Линейный индукционный ускоритель

Изобретение относится к ускорительной технике и может быть использовано для создания пучков заряженных частиц наносекундной длительности с высокой частотой следования импульсов. Линейный индукционный ускоритель содержит индукционную систему 1 в виде набора ферромагнитных сердечников, охваченных витками намагничивания 2, которые объединены в два общих вывода, центральный электрод 3, расположенный по оси индукционной системы 1, один конец электрода 3 заземлен на корпус ускорителя, а второй связан с защитным экраном 5, одинарную формирующую линию 6, заземленный и потенциальный электроды которой соединены с выходом магнитного импульсного генератора 7, состоящего из последовательных контуров сжатия, каждый из которых образован конденсатором и дросселем насыщения, один из общих выводов витков намагничивания индукционной системы 1 подсоединен к потенциальному электроду формирующей линии 6, а между вторым общим выводом витков намагничивания индукционной системы 1 и заземленным электродом одинарной формирующей линии 6 включена обмотка магнитного коммутатора 8, между защитным экраном 5 и выходным фланцем 9 ускорителя расположен цилиндрический вакуумный изолятор 10, на изоляторе 10 размещена однослойная обмотка размагничивания 11, подсоединенная одним выводом к клемме 12 импульсного источника размагничивания. На изоляторе 10 размещена дополнительная обмотка 13, индуктивно связанная с обмоткой размагничивания 11, один вывод дополнительной обмотки 13 соединен с защитным экраном 5, другой подсоединен к обмотке размагничивания 11 и точка соединения обмоток 11, 13 подключена электрическим проводником 14 к центральному электроду 3, на котором у защитного экрана 5 размещены ферромагнитные сердечники 15 дополнительного дросселя насыщения. Контур, образованный дополнительной обмоткой 13, проводником 14, частью центрального электрода 16 и защитным экраном 5, охватывает сечение сердечников 15 дополнительного дросселя насыщения и является его короткозамкнутой обмоткой. Технический результат - повышение эффективности ускорителя за счет уменьшении длительности фронта импульса тока пучка ускорителя. 1 ил.

 

Изобретение относится к ускорительной технике и может быть использовано для создания пучков заряженных частиц наносекундной длительности с высокой частотой следования импульсов.

Известно устройство - линейный индукционный ускоритель (ЛИУ) [Вахрушин Ю.П., Анацкий А.И. Линейные индукционные ускорители. - М.: Атомиздат, 1978, с.170-173], содержащий индукционную систему в виде набора ферромагнитных сердечников, охваченных витками намагничивания. К виткам намагничивания подключены электроды формирующей линии. По оси индукционной системы проходит металлический электрод, соединенный одним выводом с корпусом ускорителя, а другим - с высоковольтным экраном. Между высоковольтным экраном и экраном, установленным на выходном фланце ускорителя, расположен цилиндрический вакуумный изолятор. На один из электродов формирующей линии от первичного источника питания подается импульс зарядного напряжения. Второй электрод формирующей линии заземлен. После срабатывания газовых разрядников, установленных в разрыве любого из электродов, одинарная формирующая линия начинает разряжаться на витки намагничивания сердечников индукционной системы. Ток, протекающий в витках намагничивания, создает в сердечниках изменяющийся во времени магнитный поток, возбуждающий вихревое электрическое поле, ускоряющее заряженные частицы.

Недостатки устройства связаны с использованием газовых разрядников: низкая частота повторения импульсов, низкая стабильность амплитудно-временных параметров импульсов напряжения, малый ресурс работы разрядников из-за высокотемпературной эрозии электродов, необходимость периодической ревизии разрядников.

Наиболее близким техническим решением, выбранным за прототип, является конструкция ЛИУ [Бутаков Л.Д., Васильев В.В., Винтизенко И.И., Фурман Э.Г. Линейные индукционные ускорители на магнитных элементах // ПТЭ, 2001, №5, с.104-109]. Принципиальным отличием от описанной выше конструкции ЛИУ с искровыми газовыми разрядниками является использование магнитного коммутатора формирующей линии. Магнитный коммутатор представляет собой одновитковый дроссель насыщения с сердечником из ферромагнитного материала. Такой коммутатор способен с неограниченным ресурсом коммутировать ток величиной сотни килоампер в наносекундном диапазоне длительностей с частотой в единицы килогерц при высокой стабильности импульсов. Однако, чтобы магнитный коммутатор имел малую индуктивность, зарядку формирующей линии необходимо выполнять за время не более нескольких сотен наносекунд от магнитного импульсного генератора (МИГ), который представляет собой последовательность звеньев сжатия энергии (LC-контуров) с увеличивающейся собственной частотой [Меерович А.А. и др. Магнитные генераторы импульсов // М.: Сов. радио, 1968, 476 с.]. При передаче энергии от одного звена сжатия МИГ к другому происходит компрессия энергии: увеличивается передаваемая мощность за счет сокращения времени процессов заряда и разряда конденсаторов. Это позволяет заряжать формирующую линию от последнего звена сжатия МИГ за время в сотни наносекунд.

Также как и в устройстве аналога в прототипе на магнитных элементах по оси индукционной системы проходит центральный электрод, соединенный одним выводом с корпусом ускорителя, а другим - с высоковольтным профилированным защитным экраном. Между высоковольтным защитным экраном и выходным фланцем ускорителя расположен цилиндрический вакуумный изолятор. В отличие от аналога поверх изолятора уложена однослойная спиральная обмотка, один вывод обмотки подсоединен к защитному экрану, а второй - к импульсному источнику размагничивания. Эта спиральная обмотка выполняет одновременно функции индуктивно-емкостного делителя высоковольтного потенциала по внешней поверхности изолятора, которая находится в вакууме, что повышает его надежность, и элемента цепи размагничивания ферромагнитных сердечников индукционной системы, ограничивающего влияние высокого напряжения нагрузки на источник питания размагничивания.

Недостатком устройства-прототипа является большая длительность фронта импульса в нагрузке, что обусловлено трудностью выполнения с достаточно малой величиной индуктивности обмотки магнитного коммутатора при насыщенном сердечнике. При большой длительности фронта импульса заряженные частицы, участвующие в процессе ускорения, приобретают большой энергетический разброс, снижающий эффективность использования такого устройства для генерации сильноточных пучков большой энергии.

Задачей предлагаемого изобретения является увеличение эффективности использования линейного индукционного ускорителя.

Технический результат заключается в уменьшении длительности фронта импульса тока пучка ускорителя.

Указанный технический результат достигается тем, что линейный индукционный ускоритель, содержащий, как и прототип, индукционную систему в виде набора ферромагнитных сердечников, охваченных витками намагничивания, которые объединены в два общих вывода, центральный электрод, расположенный по оси индукционной системы, один конец электрода заземлен на корпус ускорителя, а второй связан с защитным экраном, одинарную формирующую линию, заземленный и потенциальный электроды которой соединены с выходом магнитного импульсного генератора, состоящего из последовательных контуров сжатия, каждый из которых образован конденсатором и дросселем насыщения, один из общих выводов витков намагничивания индукционной системы подсоединен к потенциальному электроду формирующей линии, а между вторым общим выводом витков намагничивания индукционной системы и заземленным электродом одинарной формирующей линии включена обмотка магнитного коммутатора, между защитным экраном и выходным фланцем ускорителя расположен цилиндрический вакуумный изолятор, на изоляторе размещена однослойная обмотка размагничивания, подсоединенная одним выводом к импульсному источнику размагничивания, отличается от прототипа тем, что на изоляторе размещена дополнительная обмотка, индуктивно связанная с обмоткой размагничивания, один вывод дополнительной обмотки соединен с защитным экраном, другой подсоединен к обмотке размагничивания и точка соединения обмоток подключена электрическим проводником к центральному электроду, на котором у защитного экрана размещены ферромагнитные сердечники дополнительного дросселя насыщения, при этом контур, образованный дополнительной обмоткой, проводником, частью центрального электрода и защитным экраном охватывает сечение сердечников дополнительного дросселя насыщения и является его короткозамкнутой обмоткой.

Изобретение иллюстрируется графическим материалом, где изображено:

Фиг.1 - Компоновочная схема выходного узла ускорителя, где обозначено: 1 - ферромагнитная индукционная система; 2 - витки намагничивания сердечников индукционной системы 1, имеющие два общих вывода; 3 - центральный электрод; 4 - фланец индукционной системы 1, соединенный с корпусом ускорителя; 5 - защитный экран; 6 - одинарная формирующая линия с емкостью CФ; 7 - магнитный импульсный генератор, состоящий из конденсаторов и дросселей насыщения звеньев сжатия C1-L1, …, CN-LN; 8 - магнитный коммутатор с индуктивностью обмотки LК; 9 - выходной фланец ускорителя; 10 - цилиндрический вакуумный изолятор; 11 - спиральная обмотка размагничивания с индуктивностью LР; 12 - клемма вывода импульсного источника размагничивания; 13 - дополнительная спиральная обмотка с индуктивностью LД; 14 - электрический проводник; 15 - ферромагнитные сердечники дополнительного дросселя насыщения; 16 - часть центрального электрода, ограниченная электрическим проводником и защитным экраном; 17 - нагрузка с импедансом ZН, например, коаксиальный диод релятивистского магнетрона; M - коэффициент взаимоиндукции обмоток 11 и 13; IР - ток в обмотке размагничивания 11; IД - ток в дополнительной обмотке 13; IВ - ток в витках намагничивания 2 сердечников индукционной системы 1; IН - ток в нагрузке 17; а и б - клеммы соединения магнитного импульсного генератора 7 с формирующей линией 6. Полярность на элементах схемы указана для работы устройства с релятивистским магнетроном, когда высоковольтный импульс является отрицательным. При положительной полярности импульса напряжения на нагрузке 17, например в случае работы с отражательным триодом, полярность первичного источника питания и источника размагничивания меняется на противоположную.

Фиг.2 - Принципиальная электрическая схема ускорителя.

Фиг.3 - эпюры тока и напряжения при работе ускорителя на нагрузку 17 с импедансом ZН, например, в виде коаксиального электронного диода; IН - ток в нагрузке 17 (ток пучка); UН - напряжение в цепи нагрузки 17; Umin - напряжение появления тока в цепи нагрузки 17; ΨД - потокосцепление дополнительного дросселя насыщения; iµД - ток намагничивания дополнительного дросселя насыщения; ΔtФ - длительность фронта импульса тока пучка при работе ускорителя без дополнительного дросселя насыщения в цепи нагрузки 17 (пунктирная линия); ΔtФД - длительность фронта импульса тока пучка при работе ускорителя с дополнительным дросселем насыщения в цепи нагрузки 17; ΔtД - время перемагничивания ферромагнитных сердечников 15 дополнительного дросселя насыщения (время задержки рабочего тока нагрузки IH - тока пучка); ΔtИ - длительность импульса тока пучка по основанию при работе ускорителя с дополнительным дросселем насыщения в цепи нагрузки 17; t1-t4 - время процесса.

Устройство содержит индукционную систему 1, состоящую из ряда последовательно установленных тороидальных ферромагнитных сердечников. Ферромагнитные сердечники охвачены витками намагничивания 2. Витки намагничивания 2 объединены с обеих сторон ферромагнитных сердечников в два общих вывода. По оси индукционной системы расположен центральный электрод 3. Один конец центрального электрода 3 через фланец индукционной системы 4 подсоединен к корпусу ускорителя, который заземлен, а второй, высоковольтный конец, подсоединен к защитному экрану 5.

Одинарная формирующая линия 6 с емкостью СФ подключена к выходу магнитного импульсного генератора 7, который выполнен из последовательных контуров Сi-Li, где Ci - конденсатор с емкостью Ci, Li - дроссель насыщения с индуктивностью обмотки Li, i возрастает от 1 до N. Один из общих выводов витков намагничивания индукционной системы 1 соединен с потенциальным электродом (точка а) формирующей линии 6, а между вторым общим выводом витков намагничивания индукционной системы 1 и заземленным электродом формирующей линии 6 (точка б) включена обмотка магнитного коммутатора 8 с индуктивностью LК. Между защитным экраном 5 и выходным фланцем 9 ускорителя расположен цилиндрический вакуумный изолятор 10. На внешней поверхности вакуумного изолятора 10 размещены обмотка размагничивания 11 с индуктивностью LР и дополнительная обмотка 13 с индуктивностью LP. Обмотки 11 и 13 соединены между собой последовательно, выполнены одинаковым проводником с одним направлением намотки и имеют взаимоиндуктивную связь M. Противоположный вывод обмотки 11 подсоединен к клемме 12 импульсного источника размагничивания, а свободный вывод обмотки 13 подключен к защитному экрану 5. Точка соединения обмоток 11 и 13 подключена электрическим проводником 14 к центральному электроду 3, на котором у защитного экрана 5 размещены ферромагнитные сердечники 15 дополнительного дросселя насыщения. Электрический контур, образованный дополнительной обмоткой 13, проводником 14, частью центрального электрода 16 и защитным экраном 5, охватывает сечение ферромагнитных сердечников 15 дополнительного дросселя насыщения и является его короткозамкнутой обмоткой. Система расположения и соединения указанных элементов выходного узла ускорителя по электрической схеме представляет собой воздушный трансформатор с закороченной вторичной обмоткой. Причем вторичная обмотка охватывает сечение ферромагнитных сердечников 15 дросселя насыщения, который при этом выполняет функцию ограничителя тока с временной задержкой. К выводам вторичного контура индукционной системы 1 подключена нагрузка 17 с импедансом ZН.

Устройство работает следующим образом. Первоначально от внешних источников малой мощности производится размагничивание сердечников импульсного трансформатора (не показаны), дросселей насыщения L1-LN магнитного импульсного генератора 7, магнитного коммутатора 8 и индукционной системы 1. С приходом управляющего импульса на тиристорный блок накопительный конденсатор первичного источника питания подключается к первичной обмотке импульсного трансформатора (не показаны). Начинается заряд входных конденсаторов МИГ 7. Работа МИГ заключается в передаче энергии от звена к звену с последовательным временным сжатием импульсов на каждой последующей ступени в 2-4 - раза. При этом достигается «быстрая» (за сотни не) зарядка формирующей линии 6, обеспечивающая срабатывание одновиткового магнитного коммутатора 8 с относительно небольшим сечением сердечника.

Поскольку обмотка размагничивания 11 подключена к клемме 12 импульсного источника размагничивания, то после подачи управляющего импульса одновременно с зарядом входных конденсаторов МИГ 7 начинается формирование тока в цепи индуктивности LР для дополнительного размагничивания сердечников индукционной системы 1. Величина тока IР, протекающего по обмотке 11, определяется согласно уравнению, описывающему работу воздушного трансформатора, включенного на постоянное напряжение U0 при замкнутой вторичной обмотке [Гинзбург С.Г. Методы решения задач по переходным процессам в электрических цепях // М.: Высш. шк., 1967, с.99]

где U0 - напряжение первичного источника питания;

R1 - сопротивление первичного контура;

δ1 - коэффициент затухания первичного контура;

σ - общий коэффициент рассеяния.

Ток IР протекает по центральному электроду 3 и имеет направление в пространстве, встречное с током IВ в витках намагничивания 2 сердечников индукционной системы 1 (фиг.1 и фиг.2). Это позволяет произвести дополнительное размагничивание ферромагнитных сердечников индукционной системы 1 до более глубокого отрицательного насыщения.

За счет взаимоиндуктивной связи M между обмотками 11 и 13 в обмотке 13 наводится ток IД, максимальная величина которого равна

где M - коэффициент взаимоиндукции обмоток 11 и 13 с индуктивностями LР и LД, соответственно;

p1,2 - корни характеристического уравнения;

δ1 и δ2 - коэффициенты затухания контуров;

δ = ( δ 1 + δ 2 ) 2 4 σ δ 1 δ 2 - число вещественное.

Направление тока IД на участке 16 центрального электрода 3 является встречным к рабочему току нагрузки IН ускорителя (фиг.1 и фиг.2). Поэтому ток IД, наведенный в короткозамкнутой обмотке дополнительного дросселя насыщения, производит размагничивание его сердечников 15, расположенных на центральном электроде 3, перед рабочим импульсом до состояния насыщения, противоположного протеканию тока нагрузки IН.

В то же время, после компрессии импульса в звеньях МИГ, под действием нарастающего напряжения на формирующей линии 6 ферромагнитный сердечник магнитного коммутатора 8 начинает перемагничиваться и при его насыщении формирующая линия 6 емкостью CФ разряжается на витки намагничивания 2 индукционной системы 1, которая также перемагничивается. Индуцируемое при этом напряжение через центральный электрод 3, фланец 4 индукционной системы 1 и корпус ускорителя поступает на нагрузку 17. В ускорителе это означает локализацию напряжения в промежутке катод-анод инжекторного модуля. В это время индукционная система 1 работает в режиме холостого хода, так как пучок в ускорителе отсутствует.

В процессе формирования высоковольтного импульса в нагрузке 17 напряжение прикладывается к обмотке 11 и в ней происходит увеличение тока IР на величину

При этом в дополнительной обмотке 13 за счет взаимоиндукции M происходит рост тока IД. Причем ток IД в обмотке 13 резко изменяется в основном на фронте импульса при перемагничивании сердечников 15 дополнительного дросселя насыщения, так как она является частью короткозамкнутого контура, охватывающего его ферромагнитные сердечники. Увеличение тока IД в обмотке 13 за время перемагничивания сердечников 15 дополнительного дросселя насыщения будет равно

Направление размагничивающих токов IР и IД не изменяется как при питании от источника размагничивания (U0), так и при генерации высокого напряжения (UН), поскольку полярность приложенных напряжений остается одинаковой. Ток IР имеет согласное направление в центральном электроде 3 с током нагрузки IН, а ток IД - встречное в части 16 центрального электрода 3 (направление токов для выбранной полярности нагрузки ускорителя показано на фиг.1 и фиг.2).

Процессы, происходящие в комплексной нагрузке ZН ускорителя, например, коаксиальном электронном диоде, проиллюстрированы на фиг.3. При локализации напряжения в промежутке катод-анод инжекторного модуля индукционная система 1 работает в режиме холостого хода до момента времени t2, так как пучок в ускорителе отсутствует. В этот момент времени, когда напряжение в межэлектродном зазоре вырастет до значения Umin, начинается эмиссия электронов с катода, но ток пучка IН задерживается дополнительным дросселем насыщения, его величина в интервале времени t2-t3 ограничивается на уровне тока перемагничивания iµД ферромагнитных сердечников 15 дополнительного дросселя (IH=iµД). В момент времени t3 сердечники 15 дополнительного дросселя насыщаются и ток IН резко возрастает до номинального значения. Здесь исключается влияние индуктивности обмотки LК магнитного коммутатора 8 на формирование импульса в нагрузке. Поэтому длительность фронта импульса будет меньше, чем в устройстве прототипа, поскольку она определяется лишь индуктивностью вторичного контура (вторичный виток индукционной системы 1 - нагрузка ZH) и величиной действующего напряжения UНС.

Из изложенного выше следует, что величину потокосцепления ΨД дополнительного дросселя насыщения необходимо выбирать с учетом требуемого времени укорочения фронта импульса, равного времени перемагничивания ΔtД ферромагнитных сердечников 15 дополнительного дросселя:

где UНС - среднее действующее напряжение, приложенное к обмотке дополнительного дросселя насыщения;

WД и SД - число витков и общая площадь поперечного сечения ферромагнитных сердечников 15 дополнительного дросселя насыщения;

ΔB - максимальное приращение индукции магнитного поля (для пермаллоя марки 50НП ΔB=2,5Т).

При этом длительность фронта импульса тока пучка будет равна

Таким образом, в предлагаемом линейном индукционном ускорителе уменьшение длительности фронта импульса тока пучка на величину времени перемагничивания ферромагнитных сердечников 15 дополнительного дросселя насыщения ведет к обострению фронта импульса, а это позволяет выполнить задачу формирования более моноэнергетичного пучка и повысить, тем самым, эффективность использования ускорителя.

Обратное размагничивание ферромагнитных сердечников 15 дополнительного дросселя насыщения осуществляется автоматически перед каждым рабочим импульсом ускорителя при разряде его первичного источника питания.

Пример реализации устройства.

ЛИУ предназначен для импульсного питания релятивистского магнетрона с импедансом ZН≈100 Ом, построен на магнитных элементах и может работать с частотой следования импульсов до 400 Гц. Номинальные выходные параметры устройства: напряжение UН=450 кВ, ток IН≈4,5 кА, длительность импульса по основанию ΔtИ=120 нс. Высоковольтный вакуумный изолятор 10 цилиндрической формы имеет длину 405 мм, наружный диаметр 220 мм. На внешней поверхности изолятора 10 уложены две спиральные обмотки 11 и 13 из медной шинки без изоляции с размером сечения 6×1,4 мм2. Обмотка 11 с индуктивностью LР=0,28 мГн имеет длину a1=250 мм, диаметр d1=222 мм, число витков w1=45 и является элементом цепи размагничивания сердечников индукционной системы 1. Один из ее выводов подсоединен к первичной обмотке импульсного трансформатора, на которую подается напряжение U0=2,6 кВ от первичного источника питания.

Для ограничения тока размагничивания IР в цепь индуктивности LР включено сопротивление R1=30 Ом. Обмотка 13 с индуктивностью LД=0,1 мГн имеет длину a2=132 мм, диаметр d2=222 мм, число витков w2=22 и является элементом цепи размагничивания дополнительного дросселя насыщения, предназначенного для обострения фронта импульса тока магнетрона. Цепь с индуктивностью LД имеет сопротивление R2=0,035 Ом. Обмотки 11 и 13 имеют взаимную индуктивность M=36,5 мкГн, за счет которой в короткозамкнутом контуре, включающем индуктивность LД, наводится ток IД, обеспечивающий размагничивание сердечников 15 дополнительного дросселя насыщения, установленного на участке 16 центрального электрода 3. Коэффициент связи обмоток 11 и 13 k = M / L P L Д = 0,218 .

Конструктивно дополнительный дроссель насыщения состоит из четырех ферромагнитных тороидальных сердечников 15 прямоугольного сечения размером К150×60×25 (внешний диаметр-внутренний диаметр-ширина в мм), изготовленных из пермаллоевой ленты марки 50НП толщиной 0,01 мм, коэффициент заполнения сердечников сталью равен 0,8. Обмоткой дополнительного дросселя является короткозамкнутый виток, образованный цепью, состоящей из дополнительной спиральной обмотки 13, электрического проводника 14, участка центрального электрода 16 и защитного экрана 5. Обмотки 11 и 13 расположены в вакуумном объеме, а высоковольтной изоляцией ферромагнитных сердечников 15 дополнительного дросселя насыщения является трансформаторное масло.

Процесс размагничивания дополнительного дросселя насыщения начинается при подаче импульса напряжения U0 от первичного источника питания на первичную обмотку импульсного трансформатора, к которой подключен через резистор R1 вывод 12 обмотки размагничивания 11. Величина тока IР≈86 А (1), протекающего по центральному электроду 3 в направлении, противоположном току IВ в витках намагничивания 2 сердечников индукционной системы 1, способствует размагничиванию сердечников (направления токов показаны на фиг.1 и фиг 2). Система расположения и соединения двух обмоток 11 и 13 представляет собой воздушный трансформатор с закороченной вторичной обмоткой, охватывающей сечение ферромагнитных сердечников 15. Поэтому при протекании в первичной обмотке 11 тока IР во вторичной обмотке 13 под воздействием взаимной индукции M наводится ток IД, имеющий направление на участке 16 в центральном электроде 3, противоположное направлению рабочего тока нагрузки IН. Этот ток IДmax≈31 А (2) размагничивает ферромагнитные сердечники 15 дополнительного дросселя до области отрицательного насыщения.

В процессе формирования импульса высокого напряжения магнетрона токи в обмотках 11 и 13 увеличиваются на величину: ΔIР≈193 А (3) и ΔIД≈78 A (4).

По экспериментальным данным длительность фронта ΔtФ импульса тока пучка в устройстве прототипа составляет около 35 нс (фиг.3). В предлагаемом устройстве рост тока IН в цепи нагрузки ZН под воздействием приложенного высокого напряжения UНС задерживается процессом перемагничивания ферромагнитных сердечников 15 дополнительного дросселя насыщения в течение времени ΔtД≈20 нс, которое зависит от выбранного потокосцепления ΨД (5). В этом случае длительность фронта ΔtФД импульса тока пучка IН согласно (6) составит примерно 15 нс, что в 2,3 раза короче, чем у прототипа.

Таким образом, применение в линейном индукционном ускорителе дополнительного дросселя насыщения, установленного на высоковольтной части 16 центрального электрода 3 в цепи нагрузки 17 внутри цилиндрического вакуумного изолятора 10 и имеющего короткозамкнутую обмотку 13, индуктивно связанную с обмоткой размагничивания 11, позволяет сократить длительность фронта импульса тока пучка более чем в 2 раза по сравнению с известным устройством. Задержка тока релятивистского магнетрона, связанная с перемагничиванием ферромагнитных сердечников 15 дополнительного дросселя насыщения и ведущая к обострению фронта импульса, способствует образованию равномерного по плотности электронного облака вблизи катода, улучшению формирования «спиц» в пространстве взаимодействия магнетрона и повышению эффективности преобразования кинетической энергии электронного облака в СВЧ-энергию.

Линейный индукционный ускоритель, содержащий индукционную систему в виде набора ферромагнитных сердечников, охваченных витками намагничивания, которые объединены в два общих вывода, центральный электрод, расположенный по оси индукционной системы, один конец электрода заземлен на корпус ускорителя, а второй связан с защитным экраном, одинарную формирующую линию, заземленный и потенциальный электроды которой соединены с выходом магнитного импульсного генератора, состоящего из последовательных контуров сжатия, каждый из которых образован конденсатором и дросселем насыщения, один из общих выводов витков намагничивания индукционной системы подсоединен к потенциальному электроду формирующей линии, а между вторым общим выводом витков намагничивания индукционной системы и заземленным электродом одинарной формирующей линии включена обмотка магнитного коммутатора, между защитным экраном и выходным фланцем ускорителя расположен цилиндрический вакуумный изолятор, на изоляторе размещена однослойная обмотка размагничивания, подсоединенная одним выводом к импульсному источнику размагничивания, отличающийся тем, что на изоляторе размещена дополнительная обмотка, индуктивно связанная с обмоткой размагничивания, один вывод дополнительной обмотки соединен с защитным экраном, другой подсоединен к обмотке размагничивания и точка соединения обмоток подключена электрическим проводником к центральному электроду, на котором у защитного экрана размещены ферромагнитные сердечники дополнительного дросселя насыщения, при этом контур, образованный дополнительной обмоткой, проводником, частью центрального электрода и защитным экраном, охватывает сечение сердечников дополнительного дросселя насыщения и является его короткозамкнутой обмоткой.



 

Похожие патенты:

Изобретение относится к области ускорительной техники и может быть использовано для моделирования микрометеоритов и техногенных частиц. Резонансный ускоритель пылевых частиц содержит инжектор, индукционные датчики, усилители, мишень.

Изобретение относится к области ускорительной техники и может быть использовано в качестве инжектора пылевых частиц в стенде для проведения испытаний по воздействию разнонаправленных потоков ускоренных частиц на материалы и элементов конструкции космических аппаратов.

Изобретение относится к ускорительной технике наносекундного диапазона и предназначено для генерации мощных электронных пучков, используемых в СВЧ приборах, радиационных технологиях и научных исследованиях.

Изобретение относится к устройствам импульсных излучателей с получением разовых или многоразовых импульсов нейтронного и рентгеновского излучения. В заявленном блоке излучателя нейтронов нейтронная трубка (8) с металлическим корпусом (9) герметично закреплена на торце корпуса блока схемы питания, имеет с ним тепловой и электрический контакты с возможностью смены нейтронной трубки.

Изобретение относится к области ускорительной техники и может быть использовано для моделирования микрометеоритов и техногенных частиц. Ускоритель высокоскоростных твердых частиц содержит инжектор, индукционные датчики, усилители, линейный ускоритель, источник фиксированного высокого напряжения, цилиндрические электроды, селектор скоростей, селектор удельных зарядов, камеру высокого давления, блок формирования девиации частоты, высокочастотный конвертор, повышающий импульсный трансформатор и мишень.

Изобретение относится к способам регистрации аномальной дисперсии неоднородного протяженного плазменного столба и может быть использовано в спектроскопии в неоднородных газовых и плазменных средах, в лазерной спектроскопии и в спектральном анализе газообразных веществ.

Изобретение относится к области ускорительной техники и может быть использовано в качестве инжектора пылевых частиц для последующей ускорительной системы. Инжектор заряженных пылевых частиц, содержащий корпус, зарядный электрод, зарядную камеру, внешний составной электрод зарядной камеры, иглу (или набор игл), бункерную камеру.

Изобретение относится к области ускорительной техники и может быть использовано для моделирования микрометеоритов и техногенных частиц. Каскадный импульсный ускоритель твердых частиц содержит инжектор, индукционные датчики, усилители, цилиндрические электроды, резисторы делителя, колонны разделительных сопротивлений, высоковольтные конденсаторы, неуправляемые разрядники, управляемые разрядники, систему управления, датчик тока, источник высокого напряжения, шину данных, мишень, согласующее устройство, электронно-вычислительную машину.

Заявленное изобретение относится к приборам для ускорения ионов в электростатических полях, конкретно к технике генерации нейтронов при ядерном взаимодействии дейтронов с тритиевыми мишенями.
Изобретение относится к высоковольтной ускорительной технике и, в частности, к ленточным транспортерам зарядов электростатических ускорителей. В качестве многослойной тканевой основы транспортировочной ленты используют полиэфирно-хлопковую ткань, слои которой соединяют между собой клеем с высокой адгезией, а плакировочные слои ткани выполняют из резиновой смеси на основе бутадиен-нитрильного каучука, включающего мел и каолин.

Изобретение относится к области ускорительной техники и может быть использовано для моделирования микрометеоритов и техногенных частиц. Устройство для исследования физических явлений при высокоскоростном ударе состоит из ускорительного тракта, содержащего инжектор, индукционные датчики, линейный ускоритель, мишень, согласно изобретению в ускорительный тракт введены соосно расположенные квадруполь, установленный за индукционными датчиками, и блок разряда частиц, сетки заземления, расположенные на входе и выходе блока разряда частиц после линейного ускорителя, приемник ионов, установленный перед мишенью, дополнительно введен второй ускорительный тракт, расположенный под углом от 1° до 10° к первому ускорительному тракту, состоящий из инжектора, индукционных датчиков, линейного ускорителя, мишени, квадруполя, блока разряда частиц, сетки заземления, приемника ионов, а также дополнительно в устройство введен измерительный блок, соединенный с блоком датчиков, приемниками ионов обоих усилительных трактов и блоком сбора информации, а также веден блок управляющих сигналов, соединенный с индукционными датчиками, квадруполями, линейными ускорителями, блоками разряда частиц обоих усилительных трактов и блоком сбора информации. Технический результат - расширение функциональных возможностей за счет возможности исследовать физические эффекты при встречном столкновении высокоскоростных частиц. 1 ил.

Изобретение относится к технике ускорителей и может быть использовано при создании сильноточных импульсных ускорителей электронов, в частности вакуумных диодных узлов сильноточных ускорителя электронов с двойным катодом и механизмом оперативного изменения рабочего тока. Технический результат - повышение надежности. Устройство содержит вакуумный корпус с анодной диафрагмой и катододержателем, в котором перед анодной диафрагмой закреплен катод, выполненный в виде рабочего и балластного катодов, установленных на подвижном поршне, а также гидравлическую передачу, содержащую установленный вне вакуумного корпуса задающий механизм, диэлектрическую трубку, установленную в вакуумном корпусе и соединенную входным концом с задающим механизмом с возможностью подачи в нее рабочей жидкости гидравлической передачи, и гибкий шланг. Подвижный поршень снабжен исполнительным механизмом гидравлической передачи, выходной конец диэлектрической трубки закреплен в корпусе катододержателя, гибкий шланг установлен между выходным концом диэлектрической трубки, покрытой слоем электропроводящего материала, и исполнительным механизмом гидравлической передачи с возможностью передачи в него рабочей жидкости, в качестве которой используют электропроводящую жидкость. В месте соединения диэлектрической трубки и шланга обеспечивается гальванический контакт электропроводящей жидкости с высоковольтным корпусом катододержателя, а в месте соединения диэлектрической трубки с заземленным вакуумным корпусом обеспечивается гальванический контакт электропроводящей жидкости с вакуумным корпусом. 1 ил.

Изобретение относится к области ускорительной техники и может быть использовано для моделирования микрометеоритов и техногенных частиц. Ускоритель высокоскоростных твердых частиц содержит инжектор, индукционные датчики, усилители, линейный ускоритель, источник фиксированного высокого напряжения, цилиндрические электроды, селектор скоростей, селектор удельных зарядов, блок подачи напряжения на электроды, цилиндрические электроды, генератор изменяемых во времени частоты и длительности импульсов в пачке, блок сопряжения, электронно-вычислительную машину, усилитель пачки импульсов переменной длительности, каскадный генератор, мишень, согласно изобретению в ускоритель введен блок контроля и селектор координат, при этом блок контроля соединен к селектору координат, который подсоединен к генератору изменяемых во времени частоты и длительности импульсов в пачке. Технический результат - возможность корректировать вектор скорости частицы в процессе ее полета. 2 ил.

Изобретение относится к ускорительной технике и может быть применено для получения пучков заряженных частиц для ионной имплантации, нейтронозахватной терапии рака или для обнаружения взрывчатых и наркотических веществ, а также калибровки детекторов слабовзаимодействующих частиц темной материи и других приложений. В заявленном ускорителе-тандеме между трактом транспортировки пучка отрицательных ионов водорода низкой энергии и ускорителем размещены металлическое кольцо, охлаждаемая металлическая диафрагма, покрытая со стороны ускорителя сеткой под отрицательным потенциалом, вакуумный насос, а также на выходе из ускорителя поверхность вакуумного бака покрыта сеткой под отрицательным потенциалом. Техническим результатом является уменьшение паразитных потоков заряженных частиц в ускорительном канале, улучшение устойчивости работы ускорителя к пробоям по полному напряжению и увеличение тока протонного пучка. 3 ил.

Изобретение относится к технике ускорения заряженных частиц в сильных электрических полях, конкретно к методам коллективного ускорения ионов импульсными электронными потоками. Технический результат - увеличение тока ускоренных дейтронов при сохранении или уменьшении размеров дрейфового пространства. Сущность изобретения заключается в том, что в способе ускорения ионов импульсным электронным потоком, при котором формируют высоковольтный импульс отрицательного напряжения на катоде диода с использованием двухэлектродного разрядника, образуют поток электронов взрывной эмиссии с катода, запирают электронный поток в цилиндрической трубе дрейфа с формированием потенциальной ямы для положительно заряженных частиц, фокусируют излучение импульсного лазера на твердую мишень, образуют сгусток лазерной плазмы, расширяющийся к оси диода, ионизируют электронным потоком нейтральные атомы лазерной плазмы, компенсируют отрицательный объемный заряд внутри потенциальной ямы и ускоряют полученные ионы вдоль трубы дрейфа, часть лазерного излучения, необходимую для стабильного пробоя разрядника, фокусируют на его электрод и через время задержки τз после лазерного импульса возбуждают нарастающий ток в конусообразной спиральной линии, создают с помощью спиральной линии в области потенциальной ямы быстронарастающее азимутально-симметричное магнитное поле, спадающее по величине вдоль трубы дрейфа, и воздействуют им на сгусток электронов и ионов.1 ил.

Изобретение относится к устройству для облучения образцов материалов электронами. Заявленное устройство состоит из герметичной камеры, представляющей собой цилиндрический корпус с патрубками, разделенный изолятором на две части, внутри которой расположены держатель образца, соединенный со средствами охлаждения, термопар, соединенных с вакуумным токовводом, расположенным на торцевой крышке камеры. На входе камеры установлена диафрагма для точной подачи электронов на образец. Техническим результатом является возможность проведения облучения образцов материалов потоком электронов от внешнего источника (ускорителя электронов). 3 з.п. ф-лы, 1 ил.
Наверх