Способ определения мощности квадратурных составляющих радиосигнала

Изобретение относится к области измерительной техники и может быть использовано для измерения мощности радиосигнала в тракте, демодуляции сигнала, измерений амплитуды напряжения переменного тока, в частности к области измерений мощности сигнала путем измерений напряжения. Одновременно осуществляется измерение мощности сигнала PΣ, являющейся суммарной мощностью его квадратурных составляющих, а также демодуляции сигнала. В процессе демодуляции происходит измерение амплитуд огибающих демодулированных сигналов квадратурных составляющих UI(p-p) и UQ(p-p), затем при последующей дополнительной обработке результатов демодуляции производится компенсация паразитного набега фазы сигнала путем расчета обратной матрицы поворота. На заключительном этапе, в процессе решения системы уравнений

производится расчет мощностей квадратурных составляющих PI и PQ. Технический результат заключается в возможности определения мощности квадратурных составляющих радиосигнала отдельно друг от друга. 1 табл.

 

Изобретение относится к области измерительной техники и может быть использовано для измерения мощности радиосигнала в тракте, демодуляции сигнала, измерений амплитуды напряжения переменного тока, в частности к области измерений мощности сигнала путем измерений напряжения.

Известен классический способ измерений мощности радиосигнала методом прямых измерений, с использованием ваттметров различной конструкции, состоящим в нагреве энергией электромагнитной волны чувствительного элемента ваттметра. Данный метод подходит для измерений суммарной мощности нескольких сигналов в тракте, но не позволяет измерить мощность двух квадратурных составляющих одного сигнала отдельно друг от друга.

Другим способом является измерение проходящей СВЧ-мощности при помощи специализированного устройства (патент РФ №2071701 от 29.06.1994). Для уменьшения переменной составляющей погрешности рассогласования в полосе частот в предложенном устройстве, содержащем отрезок прямоугольного волновода, в его широкую и узкую стенки встроены две поглощающие пластины с установленными на них термодатчиками одинаковой длины, позволяющего измерять составляющие мощности сигнала. Однако так как предложенное устройство использует эффект нагрева чувствительного элемента, то также не позволяет проводить измерения мощности квадратурных составляющих сигнала по отдельности.

Также известен способ определения составляющих мощности, основанный на измерении мгновенных значений тока и напряжения, формировании сигнала, ортогонального измеренному напряжению (с сохранением его нормы) по формулам преобразования Гильберта, вычислении действующего значения напряжения и пересчете норм полученных сигналов в активную и реактивную составляющие мощности (патент РФ 2191393 от 09.08.2000). Предложенный метод, хоть и позволяет оценить ортогональные составляющие мощности при работе на комплексную нагрузку, оценивает мощность только одного сигнала.

Техническим результатом от внедрения изобретения является возможность определения мощности квадратурных составляющих радиосигнала отдельно друг от друга.

Данный технический результат достигается за счет того, что одновременно осуществляется измерение мощности сигнала PΣ, являющейся суммарной мощностью его квадратурных составляющих, а также демодуляция сигнала. В процессе демодуляции происходит измерение амплитуд огибающих демодулированных сигналов квадратурных составляющих UI(p-p) и UQ(p-p), затем при последующей дополнительной обработке результатов демодуляции производится компенсация паразитного набега фазы сигнала путем расчета обратной матрицы поворота. На заключительном этапе, в процессе решения системы уравнений (1):

производится расчет мощностей квадратурных составляющих PI и PQ. Предложенный метод отличается от перечисленных тем, что оценка мощности производится после математической обработки результатов демодуляции, чего ранее не применялось. Именно такой подход позволяет измерить мощности составляющих сигнала даже при существенной разнице их мощностей, а также разнице несущей частоты сигнала и частоты демодуляции.

Предложенный способ измерений состоит в том, что результаты измерений получаются в результате совместной обработки измеренных значений суммарной мощности сигналов и амплитуд огибающих квадратурных сигналов. Измерения проходят в три этапа.

На первом этапе методом прямых измерений при помощи ваттметра измеряется суммарная мощность сигнала (т.е. суммарная мощность его квадратурных составляющих), а также осуществляется демодуляция сигнала с выделением огибающих каждой из квадратурных составляющих. Демодуляция сигнала может проводиться аналоговыми, аналого-цифровыми или полностью цифровыми методами. Так как частота демодуляции и частота сигнала в тракте в большинстве случаев не совпадают в силу невозможности синхронизации источника сигнала и демодулятора, то фазы демодулированных сигналов могут получать дополнительные паразитные приращения, выражающиеся в эффекте «перетекания» мощности одной квадратуры в демодулированный сигнал другой, и наоборот. При этом значение амплитуды демодулированного сигнала перестает нести информацию только об одной квадратуре, поэтому требуется дополнительная обработка результатов демодуляции.

На втором этапе осуществляется компенсация паразитного набега фазы. Паразитный набег фазы можно представить как поворот сигнального созвездия на комплексной плоскости относительно ее осей, причем абсцисса точек, образующих поворачивающуюся фигуру, - результат демодуляции одной квадратуры, ордината - другой квадратуры. Это можно описать матричным уравнением (2):

здесь S ( t ) - комплексный вектор демодулированного сигнала, A ( t ) - комплексный вектор исходного сигнала, C(t) - матрица поворота на угол φ0.

Очевидно, что в случае наличия набега фазы φdif(t) матрица поворота C(t) будет также изменяться вместе с набегом фазы и будет соответствовать матрице поворота на угол φ=(φ0dif(t)). В результате отслеживания положения радиус-вектора S во времени рассчитывается угол его поворота относительно начального положения, угловая скорость его вращения и другие параметры, позволяющие получить зависимость паразитного набега фазы от времени. На основании полученных значений рассчитывается обратная матрица поворота созвездия сигналов C-1, восстанавливаются неискаженные паразитным набегом фазы результаты демодуляции по формуле (3):

Элементы вектора A : AI и AQ - временные зависимости модулирующих импульсных последовательностей. Из них рассчитываются амплитуды огибающих демодулированных сигналов UI(p-p) и UQ(p-p), также анализ временных зависимостей AI и AQ позволяет оценить погрешность рассчитанных значений амплитуд, обусловленных зашумленностью исходного сигнала.

На третьем этапе производится расчет мощностей исходя из того, что их сумма и соотношение известны, т.е. решается система уравнений (1).

Применимость метода на практике подтверждается многочисленными лабораторными и натурными экспериментами. Результаты измерений приведены в таблице 1. Обозначения величин без штрихов приведены для параметров эталонного сигнала, используемого при апробации метода, обозначения величин со штрихами - результаты измерений величин при помощи ваттметра и аналого-цифрового демодулятора.

Таким образом, появилась возможность определения мощности квадратурных составляющих радиосигнала независимо друг от друга. Этим достигается технический результат.

Способ определения мощности квадратурных составляющих радиосигнала, заключающийся в одновременном измерении мощности сигнала , являющейся суммарной мощностью его квадратурных составляющих, и демодуляции сигнала, измерении амплитуд огибающих демодулированных сигналов квадратурных составляющих и , последующей дополнительной обработке результатов демодуляции, включающей в себя компенсацию паразитного набега фазы сигнала путем расчета обратной матрицы поворота, и последующем расчете мощностей квадратурных составляющих и в процессе решения системы уравнений:
.



 

Похожие патенты:

Изобретение относится к электротехнике и электроэнергетике, а именно к способам оценки качества электроэнергии. Способ может быть использован в системах электроснабжения промышленных предприятий с неизменной нагрузкой для определения источника нелинейных искажений как со стороны питающей сети, так и со стороны нелинейной нагрузки самого предприятия.

Изобретение относится к электротехнике и может быть использовано для контроля работы однофазного инвертора, работающего на разнообразные виды нагрузок с широким диапазоном изменения коэффициента мощности.

Изобретение относится к метрологии, в частности к приборостроению. Устройство контроля работы трехфазного инвертора содержит источник постоянного напряжения, подключенный к входу инвертора, с выходами которого связаны две пары датчиков линейных напряжений и линейных токов и нагрузка, два аналоговых перемножителя, входы которых соединены с датчиками соответствующих линейных напряжений и токов, а выходы через фильтры нижних частот связаны с входами одного из двух сумматоров.

Группа изобретений относится к метрологии. Установка измерения экранного затухания содержит измерительную экранированную камеру, генератор и приемник.

Изобретение относится к области электротехники и электроэнергетики и может быть использовано для измерения потерь на корону в трехфазной линии электропередачи (ЛЭП) высокого и сверхвысокого напряжения.

Изобретение относится к области измерительной техники, а именно к технике измерения составляющих мощности в трехфазных трехпроводных сетях переменного тока. .

Изобретение относится к области приборостроения и может найти применение в системах коммунального хозяйства. .

Изобретение относится к области приборостроения и может быть применено для контроля полезной мощности электропривода. .

Изобретение относится к измерительной технике и может быть использовано для определения мгновенных значений индуктивности намагничивания однофазного трансформатора в рабочем режиме или в режиме холостого хода.

Изобретение относится к области приборостроения и может найти применение для определения мгновенных значений индуктивности намагничивания однофазного трансформатора в рабочем режиме или в режиме холостого хода.

Изобретение относится к электроизмерениям и может быть использовано при контроле качества электроэнергии в энергосистемах. Способ включает выделение анормальных составляющих токов нагрузок i1a, i2a, определение собственных долевых участий в изменении качества результирующего тока для ветвей с источниками токов нагрузки, также определение взаимного долевого участия в изменении качества электрической энергии в узле от взаимодействия пар ветвей с источниками токов нагрузок, затем определение результирующего изменения качества электрической энергии в узле в соответствии с формулой. При этом собственные долевые участия в изменении качества результирующего тока узла от ветвей с источниками токов нагрузки определяют путем усреднения за период квадратов анормальных составляющих этих токов. Определение взаимного долевого участия в изменении качества результирующего тока в узле от взаимодействия пар ветвей с источниками токов нагрузки делают путем усреднения за тот же период произведения анормальных составляющих токов нагрузок. Определение результирующего изменения качества результирующего тока в узле делают в соответствии со следующей формулой , где i1a, i2a - анормальные составляющие в токах ветвей нагрузок, CУ (i1a), CУ(i2a) - соответственно собственные долевые участия ветвей с источниками токов нагрузок, ВУ(i1a,i2a) - взаимное долевое участие двух ветвей нагрузок. Технический результат заключается в возможности более точно определить дополнительные потери активной мощности в сети, а значит и повысить точность определения КПД энергосистемы. 3 з.п. ф-лы, 3 ил.

Изобретение относится к области имерений мощности СВЧ-сигналов, в частности к измерению импульсной СВЧ-мощности. Способ измерения импульсной мощности (Ри) импульсов СВЧ произвольной формы содержит этапы измерения средней мощности (Рср) импульсов СВЧ за период их повторения Тп, выделения видеоимпульсов импульсов их огибающей по мощности, полученной путем детектирования на линейном участке вольт-ваттной характеристики (ВВХ) детектора СВЧ, измерения временных параметров этой огибающей в виде периода повторения Тп и длительности импульса τu на заданном уровне 0,5 относительно амплитуды этого импульса, определении скважности Q, равной их отношению и дальнейшему перемножению Рср на Q. При этом на входе детектора СВЧ предварительно ослабляют пиковую мощность Рп на заданный расчетный предельный уровень Рп1 установленным переменным калиброванным аттенюатором, которым вначале устанавливают Рп2, соответствующий верхнему пределу линейного участка ВВХ детектора СВЧ, запоминают амплитуду видеоимпульса огибающей по мощности Uк в виде опорного уровня, а затем увеличивают величину Рп2 на входе детектора СВЧ путем уменьшения затухания калиброванного аттенюатора на величину, обратно пропорциональную требуемому низкому уровню отсчета , по которому определяют длительность огибающей по мощности путем ее отсчета в точках пересечения увеличенного видеоимпульса огибающей с ранее запомненным опорным уровнем, а полученное значение на квазинулевом уровне используют для расчета скважности как отношение Тп на . Технический результат заключается в повышении точности измерений. 2 ил.

Изобретение относится к измерительной технике, в частности к измерениям мощности СВЧ сигнала. Способ измерения мощности СВЧ сигнала в рассогласованном тракте заключается в подаче в тракт сигнала от генератора СВЧ через специальные отрезки линии передачи СВЧ в ваттметр СВЧ и определении искомой величины по результатам измерений. С целью упрощения реализации и расчетов искомой величины используют отрезок, длину которого выбирают равной половине длины волны в этом тракте или кратной ее нечетному числу, а измерения мощности производят дважды: Р1 - до включения отрезка и Р2 - после его включения (или наоборот). Искомую величину Pc определяют по формуле: Pc=(Р1+Р2)/2. Кроме того, для обеспечения диапазона частот указанный отрезок изготавливают для самой короткой длины волны - (λв/2) мин, а затем к нему в соответствии с диапазоном волн и требуемым числом точек измерения добавляют более короткие отрезки, полученные делением на 2 каждого последующего из них. Технический результат заключается в уменьшении числа калиброванных отрезков тракта СВЧ до одного и соответствующего упрощения расчета искомого уровня мощности при возможном уменьшении погрешности из-за рассогласования на СВЧ. 1 з.п. ф-лы. 2 ил.

Изобретение относится к области автоматики и вычислительной техники и может быть использовано для измерения площади одиночного электрического импульса с выдачей результатов в цифровой форме. Техническим результатом является повышение точности работы устройства за счет применения следящей системы частотно-импульсного типа для представления входной информации с последующим интегрированием непосредственно в цифровой форме. Измеритель площади электрического импульса содержит схему сравнения (СС) 1, выход которой соединен с входом генератора управляющей частоты (ГУЧ) 2. Выход (ГУЧ) 2 подключен через преобразователь частоты в напряжение (ПЧН) 3 к второму входу СС 1, первый вход которого связан с входом измерителя, при этом выход ГУЧ 2 через последовательно соединенный счетчик импульсов (СЧ) 4 связан с блоком 5 вывода информации. 1 ил.

Изобретение относится к электроэнергетике, в частности к способам оценки влияния потребителей на несинусоидальность и несимметрию напряжений. Оценку влияния k-го потребителя на искажение напряжения в точке общего присоединения осуществляют путем определения параметров автономного напряжения искажения k-го потребителя и коэффициента влияния на искажение напряжения k-го потребителя и сравнения данных параметров с допустимыми. Оценку выполняют в реальном времени с использованием измеренных с заданной дискретностью значений векторов напряжения на шинах в данном узле сети и тока на присоединении k-го потребителя, сглаженных с использованием фильтра Савицкого-Голея с последующим отсевом пар последовательных замеров с малыми изменениями напряжения и тока. Технический результат заключается в обеспечении достоверной качественной и количественной оценки влияния потребителей на искажение напряжения в реальном времени, в том числе за счет повышения точности определения параметров нагрузок потребителя. 3 ил., 4 табл.

Предлагаемые способ и устройство относятся к электроизмерительной технике в электротехнике и электроэнергетике, в частности, могут быть использованы в системах централизованного контроля электроэнергетических систем и в системах компенсации реактивной мощности. Способ включает преобразование входных сигналов мгновенных фазных токов и мгновенных фазных напряжений в сигналы мгновенной и полной мощности с последующим измерением их соотношения, равного мгновенному коэффициенту мощности, отличающийся тем, что получение сигнала полной мощности осуществляют посредством преобразования входных сигналов мгновенных фазных токов и мгновенных фазных напряжений в мгновенные значения модуля тока и модуля напряжения трехфазной сети с последующим их перемножением. Устройство содержит блок выделения мгновенной мощности трехфазной сети и соединенный с ним блок деления, выход которого является выходом устройства, отличающееся тем, что оно дополнительно содержит блок выделения мгновенного модуля изображающего вектора тока, блок выделения мгновенного модуля изображающего вектора напряжения и блок перемножения, причем входы блока выделения мгновенной мощности трехфазной сети соединены со входами блока выделения модуля изображающего вектора тока, которые являются входами для сигналов, пропорциональных мгновенным фазным токам сети, и со входами блока выделения модуля изображающего вектора напряжения, которые являются входами для сигналов, пропорциональных мгновенным фазным напряжениям сети, а выходы блоков выделения модуля изображающего вектора тока и выделения модуля изображающего вектора напряжения соединены с входами блока перемножения, выход которого совместно с выходом блока выделения мгновенной мощности трехфазной сети подключены к входам блока деления. Техническим результатом заявленной группы изобретений является повышение точности и быстродействия измерения мгновенного коэффициента мощности. 2 н.п. ф-лы, 2 ил.

Изобретение относится к измерениям экономии электрической мощности в энергосберегающих устройствах. Способ измерения экономии электрической мощности в энергосберегающих устройствах, выполненных по схеме включения трансформатора в режиме автотрансформатора с вольтодобавочной обмоткой, включает измерение электрической мощности с помощью первого счетчика, включенного на входе до энергосберегающего устройства. Согласно изобретению вход измерения напряжения второго счетчика подключают к входу энергосберегающего устройства, его токовый вход к первичной обмотке суммирующего трансформатора тока, вторичные обмотки которого соединяют с обмотками первого и второго трансформаторов тока, причем первый трансформатор тока подключают в цепь основной обмотки автотрансформатора, а второй трансформатор тока подключают в цепь нагрузки, фиксируют показания первого и второго счетчиков, вычисляют экономию электрической мощности по формуле: где Wh 1 и Wh 2 – показания первого и второго счетчика. Достигаемый технический результат – повышение точности измерения за счет возможности вычислять точное значение экономии электрической энергии в любой момент времени. 2 ил.

Группа изобретений относится к измерениям параметров электросетей, в частности к определению фазоров напряжения и тока в электрической сети среднего напряжения точным образом без необходимости в усложненных датчиках, и к определению и мониторингу мощности, развиваемой каждым из проводников, с использованием средств, обычно имеющихся в электрических сетях среднего напряжения. Раскрыты способ и соответствующее устройство для мониторинга параметров электрической сети среднего напряжения, включая определение силы тока, напряжения и мощности каждой фазы для электрической сети среднего напряжения. Текущие параметры электрической сети среднего напряжения, то есть фазоры тока и напряжения, а также мощности, определяются на основе измерений, выполненных датчиками (12, 14, 16), обычно установленными в электрической сети (5, 7) на уровне трансформатора (8). Конкретно определение фазора напряжения на каждом проводнике электрической сети (5) среднего напряжения выполняется с помощью амплитуды, выведенной из измеренной в электрической сети (7) низкого напряжения, и фазового угла, измеренного в электрической сети (5) среднего напряжения. Составления пар между фазорами тока среднего напряжения, углом, измеренным на среднем напряжении и выведенной амплитудой низкого напряжения выполняются с помощью сравнения с коэффициентом мощности cos ϕ электрической сети. Технический результат заключается в обеспечении приемлемой точности измерений мощности без применения усложненных датчиков за счет измерений трехфазных напряжений и мощностей в подстанциях MV/LV с особенностью обращения к информации о напряжениях, измеренных на стороне LV. 4 н. и 11 з.п. ф-лы, 2 ил.

Изобретение относится к системам электроснабжения железнодорожного транспорта. Способ определения энергетических показателей движения поезда и системы тягового электроснабжения заключается в том, что на каждом шаге моделирования на основе тяговых расчетов с учетом напряжения на токоприемнике по графику движения поездов вычисляют параметры электроподвижного состава и системы тягового электроснабжения. На основании параметров определяют тяговые и тормозные усилия поезда, скорость движения и пройденное поездом расстояние, а также ток, потребляемый каждым поездом с учетом потребления на собственные нужды. При этом определение тока электроподвижного состава в режиме рекуперативного торможения осуществляют на основе проверки условий рекуперации по балансу мощности тяги и рекуперации и проверки по допустимому уровню напряжения на токоприемнике. Определяют энергетические показатели электроподвижного состава и системы тягового электроснабжения, корректируют график движения поездов, и расчет повторяется до окончания рассматриваемого интервала времени. Технический результат изобретения заключается в повышении точности определения энергетических показателей движения поезда и системы тягового электроснабжения. 4 ил.

Изобретение относится к области измерительной техники и может быть использовано для измерения мощности радиосигнала в тракте, демодуляции сигнала, измерений амплитуды напряжения переменного тока, в частности к области измерений мощности сигнала путем измерений напряжения. Одновременно осуществляется измерение мощности сигнала PΣ, являющейся суммарной мощностью его квадратурных составляющих, а также демодуляции сигнала. В процессе демодуляции происходит измерение амплитуд огибающих демодулированных сигналов квадратурных составляющих UI и UQ, затем при последующей дополнительной обработке результатов демодуляции производится компенсация паразитного набега фазы сигнала путем расчета обратной матрицы поворота. На заключительном этапе, в процессе решения системы уравненийпроизводится расчет мощностей квадратурных составляющих PI и PQ. Технический результат заключается в возможности определения мощности квадратурных составляющих радиосигнала отдельно друг от друга. 1 табл.

Наверх