

Таким образом получили систему из трех независимых уравнений

При измерении напряжений U21, U22, U23 дополнительно действует напряжение помехи Uп, которое возникает в результате действия внешних электромагнитных полей на сердечники трансформаторов. С учетом помехи система уравнений принимает вид

такая система имеет единственное решение

k - коэффициент делителя частоты

Как видно из выражения G x = G d m k 1 ,           (9) , значение измеряемой проводимости зависит только от класса точности выбранных элементов. Данное устройство позволяет повысить точность измерений электропроводности жидких сред за счет устранения влияния нестабильности делителя напряжения путем замены его управляемым делителем частоты. Управляемый делитель частоты может быть реализован с более высокой точностью, чем делитель напряжения, на коэффициент деления которого влияет стабильность элементов делителя напряжения.

Устройство для измерения электропроводности жидкости, содержащее генератор синусоидальных сигналов, питающий трансформатор с обмоткой возбуждения, измерительный трансформатор с измерительной обмоткой, замкнутый виток из электропроводящей исследуемой жидкости, охватывающий сердечники обоих трансформаторов, дополнительные витки, охватывающие питающий и измерительный трансформаторы, к которым через ключ подключена образцовая проводимость известной величины, ключ подключен к схеме управления, которая подключена к аналого-цифровому преобразователю и вычислительному устройству, измерительная обмотка подключена к аналого-цифровому преобразователю, который, в свою очередь, подключен к вычислительному устройству, отличающееся тем, что выход генератора соединен с управляемым делителем частоты переменного напряжения, выход делителя частоты переменного напряжения соединен с обмоткой возбуждения питающего трансформатора, а управляемый вход делителя переменного напряжения соединен со схемой управления.



 

Похожие патенты:

Изобретение относится к инструментальным физико-химическим методам исследования спиртосодержащих жидкостей, преимущественно спиртных напитков и предназначено для установления различия между подлинной, фальсифицированной и контрафактной алкогольной продукцией.

Изобретение относится к контрольно-измерительной технике, а именно к приборам и устройствам для исследования электрофизических свойств жидкометаллических растворов.

Изобретение относится к аналитической химии и может быть использовано для анализа вод различного происхождения: питьевые воды, геотермальные источники, смывы хвостов обогащения, а также технологические сливы.

Изобретение предназначено для определения чистоты нейтральных газов, используемых при производстве изделий электронной техники. Способ измерения концентрации примесей в нейтральных газах заключается в том, что анализируемый нейтральный газ подают в камеру, где находится чувствительный элемент, измеряют его электрическое сопротивление, по изменению величины которого судят о концентрации примеси, при этом в качестве чувствительного элемента используют деионизованную воду.

Использование: для определения электрической проводимости жидкостей. Сущность изобретения заключается в том, что устройство содержит кондуктометрический датчик контактного типа, электрод 1 датчика состоит из нескольких сегментов 2, 3 и 4, а электрод 5 выполнен сплошным и является общим для сегментов 2, 3 и 4.

Изобретение относится к электроаналитической химии, направлено на определение глутатиона и может быть использовано в анализе модельных водных растворов методом циклической вольтамперометрии по высоте анодного максимума на анодной кривой.

Изобретение относится к области кондуктометрии и может быть использовано при физико-химических исследованиях растворов. Способ измерения электропроводности раствора электролита, размещенного в жидкостном контуре первого и второго первичных преобразователей с обмотками возбуждения, включенными в цепь генератора частоты, состоит в регистрации выходного сигнала напряжения каналов измерения в зависимости от концентрации раствора при условии, что измерение проводят в стабилизированном температурном поле, при этом согласно изобретению уровень чувствительности первого и второго первичных преобразователей определяется значением напряжения на выходном трансформаторе канала измерения в зависимости от концентрации раствора, размещенного в жидкостном контуре, его температуры, и находится в функциональной зависимости от напряжения и частоты источника питания обмотки возбуждения питающего трансформатора, причем измерение электропроводности раствора проводят с включением генератора на рабочую частоту, определяемую при экспериментальном исследовании растворов как оптимальную для исследуемого диапазона концентрации раствора; а регистрируют значение выходного сигнала напряжения каналов измерения, по значению которого и определяют электропроводность раствора.

Изобретение относится к области диагностики состава органических и неорганических жидкостей электрофизическими методами, в частности к оперативным методам контроля степени очистки растительных масел по стадиям процесса очистки (рафинации).

Изобретение относится к электроаналитической химии, направлено на определение глутатиона и может быть использовано в анализе в модельных водных растворах методом циклической вольтамперометрии по высоте анодного максимума на анодной кривой.

Способ контроля качества (безопасности) растительных масел и расплавленных жиров, который заключается в том, что измеряют удельную активную электропроводность растительного масла или расплавленного жира при различных частотах электромагнитных колебаний и разных температурах, при этом для контроля качества (безопасности) отбирают пробу исследуемого растительного масла или жира, делят пробу на две части, одну из которых подвергают окислению на воздухе при температурах 100…110°C до перекисного числа 10-12 мэкв/кг активного кислорода, перекисное число масла или жира определяют стандартными методами, затем готовят калибровочный образец растительного масла или расплавленного жира с максимально допустимым для пищевого масла или жира содержанием перекисных соединений (10 мэкв активного кислорода/кг), смешивая в определенных соотношениях по массе исходный и окисленный образец масла или жира, измеряют в полученном калибровочном образце в диапазоне частот от 1 до 200 кГц зависимость удельной активной электропроводности от частоты при двух температурах измерения, по пересечению указанных зависимостей находят характеристическую частоту электромагнитного поля, при которой характеристическая удельная активная электропроводность не зависит от температуры измерения, считают полученные значения характеристической частоты и характеристической удельной активной электропроводности максимально допустимыми нормативными значениями характеристической частоты и характеристической удельной активной электропроводности для данного пищевого масла или жира.

Использование: для определения свойств многокомпонентных сложнолегированных жаропрочных расплавов, основанного на изучении крутильных колебаний цилиндрического тигля с расплавом. Сущность изобретения заключается в том, что определяют температурные зависимости свойств образца расплава с получением значений в виде электрических сигналов, значения температурных зависимостей подают на вход первого дифференцирующего устройства, с его выхода снимают продифференцированные сигналы, затем продифференцированные сигналы подают на один из входов блока сравнения, отличается тем, что используют второе дифференцирующее устройство, один из входов которого обладает функцией регулировки порога сигнала, выходной сигнал этого дифференцирующего устройства в виде второй производной преобразуют в однополярные сигналы, передним фронтом первого включают счет импульсов, а задним фронтом последнего выключают счет импульсов в диапазоне температур между температурой гистерезиса tг и аномальной tан, фиксируют количество импульсов, которое соответствует значению изменения измеряемого свойства, в вышеуказанном диапазоне температур Δt, определяют максимум сигналов первого дифференцирующего устройства (Δρ/Δt)max посредством их пикового детектирования с последующим запоминанием максимальной величины, после выключения счета продолжают увеличивать температуру нагрева образца при возрастающих значениях температуры и определяют величины измеряемого свойства расплава вплоть до значения критической температуры tкр затем начинают охлаждение образца, продолжают исследовать свойства вплоть до кристаллизации, после чего значение запомненного ранее максимального отношения (Δρ/Δt)max=Кипс в виде коэффициента структурной перестройки Кипс расплава фиксируют как характеристику расплава. Технический результат: обеспечение возможности получения дополнительной информации о расплаве, получения количественного параметра интенсивности структурной перестройки жаропрочных расплавов. 4 ил.

Использование: для дистанционного контроля относительной диэлектрической проницаемости среды под границей атмосфера-океан на разных акваториях Мирового океана. Сущность изобретения заключается в том, что контролируемый участок морской поверхности облучают СВЧ-радиоволнами на наклонной поляризации, регистрируют рассеянный назад сигнал одновременно на вертикальной и горизонтальной поляризациях, затем вычисляют поляризационное отношение, по которому рассчитывают относительную диэлектрическую проницаемость среды под границей атмосфера-океан. Технический результат - повышение точности измерений за счет того, что величины удельной эффективной площади рассеяния на разных поляризациях определяются одновременно.

Изобретение относится к физике коллоидов и может быть использовано для определения функции распределения коллоидных частиц по размерам. Заявлен способ измерения функции распределения коллоидных частиц по размерам в водных растворах, включающий помещение исследуемого коллоидного раствора в ячейку, представляющую собой плоский конденсатор, поляризацию раствора под действием внешнего электрического поля с напряженностью 1-103 В/см, измерение характеристик среды, их компьютерную обработку. Согласно изобретению измеряемыми характеристиками среды являются частотная зависимость импеданса Z(ω) и угла ϕ(ω) сдвига фаз, на основе которых компьютерной обработкой получают выражение для действительной ε' и мнимой ε'' диэлектрических проницаемостей, сумма которых описывается формулой где E - напряженность электрического поля, di, ni и τi - дипольный момент, концентрация частиц в суспензии и время релаксации частиц i-го типа, а дипольный момент является функцией радиуса частицы di=d(ri), из полученного выражения для диэлектрических проницаемостей компьютерной обработкой производят построение гистограммы распределения коллоидных частиц, ордината которой пропорциональна радиусу ri коллоидной частицы i-го типа, а центр столбца по оси абсцисс расположен в значении средней концентрации частиц i-го типа. Технический результат - повышение точности и надежности определения распределения по размерам коллоидных частиц.

Изобретение относится к аналитической химии, в частности, к способу количественного определения хлорида калия - побочного продукта в производстве субстанции ферроцина, который может быть использован в исследовательской и производственной практике. Сущность способа: количественное определение хлорида калия осуществляют прямым измерением удельной электропроводности промывной воды с концентрацией от 0,10 до 2,25% при температуре 20°C, а расчет концентрации хлоридов проводят по градуировочному (калибровочному) графику или по формуле. Техническим результатом предлагаемого изобретения является создание экспресс-метода количественного определения хлоридов в промывной воде, используемой для очистки ферроцина, который прост в реализации в производственных условиях и обеспечивает фармакопейное качество субстанции ферроцина, оптимальный расход промывной дистиллированной воды, а также сокращает продолжительность стадий очистки ферроцина и фильтрации. 3 ил., 2 табл.
Наверх