Способ флуориметрического определения флуниксина



 


Владельцы патента RU 2582960:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Саратовский государственный университет имени Н.Г. Чернышевского" (RU)

Изобретение относится к аналитической химии, конкретно к определению флуниксина в лекарственных препаратах. При осуществлении способа в ацетатно-аммиачный буферный раствор с рН 7.0-7.8 добавляют Твин-80 до концентрации 1·10-2 М, соль тербия Tb3+ до концентрации 1·10-3 М, лекарственный препарат триоктилфосфиноксид до концентрации 1·10-4 М, облучают раствор электромагнитным излучением с длиной волны λвозб=347 нм и по наличию флуоресценции на длине волны λфл=545 нм судят о наличии флуниксина. Дополнительно измеряют интенсивность флуоресценции, а концентрацию флуниксина в лекарственном препарате определяют по величине интенсивности с использованием заранее полученного градуировочного графика или методом стандартной добавки. Достигается упрощение анализа. 2 з.п. ф-лы, 1 ил., 8 табл., 7 прим.

 

Изобретение относится к аналитической химии, конкретно к способу флуориметрического определения флуниксина в лекарственных препаратах при определении действующего вещества и его наличии.

Флуниксин (2-[[2-метил-3-(трифторметил)-фенил]-амино]-пиридин-3-карбоновая кислота)

относится к нестероидным, противовоспалительным, обезболивающим и жаропонижающим средствам, используемым в ветеринарии. Контроль его содержания осуществляют методами, основанными на принципах хромато-масс-спектрометрии с привлечением газовой, жидкостной хроматографии [Estelle Dubreil-Chéneau, Yvette Pirotais, Mélaine Bessiral, etc. Development and validation of a confirmatory method for the determination of 12 non steroidal anti-inflammatory drugs in milk using liquid chromatography-tandem mass spectrometry.Journal of Chromatography A, 1218 (2011) 6292- 6301; Alessandra Gentili, Fulvia Caretti, Simona Bellante, etc. Development and validation of two multiresidue liquid chromatography tandem mass spectrometry methods based on a versatile extraction procedure for isolating non-steroidal anti-inflammatory drugs from bovine milk and muscle tissue.Anal Bioanal Chem (2012) 404:1375-1388; Tao Peng, Ai-Ling Zhu, Yue-Ning Zhou etc. Development of a simple method for simultaneous determination of nine subclasses of non-steroidal anti-inflammatory drugs in milk and dairy products by ultra-performance liquid chromatography with tandem mass spectrometry. Journal of Chromatography B, 933 (2013) 15- 23; Ngaio Richards, Sarah Hall, Karen Scott, etc. First detection of an NSAID flunixin in sheep's wool using GC-MS. Environmental Pollution 159 (2011) 1446-1450]. Хромато-масс-спектрометрия позволяет осуществить разделение определяемых компонентов и их аналитических сигналов, сложных по составу образцов во времени и получить масс-спектры каждого соединения в смеси. Площадь хроматографического пика пропорциональна содержанию вещества в анализируемом образце, что позволяет проводить точный количественный анализ образцов. Преимущество указанного метода заключается в экпрессности и высокой чувствительности, однако он мало подходит для рутинного анализа лекарственных препаратов, так как требует привлечения дорогостоящего оборудования и персонала высокой квалификации.

Наиболее близким по технической сущности является способ определения флуниксина с помощью дифференциальной импульсной вольтамперометрии с использованием портативных миниатюрных одноразовых графитовых электродов [V. Meuccia, M. Vannia, M. Sgorbinia, etc. Determination of phenylbutazone and flunixin meglumine in equine plasma by electrochemical-based sensing coupled to selective extraction with molecularly imprinted polymers. Sensors and Actuators B 179 (2013) 226- 231]. Способ включает предварительную твердофазную экстракцию флуниксина на колонке с последующим восстановлением его на графитовом электроде и предложен в качестве альтернативы к существующим хроматографическим методам. К существенным недостаткам можно отнести использование одноразовых электродов, что повышает стоимость анализа, а также продолжительное время определения. Чаще на практике в анализе лекарственных препаратов используют методы, основанные на измерении собственной флуоресценции, однако флуниксин не обладает флуоресцентными свойствами, и в этом состоит ограничение возможностей флуориметрии. Нами впервые предложен флуориметрический метод определения флуниксина, основанный на измерении сенсибилизированной флуоресценции комплекса тербия с флуниксином в присутствии триоктилфосфиноксида.

Задачей изобретения является разработка простого флуориметрического экспресс-метода определения флуниксина с помощью аналитической формы, обеспечивающего возможность определения флуниксина в лекарственных препаратах, позволяющего исключить использование дорогостоящего оборудования и привлечение высококвалифицированных специалистов.

Технический результат заключается в упрощении способа определения флуниксина за счет применения флуориметрического метода анализа, возможного в результате взаимодействия флуниксина с ионом тербия (III) и триоктилфосфиноксидом (ТОФО) в мицеллярных растворах Твин-80.

Указанный технический результат достигается тем, что согласно заявляемому способу определения наличия флуниксина в лекарственном препарате ацетатно-аммиачный буферный раствор с рН 7.0-7.8 добавляют Твин-80 до концентрации в конечном растворе 1·10-2 М, соль тербия Tb3+до концентрации в конечном растворе 1·10-3 М, лекарственный препарат триоктилфосфиноксид до концентрации в конечном растворе 1·10-4 М, облучают раствор электромагнитным излучением с длиной волны λвозб=347 нм и по наличию флуоресценции на длине волны λфл=545 нм судят о наличии флуниксина. Дополнительно измеряют интенсивность флуоресценции, а концентрацию флуниксина в лекарственном препарате определяют по величине интенсивности с использованием заранее полученного градуировочного графика или методом стандартной добавки.

Изобретение поясняется чертежом, на котором приведен градуировочный график определения флуниксина, где по оси абсцисс указан отрицательный десятичный логарифм концентрации лекарственного препарата рС (M), а по оси ординат - десятичный логарифм интенсивности сигнала флуоресценции lgI.

Использование флуориметрического метода определения флуниксина на основании измерения собственной флуоресценции невозможно, так как аналит не обладает флуоресцирующими свойствами. Однако в результате его взаимодействия с солью тербия (III) и триоктилфосфиноксидом (ТОФО) в мицеллярном растворе Твин-80 образуется комплекс, характеризующийся эмиссией тербия (λвозб=347 нм, λфл=545 нм), которая может быть использована в качестве аналитического сигнала при определении нестероидного противовоспалительного препарата.

Способ реализуется следующим образом.

В пробирку с буферным раствором (рН 7.0 - 7.8) строго по порядку добавляют раствор Твин-80 до его концентрации в конечном растворе 1·10-2 М, соль тербия Tb3+до ее концентрации в конечном растворе 1·10-3 М, лекарственный препарат (либо другой анализируемый раствор), триоктилфосфиноксид до его концентрации в конечном растворе 1·10-4 М. На полученный конечный раствор воздействуют электромагнитным излучением с длиной волны возбуждения λ=347 нм, и измеряют интенсивность сигнала флуоресценции на длине волны флуоресценции λфл=545 нм, которая зависит от концентрации флуниксина в растворе. С помощью заявляемого способа по наличию флуоресценции возможно обнаружение флунексина в диапазоне концентраций от 1·10-7 до 1·10-4 М.

Для определения концентрации флуниксина возможно использовать градуировочный график, постороенный в аналогичных условиях для стандартных растворов флуниксина в координатах логарифм интенсивности (lgI) - отрицательный логарифм концентрации (рС) флуниксина, М. Для измерения сигнала флуоресценции используют способ разрешенной во времени флуоресценции (время задержки составляет 0,3 мс). Определяют интенсивность I флуоресценции раствора, затем рассчитывают логарифм этой величины по основанию 10 lgI и с помощью градуировочного графика находят рС и соответствующую концентрацию флуниксина как антилогарифм полученного значения (см. чертеж).

Для построения градуировочного графика готовят стандартный водный раствор флуниксина концентрации 1·10-4М ("Sigma-aldrich", основного вещества не менее 98%), водный раствор Твин-80 (фирмы «Sigma», основного вещества не менее 99%) концентрации 1·10-1 М, раствор в этиловом спирте триоктилфосфиноксида (фирмы «Sigma», основного вещества не менее 99%) концентрации 1·10-2 М, водный раствор соли хлорида тербия (III) шестиводного («AcrosOrganics», 99,9% основного вещества), концентрации 1·10-2 М, ацетатно-аммиачный буферный раствор (рН 7.0-7.8). В семь-десять пробирок (или более для повышения точности) вносят 1 мл буферного раствора с рН 7.0 - 7.8, затем последовательно добавляют 0.4 мл 1·10-1 М Твин-80, 0.4 мл раствора соли тербия (III) 1·10-2 М. После этого в каждую пробирку добавляют стандартный раствор флуниксина так, чтобы конечные концентрации варьировались от 1·10-7 до 1·10-4 М. Затем в каждую пробирку добавляют 0.4 мл ТОФО 10-3 М и добавляют буферный раствор до общего объема 4 мл, перемешивают и измеряют интенсивность I флуоресценции (λвозб=347 нм, λфл=545 нм) в режиме разрешенной во времени флуоресценции (время задержки сигнала составляет 0,3 мс). Для каждого раствора измеряют интенсивность флуоресценции и рассчитывают логарифм этой величины по основанию 10. Градуировочный график (см. чертеж) строят в координатах lgI - pC, где С - содержание флуниксина в стандартном растворе, М.

Из градуировочного графика видно, что диапазон определяемых концентраций составляет 1·10-7 - 1·10-4 М. Предел обнаружения рассчитан по способу 3δ (Основы аналитической химии» в 2 кн. Книга 1. Методы химического анализа: учебн. для вузов /Ю.А. Золотов, Е.Н. Дорохова и др. Под редакцией Ю.А. Золотова. - М.: Высшая школа. 2004, 494 с.) и составляет 8·10-8 М.

Для определения концентрации флуниксина возможно использовать метод стандартных добавок (Гришаева Т.И. Методы люминесцентного анализа.- СПб.: АНО НПО «Профессионал», 2003, с.107). Добавка стандартного раствора флуниксина должна характеризоваться интенсивностью флуоресценции, близкой по значению к анализируемому раствору. Методика: 1.5 мл анализируемого раствора помещают в мерную колбу, емкостью 25 мл, добавляют бидистиллированную воду до метки, перемешивают. В пробирку вносят 1 мл буферного раствора (рН 7.0-7.8), 0.4 мл 1·10-1 М Твин-80, 0.4 мл раствора соли тербия(III) 1·10-2 М и 0.2 - 0.5 мл разбавленного раствора «Флунекс», 0.2 - 0.4 мл стандартного раствора флуниксина концентрацией 1·10-4 М, добавляют 0.4 мл ТОФО 10-3 М и буферный раствор до общего объема 4 мл, перемешивают и измеряют интенсивность флуоресценции (задержка - 0.3 мс). Концентрацию флуниксина определяют по формуле:

Сх=Ix·Cа/Ix+а- Ix, где

Ix - флуоресценция исследуемого раствора;

Ix+ст - флуоресценция исследуемого раствора, содержащего добавку;

Сх - определяемая концентрация, (%);

Cа - концентрация добавки в исследуемом растворе (%).

Результаты определения представлены в таблице 1. Правильность контролировали методом «введено-найдено».

Таблица 1
Результаты определения флуниксина в препарате «Флунекс» (n=3, P=0.95, tтабл=4,3)
Заявленное содержание, % Найдено, %
х±Δх Sr
8,3 8,45±0,08 0,04
Таблица 2
Контроль правильности определение флуниксина в препарате «Флунекс» методом «введено-найдено» (n=3, Р=0.95, tтабл=4,3)
№ пробы Введено,
мг/л
Найдено,
мг/л
Sr tэкспер
1 1,48 1,51±0,01 0,01 2,27
2 3,65 3,69±0,10 0,04 1,53
3 2,96 3,17±0,04 0,02 2,32

Sr - относительное стандартное отклонение, Sr=S/χ, где S - стандартное отклонение, равное S=∑(χi-χ)2/n-1)1/2, χi - единичный результат определения, χ - средний результат, n - число определений, р - доверительная вероятность, tэкспер - коэффициент Стьюдента.

Примеры осуществления способа.

В качестве анализируемой пробы использовали раствор лекарственного препарата «Флунекс» (ООО НИТА-ФАРМ, г. Саратов).

Пример 1. Выбор оптимального иона металла для получения максимального аналитического сигнала. Сигнал флуоресценции могут давать и другие ионы РЗЭ в присутствии флуниксина, ТОФО в мицеллярном растворе Твин-80. В четыре пробирки вносят последовательно 1 мл буферного раствора (рН 7.0 - 7.8), добавляют 0.4 мл 1·10-1 М Твин-80. В первую пробирку добавляют 0.4 мл раствора соли тербия (III) концентрации 1·10-2М, в другие соответственно - хлорид европия (III), хлорид самария (III) и гадолиния (III) той же концентрации, затем в каждую добавляют 0.4 мл флуниксина, 10-4М, 0.4 мл ТОФО 10-3 М, добавляют буферный раствор до общего объема 4 мл, перемешивают и измеряют интенсивность флуоресценции (λвозб=347 нм, λфл=545 нм) в режиме разрешенной во времени флуоресценции. Результаты измерений представлены в таблице 3.

Таблица 3
Влияние природы иона РЗЭ на интенсивность аналитического сигнала
РЗЭ Тербий (III) Европий (III) Самарий (III) Гадолиний (III)
Интенсивность флуоресценции 250 10 5 6

Для получения максимального сигнала флуоресценции нами использовался в дальнейших исследованиях тербий (III).

Пример 2. Определение оптимальной природы ПАВ для получения максимального аналитического сигнала. Рассмотрено влияние катионных (хлорид цетилпиридиния, ЦПХ), анионных (додецилсульфата натрия, ДДС) и неионогенных (Твин-80, Бридж-35, Тriton X-100) ПАВ на интенсивность флуоресценции комплекса тербия (III). В пять пробирок вносят 1 мл буферного раствора с рН 7.0- 7.8, затем в первую пробирку добавляют 0.4 мл 1·10-1 М ЦПХ, во вторую - ДДС, в третью - Твин-80, в четвертую - Бридж-35, в пятую - Тритон Х-100 и далее во все пробирки вносят 0.4 мл раствора соли тербия 1·10-2М, 0.4 мл флуниксина 10-4 М, 0.4 мл ТОФО 10-3 М, добавляют буферный раствор до общего объема 4 мл, перемешивают и измеряют интенсивность флуоресценции (λвозб=347 нм, λфл=545 нм) в режиме разрешенной во времени флуоресценции.

Таблица 4
Влияние природы ПАВ на интенсивность флуоресценции комплекса тербия (III)
п/№ ЦПХ ДДС Твин-80 Бридж-35 ТритонХ-100
Интенсивность флуоресценции 15 100 750 16 15

Как видно из таблицы 4, из всех ПАВ наибольшее увеличение интенсивности флуоресценции наблюдается в присутствии неионогенного Твин-80, который и выбран нами для дальнейших исследований.

Интенсивность флуоресценции хелата Tb3+- флуниксин - триоктилфосфиноксид зависит от концентрации Твин-80 в растворе.

Пример 3. Определение оптимальной концентрации Твин-80 для получения максимального аналитического сигнала. В четыре пробирки вносят 1 мл буферного раствора (рН 7.0 - 7.8), 0.4 мл раствора соли тербия 1·10-2 М, 0.4 мл флуниксина 10-4М, 0.4 мл ТОФО 10-3М, и последовательно добавляют 0.4 мл растворов концентрации 1·10-6 М, 1·10-4 М, 1·10-3 М, 1·10-2 М Твин-80, буферный раствор до общего объема 4 мл, перемешивают и измеряют интенсивность аналитического сигнала (λвозб=347 нм, λфл=545 нм).

Таблица 5
Определение оптимальной концентрации Твин-80
п/№ 1 2 3 4
Твин-80, концентрация, М 1·10-6 1·10-4 1·10-3 1·10-2
Интенсивность флуоресценции 25 30 30 1000

Ввиду того, что раствор Твин-80 большей концентрации приготовить нельзя по причине ограниченности растворимости реагента в воде, в качестве оптимальной концентрации выступает 1·10-2 М.

Пример 4. Выбор второго лиганда ТОФО для получения максимального аналитического сигнала. В четыре пробирки вносят 1 мл буферного раствора с рН 7.0 - 7.8, добавляют 0.4 мл 1·10-1 М Твин-80, 0.4 мл раствора соли тербия (III) 1·10-2М, 0.4 мл флуниксина 1·10-4 М. В первую пробирку добавляют 0.4 мл ТОФО 10-3 М, во вторую - 0.4 мл натриевой соли этилендиаминтетрауксусной кислоты (ЭДТА) 1·10-3 М, в третью - 0.4 мл теноилтрифторацетона (ТТА) 1·10-4М, в четвертую - 0.4 мл 1,10-фенантролина (Фен) 1·10-4 М, добавляют в каждую пробирку буферный раствор до общего объема 4 мл, перемешивают и измеряют интенсивность флуоресценции (λвозб=347 нм, λфл=545 нм) в режиме разрешенной во времени флуоресценции. Результаты измерений представлены в таблице 6.

Таблица 6
Выбор оптимального второго лиганда для получения максимального аналитического сигнала
Второй лиганд ТОФО ЭДТА ТТА Фен
Интенсивность флуоресценции 500 25 10 100

В качестве второго лиганда возможно использование ТОФО или Фен, однако оптимальным для получения максимального значения аналитического сигнала является применение ТОФО.

Пример 5. Определение оптимальной кислотности для получения максимального аналитического сигнала. В каждую из пяти пробирок вносят по 1 мл буферного раствора с рН 5.0, 6.0, 7.0, 8.0, 9.0, добавляют в каждую 0.4 мл 1·10-1 М Твин-80, 0.4 мл раствора соли тербия (III) 1·10-2 М, 0.4 мл флуниксина 1·10-4 М, 0.4 мл ТОФО 10-3М, добавляют соответствующий буферный раствор до общего объема 4 мл, перемешивают и измеряют интенсивность флуоресценции (λвозб=347 нм, λфл=545 нм) в режиме разрешенной во времени флуоресценции. Результаты измерений представлены в таблице 7.

Таблица 7
Выбор оптимальной кислотности для получения максимального аналитического сигнала
рН 5.0 6.0 7.0 8.0 9.0
Интенсивность флуоресценции 8 50 100 95 30

Установлено, что интенсивность флуоресценции системы тербий(III) - флуниксин - ТОФО в присутствии Твин-80 значительно зависит от кислотности среды и максимальная интенсивность наблюдается при рН 7-8.

Пример 7. Выбор оптимальных концентраций компонентов системы. Для выбора оптимальной концентрации Tb3+была исследована зависимость интенсивности флуоресценции разнолигандного хелата от различных содержаний ионов Tb3+.

В шесть пробирок вносили 1 мл буферного раствора (рН 7.0 - 7.8), 0.4 мл 1·10-1 М Твин-80, в каждую пробирку добавляли раствор соли тербия в интервале концентрации 5·10-6 - 2·10-3 М, а затем 0.4 мл флуниксина 10-4 М, 0.4 мл 1·10-3 М ТОФО и буферный раствор до общего объема 4 мл, перемешивали и измеряли интенсивность флуоресценции (λвозб=347 нм, λфл=545 нм) в режиме разрешенной во времени флуоресценции. Результаты представлены в таблице 8.

Таблица 8
Выбор оптимальной концентрации соли тербия и второго лиганда для получения максимального аналитического сигнала
Интенсивность флуоресценции, М 2·10-3 1·10-3 5·10-4 1·10-4 5·10-5 1·10-5
Тербий 830 850 750 400 200 100
ТОФО осадки осадки 100 170 100 70

Как видно из таблицы 8, для получения максимального значения интенсивности аналитического сигнала необходимо использовать 1·10-3 М соль тербия(III) и 1·10-4 М раствор ТОФО.

Предлагаемый способ позволяет отказаться от дорогостоящего оборудования и привлечения квалифицированного персонала.

1. Способ определения наличия флуниксина в лекарственном препарате, отличающийся тем, что в ацетатно-аммиачный буферный раствор с рН 7.0-7.8 добавляют Твин-80 до концентрации в конечном растворе 1·10-2 М, соль тербия Tb3+до концентрации в конечном растворе 1·10-3 М, лекарственный препарат, триоктилфосфиноксид до концентрации в конечном растворе 1·10-4 М, облучают раствор электромагнитным излучением с длиной волны λвозб=347 нм и по наличию флуоресценции на длине волны λфл=545 нм судят о наличии флуниксина.

2. Способ по п.1, отличающийся тем, что измеряют интенсивность флуоресценции, концентрацию флуниксина в лекарственном препарате определяют по величине интенсивности с использованием заранее полученного градуировочного графика.

3. Способ по п.1, отличающийся тем, что измеряют интенсивность флуоресценции, концентрацию флуниксина в лекарственном препарате определяют методом стандартной добавки.



 

Похожие патенты:

Изобретение относится к области аналитической химии и касается способа определения амина в образце. Сущность способа заключается в контактировании образца, содержащего амин, с раствором соли, содержащей 2,2',2”,6,6',6”-гексаметокситритильный карбокатион, и последующем определении конъюгатов методами высокоэффективной жидкостной хроматографии и масс-спектрометрии.

Изобретение относится к медицине, а именно к фармакологии, и может быть использовано для поиска точки с дробным эффектом при определении эффективных доз веществ методом «одной точки» путем экспериментального определения зачетной дробной точки при введении животным вещества с n-кратным изменением последовательно вводимых доз с последующим расчетом дозы с заданным дробным эффектом по функции наклона линии токсичности.

Изобретение относится к аналитической химии и фармацевтике и описывает способ извлечения пролина из водных растворов, включающий приготовление водно-солевого раствора пролина путем его растворения в насыщенном растворе высаливателя, экстракцию и анализ равновесной водной фазы, где экстракцию пролина осуществляют раствором водорастворимого полимера, а именно сополимера поли-N-винилкапролактам-N-винилимидазол (ПВК-ВИ) в дистиллированной воде с концентрацией 1,15-1,20 г/см3 в течение 7-10 мин из водно-солевого раствора пролина, который имеет рН 9,7±0,3, при этом соотношение объемов водно-солевого раствора пролина и экстрагента 5:2 и в качестве высаливателя применяют раствор сульфата аммония, далее отделяют водно-солевую фазу от органической и анализ проводят методом УФ-спектрофотометрии при длине волны 450 нм, по градуировочному графику находят концентрацию пролина в анализируемом водном растворе, рассчитывают коэффициент распределения (D) и степень извлечения пролина (R, %).

Изобретение относится к аналитической химии и может быть использовано для определения концентрации азотсодержащих противомикробных препаратов (изиниазида, этамбутола и др.) и антибиотиков (цефалоспоринового ряда - цефазолина, цефатоксима, цефуроксима, цефалексина и др.) в исследуемых жидких средах.

Изобретение относится к фармацевтической промышленности, в частности к способу количественного определения тетрациклических тритерпенов в сырье чаги или препарате чаги.
Изобретение относится к области фармацевтики и представляет собой способ скрининга агента, пригодного для лечения синдрома сухого глаза и/или поражения роговицы и конъюнктивы при синдроме сухого глаза 3-й и более степени, который включает приготовление кроличьей модели поражения роговицы и конъюнктивы путем абразии эпителия роговицы и конъюнктивы инстилляцией раствора n-гептанола в глаз кролика; и введение испытуемого агента в глаз кролика модели и оценку эффекта восстановления ткани роговицы под действием испытуемого агента, в котором наносимый объем раствора n-гептанола составляет всего от 0,03 до 0,05 мл, который капают 2-4 раза, и в котором кролика заставляют моргать 2-4 раза, в котором стадия приготовления дополнительно включает принуждение кролика к закрытию глаза на период от около 1 до около 3 минут после инстилляции раствора n-гептанола в глаз.

Изобретение относится к области медицины, а именно к способу диагностики болезни Альцгеймера или умеренного когнитивного расстройства. Сущность способа состоит в том, что способ включает измерение в крови десмостерола, бета-амилоида, гельсолина.

Изобретение относится к медицине и описывает способ идентификации водорастворимого лекарственного вещества путем сравнения с эталоном. Способ характеризуется проведением ионометрии, титрометрии и спектрофотометрии, при этом ионометрические исследования проводят с использованием различных концентраций лекарственного вещества, начиная от насыщенного раствора с уменьшением концентрации идентифицируемого вещества в каждом последующем растворе кратно по сравнению с предыдущим, титрометрические зависимости измеряют в различных концентрациях идентифицируемого лекарственного вещества, начиная от насыщенного раствора с уменьшением концентрации в каждом последующем титруемом растворе ниже, чем в предыдущем, в кратное число раз, титрующий раствор вводят равномерно в течение всего процесса титрования, дополнительное измерение спектрофотометрических зависимостей проводят не менее чем в двух разных концентрациях: насыщенного раствора и разбавленного в 10-20 раз, а измерения спектрофотометрических зависимостей проводят в двух растворителях: бидистиллированной воде и ином растворителе из ряда спиртов.

Изобретение относится к химико-фармацевтической промышленности и может быть использовано в центрах контроля качества лекарственных средств и контрольно-аналитических лабораториях при проведении анализа антоцианов в таком лекарственном растительном сырье, как плоды черники обыкновенной, аронии черноплодной, смородины черной и т.

Изобретение относится к области биотехнологии, конкретно к получению ингибиторов адгезии и/или агрегации тромбоцитов, и может быть использовано в медицине. Рекомбинантным путем с использованием матрицы кДНК слюнной железы Anopheles stephensi получают полипептид, который используют в составе фармацевтической композиции и в наборах для скрининга ингибиторов адгезии или агрегации тромбоцитов.

Изобретение относится к сельскому хозяйству и может быть использовано для объективной оценки степени зрелости различных ботанических сортов томатов при высокоточном отборе плодов необходимой стадии зрелости.

Изобретение относится к области химии окружающей среды, к аналитической химии и может быть использовано для определения содержания полициклических ароматических углеводородов (ПАУ) в водной среде.

Изобретение по существу относится к композициям меченого ингибитора отложений и способам ингибирования отложений. В частности, настоящее изобретение относится к имидазолсодержащим меченым полимерным ингибиторам отложений, предназначенным для использования при обработке воды и/или нефтяных месторождений.

Изобретение относится к квантовым точкам сульфида серебра, излучающим в ближней инфракрасной области спектра, и их применению в биологии. Квантовые точки сульфида серебра содержат присоединенные к поверхности гидрофильные группы из меркаптосодержащего гидрофильного реагента.
Группа изобретений относится к области маркирования нефти и нефтепродуктов и может быть использована для мониторинга транспорта нефти и нефтепродуктов, в частности для контроля потоков нефти в нефтепроводах, контроля автомобильного транспорта с углеводородной продукцией, для своевременного обнаружения утечки и хищения продукции, а также для локализации последствий происшествия.

Изобретение относится к области исследования и анализа биологических материалов и касается способа для подсчета биологических объектов в пробе и сканирующего цитометра на его основе.

Изобретение относится к области химии материалов, а именно к новому типу соединений - симметричным краунсодержащим диенонам общей формулы I, где n=1, 2; m=0, 1, и способу их получения, заключающемуся в том, что циклоалканоны общей формулы II, где n=1, 2; подвергают взаимодействию с формильными производными бензокраун-эфиров общей формулы III, где m=0, 1, и процесс проводят в смеси органического растворителя с водой или в среде органического растворителя.

Изобретение относится к области оптико-физических методов измерений и касается способа и устройства для обнаружения и идентификации химических веществ и объектов органического происхождения.

Изобретение относится к устройству автоматического бесконтактного детектирования быстродвижущихся меток подлинности, которые содержат нанокристаллы алмазов с центрами азот-вакансия (NV-центрами), нанесённые на ценные бумаги, деньги.

Способ дифференциации возбудителей чумы и псевдотуберкулеза по N-ацетил-β-D-глюкозаминидазной активности предусматривает получение суспензии агаровой культуры исследуемых бактерий в концентрации (1-5)×109 м.к., подготовку синтетического субстрата, в качестве которого используют 4-метилумбеллиферил-N-ацетил-β-D-глюкозаминид в количестве 50 мкМ.
Изобретение относится к мониторингу очистки поверхностей от микробных загрязнений и может быть использовано в сферах здравоохранения и общественного питания. Описывается композиция для определения того, была ли поверхность очищена от микробных загрязнений. Композиция содержит от 0.001 до 10% по весу катионного или анионного оптического отбеливателя и от 0.001 до 5,0% по весу комплексообразователя с противоположным зарядом. Указанный комплексообразователь выбран из группы, состоящей из ПАВ, модифицированной целлюлозы, модифицированного гуара, модифицированных акриловых соединений, модифицированного уретана, поливинилпирролидона и этоксикарбоксилатов. Составы флуоресцирующего геля стабильны, флуоресцируют под воздействием УФ-излучения и не оставляют следов после высыхания и удаления. 4 н. и 16 з.п. ф-лы, 12 табл., 4 пр.
Наверх