Амперометрический способ измерения концентрации аммиака в азоте

Изобретение относится к области газового анализа и может быть использовано для решения технологических задач и задач экологического контроля. Концентрацию аммиака в анализируемом газе определяют по зависимости изменения величины одной из электрических характеристик электрохимической ячейки от количества аммиака, окисленного на поверхности внутренних электродов электрохимической ячейки, выполненных из электродного материала. Для этого в поток анализируемого газа помещают электрохимическую ячейку с полостью, образованной двумя дисками из кислородпроводящего твердого электролита, на противоположных поверхностях дисков расположены по паре электродов, к электродам дисков подают напряжение постоянного тока в пределах 400-500 мВ с подачей положительного полюса на внутренние электроды, посредством которого осуществляют электролиз паров воды, находящихся в анализируемом газе, и накачку полученного в результате электролиза кислорода из потока анализируемого газа в полость ячейки по электрохимической цепи: наружные электроды - твердые электролиты - внутренние электроды, в процессе достижения стационарного состояния, когда диффузионный поток продуктов окисления аммиака из полости ячейки станет равным поступающему потоку анализируемого газа, поступающего в нее, измеряют протекающий через ячейку предельный ток и по величине предельного тока, соответствующего содержанию кислорода, потраченного на окисление аммиака, определяют концентрацию аммиака в азоте. Изобретение обеспечивает возможность просто и надежно измерять содержание аммиака в азоте. 1 з.п. ф-лы, 3 ил.

 

Изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для регистрации и измерения содержания аммиака в азоте. Изобретение может быть использовано для решения технологических задач и задач экологического контроля.

Известен способ определения концентрации аммиака (RU 2068560, опубл. 27.10.1996) [1]. Способ заключается в переводе аммиака в аэрозоль путем пропускания в течение не более 85 ч анализируемого воздуха над реагентом - кристаллогидратом азотнокислого железа. Перед пропусканием анализируемого воздуха реагент выдерживают до постоянной массы над раствором азотной кислоты концентрации 55-65 мас. %. Полученный аэрозоль направляют в электроиндукционный пылемер и регистрируют концентрацию аэрозоля в единицах концентрации аммиака. Способ характеризуется трудоемкостью, необходимостью использования расходных реагентов, длительностью анализа.

Наибольшее распространение для измерения содержания аммиака получили способы с использованием покрытий, нанесенных на диэлектрик, которые адсорбируют аммиак из газа носителя. Так, известен датчик для определения аммиака (RU 2478942, опубл 10.05.2012) [2]. В результате адсорбции происходит изменение сопротивления этого покрытия и по величине изменения тока в цепи судят о концентрации аммиака в анализируемом газе. Данный способ измерения характеризуется плохой воспроизводимостью, т.к. нанесение покрытий с одинаковыми характеристиками по крупности, толщине, составу покрытия практически невозможно. Кроме того, с течением времени будет происходить пассивация покрытия, что изменит характеристики датчика.

Известен способ измерения аммиака, в котором на подложку, являющуюся электродной площадкой пьезокварцевого резонатора, наносят поликристаллическую пленку селенида цинка, легированного селенидом кадмия. Этот способ реализован в газовом датчике (RU 2464552, опубл 22.04.2011) [3] и полупроводниковом газоанализаторе (RU 2464553, опубл. 10.05.2012) [4]. В зависимости от содержания аммиака в омывающем пленку газе, наблюдается изменение частоты колебаний пьезокварцевого резонатора. Данный способ измерения аммиака имеет те же недостатки, что и вышеописанные способы.

Наиболее близким к заявляемому изобретению является способ определения концентрации аммиака и его производных в газовой среде (RU 2473893, опубл. 27.01.2013) [5]. Для реализации способа используют сенсор, обладающий повышенной чувствительностью к диоксиду азота и к аммиаку, а также конвертер, в качестве которого может быть использована, например, подогреваемая трубка, наполненная катализатором или соединенная с нагревательным элементом диэлектрическая пластинка с нанесенным на нее слоем катализатора, способного превращать аммиак в оксиды азота, то есть каталитически окислять аммиак или его производные:

Конвертер может работать в стационарном режиме, то есть непрерывно находиться при температуре, обеспечивающей каталитическое превращение, или в нестационарном режиме, при котором температура конвертера, обеспечивающая каталитическое превращение, сменяется температурой, при которой каталитическое превращение не протекает.

Сенсор и конвертер помещают в камеру, имеющую отверстие для попадания в камеру исследуемой газовой среды. Оксиды азота, в отличие от аммиака, не уменьшают, а увеличивают сопротивление полупроводника n-типа в результате хемосорбции (акцепторный сигнал). После того, как аммиак и его производные превращаются в оксиды азота с помощью конвертера, измеряют электрическое сопротивление полупроводникового сенсора и по величине этого сопротивления определяют концентрацию аммиака в газовой среде. Способ обеспечивает высокую селективность и стабильность измерений.

С помощью данного способа можно измерять содержание аммиака и его производных в воздушной или другой окислительной среде. В среде инертного газа, например азота, где свободный окислитель отсутствует, измерение концентрации аммиака описанным способом невозможно.

Задача настоящего изобретения заключается в создании способа, позволяющего достаточно просто и надежно измерять содержание аммиака в азоте.

Для решения поставленной задачи предложен амперометрический способ измерения концентрации аммиака в азоте, заключающийся в том, что концентрацию аммиака в анализируемом газе определяют по зависимости изменения величины одной из электрических характеристик электрохимической ячейки от количества аммиака, окисленного на поверхности внутренних электродов электрохимической ячейки, выполненных из электродного материала, при этом в поток анализируемого газа помещают электрохимическую ячейку с полостью, образованной двумя дисками из кислородпроводящего твердого электролита, на противоположных поверхностях дисков расположены по паре электродов, к электродам дисков подают напряжение постоянного тока в пределах 400-500 мВ с подачей положительного полюса на внутренние электроды, посредством которого осуществляют электролиз паров воды, находящихся в анализируемом газе, и накачку полученного в результате электролиза кислорода из потока анализируемого газа в полость ячейки по электрохимической цепи: наружные электроды - твердые электролиты - внутренние электроды, в процессе достижения стационарного состояния, когда диффузионный поток продуктов окисления аммиака из полости ячейки станет равным поступающему потоку анализируемого газа, поступающего в нее, измеряют протекающий через ячейку предельный ток и по величине предельного тока, соответствующего содержанию кислорода, потраченного на окисление аммиака, определяют концентрацию аммиака в азоте. В качестве каталитического материала используют платину.

Подача на электроды напряжения постоянного тока в пределах 400-500 мВ с подачей положительного полюса на электроды, находящиеся внутри ячейки, обеспечивает накачку кислорода, полученного в результате диссоциации присутствующей в газовой смеси влаги, из анализируемого газового потока в полость ячейки. В полости ячейки накачанный кислород взаимодействует с аммиаком, поступившим туда в смеси с азотом из анализируемой среды. При этом на поверхности внутренних электродов ячейки, выполненных из электродного материала, будет интенсивно идти процесс взаимодействия аммиака с кислородом в соответствии с реакциями (1, 2). При достижении напряжения постоянного тока величины 400-500 мВ ток стабилизируется и перестает расти с ростом напряжения. Полученный ток является предельным током, а его величина обусловлена газообменом между анализируемой средой и газом в полости ячейки. Величина предельного тока сенсора лимитируется диффузионным барьером - капилляром сенсора и связана с концентрацией аммиака (Иванов-Шиц, И.Мурин, Ионика твердого тела, том 2, С.-Петербург (2010). С. 964-965 уравнением (3):

где:

D(аммиак-инертный газ) - коэффициент диффузии аммиака в инертном газе, см2/с;

X(аммиак) - мольная доля аммиака в инертном газе;

S - площадь сечения капилляра, мм2;

Р - общее давление газовой смеси, атм;

Т - температура анализа, К;

L - длина капилляра, мм.

В соответствии с уравнением (3) достаточно легко рассчитать содержание аммиака по измеренному значению предельного тока IL(аммиак - инертный газ).

Новый технический результат, достигаемый заявленным способом, заключается в получении возможности измерения аммиака в смеси с инертным газом и упрощении измерительного устройства путем изготовления его из простого и хорошо изученного кислородпроводящего твердого электролита.

Изобретение иллюстрируется рисунками, где на фиг. 1 изображена электрохимическая ячейка для реализации способа; на фиг. 2 - вольт-амперная характеристика при анализе аммиака в смеси аммиак + азот при 500°C; на фиг. 3 - концентрационная зависимость величины предельного тока от концентрации аммиака в смеси с азотом. Электрохимическая ячейка для реализации способа измерения аммиака состоит из двух дисков 1, выполненных из кислородпроводящего твердого электролита состава 0,9ZrO2 + 0,1Y2O3. На противоположных поверхностях каждого из дисков 1 расположены по два наружных электрода 2 и по два внутренних электрода 3. Диски 1 соединены между собой газоплотным герметиком 4 с образованием внутренней полости. Между дисками находится капилляр 5. Подача напряжения на электроды 2 и 3 осуществляется от источника напряжения постоянного тока (ИПТ). Ток, возникающий в цепи ячейки, измеряется амперметром (А). Электрохимическая ячейка помещена в поток анализируемого газа, который омывает ее наружную поверхность и по капилляру 5 поступает во внутреннюю полость ячейки. Под действием напряжения постоянного тока, приложенного от источника (ИПТ) к электродам 2 и 3, причем на внутренние электроды 3 приложен плюс, через твердый кислородпроводящий электролит происходит накачка кислорода из анализируемого газа во внутреннюю полость ячейки. В полости поступивший кислород взаимодействует на поверхности каталитических электродов 3 с аммиаком. Образовавшиеся продукты взаимодействия, в соответствии с уравнениями (1-2), обмениваются через капилляр 5 с анализируемым газом. При этом капилляр 5 является диффузионным барьером, лимитирующим этот газовый поток обмена. Этому потоку обмена будет соответствовать и ток ячейки. При достижении приложенного напряжения величины в пределах 400-500 мВ, газообмен между полостью ячейки и анализируемой средой стабилизируется и в цепи устанавливается предельный диффузионный ток - IL(аммиак - азот), который измеряют с помощью амперметра (А). Посредством уравнения (3) по величине измеренного IL(аммиак - азот) можно определить величину X(аммиак), т.е. концентрацию аммиака в азоте.

Таким образом, заявленный способ позволяет измерить содержание аммиака в смеси с азотом или другим инертным газом посредством амперометрической ячейки с кислородпроводящим твердым электролитом.

1. Амперометрический способ измерения концентрации аммиака в азоте, заключающийся в том, что концентрацию аммиака в анализируемом газе определяют по зависимости изменения величины одной из электрических характеристик электрохимической ячейки от количества аммиака, окисленного на поверхности внутренних электродов электрохимической ячейки, выполненных из электродного материала, отличающийся тем, что в поток анализируемого газа помещают электрохимическую ячейку с полостью, образованной двумя дисками из кислородпроводящего твердого электролита, на противоположных поверхностях дисков расположены по паре электродов, к электродам дисков подают напряжение постоянного тока в пределах 400-500 мВ с подачей положительного полюса на внутренние электроды, посредством которого осуществляют электролиз паров воды, находящихся в анализируемом газе, и накачку полученного в результате электролиза кислорода из потока анализируемого газа в полость ячейки по электрохимической цепи: наружные электроды - твердые электролиты - внутренние электроды, в процессе достижения стационарного состояния, когда диффузионный поток продуктов окисления аммиака из полости ячейки станет равным поступающему потоку анализируемого газа, поступающего в нее, измеряют протекающий через ячейку предельный ток и по величине предельного тока, соответствующего содержанию кислорода, потраченного на окисление аммиака, определяют концентрацию аммиака в азоте.

2. Способ по п. 1, отличающийся тем, что в качестве электродного материала используют платину.



 

Похожие патенты:

Изобретение относится к области аналитической химии. Согласно изобретению предложен способ определения серебра катодной вольтамперометрией из фонового раствора, содержащего 4,5 мл 1 М KNO3 и 0,5 мл 0,1 М этилендиаминтетраацетата натрия (ЭДТА), из образующегося комплексного соединения на стеклоуглеродном электроде.

Изобретение относится к области аналитической химии и может быть использовано в фармакокинетических исследованиях, для контроля продуктов сельскохозяйственного производства растительного происхождения.

Изобретение относится к аналитической химии и может быть использовано в исследовательской и производственной практике. Согласно изобретению предлагается определять флуоресцеин натрия вольтамперометрически на стационарном электроде из стеклоуглерода по волне восстановления указанного соединения в кислой среде на фоне 0,1 н.

Изобретение направлено на определение золота (III) в водных растворах методом дифференциально-импульсной вольтамперометрии и может быть использовано в различных отраслях народного хозяйства.

Cпособ определения метионина в комбикормах методом катодной вольтамперометрии согласно изобретению включает следующие операции. Метионин переводят из комбикормового сырья в раствор.

Изобретение относится к технике измерения содержания растворенного газа в жидких и газовых средах, предназначено в основном для применения в океанографической аппаратуре и может быть использовано в горной, химической промышленности, в разных технологических и экологических системах измерения и контроля содержания растворенного газа в исследуемой среде. Технический результат - обеспечение основных метрологических характеристик устройства - чувствительность и долговременная стабильность.

Изобретение относится к медицине и описывает способ определения липоевой кислоты в биологически активных добавках методом катодной вольтамперометрии, включающий перевод вещества из пробы в раствор и вольтамперометрическое определение, при этом проводят катодную вольтамперометрию на ртутно-пленочном электроде при потенциале -0.373 В относительно насыщенного хлорид-серебряного электрода на фоне боратного буферного раствора pH 9,18 при постоянно токовой форме развертки потенциала со скоростью 0,06 В/с с областью определяемых содержаний липоевой кислоты от 4.5·106 до 1.1·10-3 моль/л.

Изобретения относятся к технике измерения содержания растворенного газа в жидких и газовых средах, предназначены в основном для применения в океанографической аппаратуре и могут быть использованы в горной, химической промышленности, в разных технологических и экологических системах измерения и контроля содержания растворенного газа в исследуемой среде. Технический результат - упрощение обеспечения основных метрологических характеристик устройства - чувствительности и показателя инерции.

Изобретение может быть использовано в различных отраслях народного хозяйства для определения содержания в растворах различных концентраций ионов металлов. Способ определения родия в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления индия из интерметаллического соединения RhxIny заключается в том, что родий (III) в растворе переводят в хлоридный комплекс и проводят вольтамперометрическое определение, при этом накопление ионов родия на сажевом электроде в перемешиваемом растворе в присутствии ионов индия (III) проводят в течение 60-120 секунд с последующей регистрацией анодных пиков селективного электроокисления индия из интерметаллического соединения RhxIny при скорости развертки потенциала 60-100 мВ/с при потенциалах электролиза минус 1,2 В на фоновом электролите 1 М HCl, концентрацию ионов родия определяют по высоте анодного пика индия на вольтамперной кривой в диапазоне потенциалов от минус 0,2 до плюс 0,1 В относительно насыщенного хлоридсеребряного электрода методом добавок аттестованных смесей.
Изобретение относится к электроаналитической химии и может быть использовано для анализа питьевой, поверхностной воды и других водных объектов. Способ вольтамперометрического определения фенола в воде и водных объектах с помощью трехэлектродной системы, включающий предварительную модифицирующую электрохимическую обработку стеклоуглеродного индикаторного электрода системы, проведение измерений концентрации фенола в воде, включающих электрохимическое осаждение фенола на модифицированную поверхность индикаторного электрода из анализируемой воды, последующее электроокисление фенола при изменении потенциала индикаторного электрода, регистрацию на вольтамперной кривой аналитического сигнала, идентификацию пика фенола на вольтамперной кривой и определение концентрации фенола по величине пика фенола, характеризующийся тем, что предварительную модифицирующую электрохимическую обработку индикаторного электрода проводят в водном растворе 0,2 М сульфата аммония с добавлением ацетона в соотношении объемных частей 19:1, соответственно.

Изобретение относится к аналитической химии. Способ определения метионина в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модифицированном коллоидными частицами золота, включает модифицирование графитовых электродов коллоидными частицами золота из золя золота в течение 300 с при потенциале накопления -1,0 В с последующей регистрацией обратных пиков электроокисления метионина на катодной кривой при скорости развертки потенциала 100 мВ/с на фоне 0,1 M раствора NaOH в диапазоне потенциалов от -1,0 до 1,0 В, и определение концентрации метионина осуществляют по величине обратных максимумов вольтамперных кривых в диапазоне потенциалов от минус 0,20 до плюс 0,10 В относительно насыщенного хлоридсеребряного электрода методом добавок аттестованных смесей. Изобретение обеспечивает более чувствительный способ определения метионина в модельных водных растворах методом циклической вольтамперометрии. 2 ил., 1 табл., 2 пр.

Изобретение направлено на определение палладия в руде методом инверсионной вольтамперометрии и может быть использовано в гидрометаллургии, в различных геологических разработках при поиске и разведке в случае анализа руд, рудных концентратах и породах концентраций ионов палладия. Способ определения палладия в руде методом инверсионной вольтамперометрии заключается в том, что палладий (II) переводят в раствор и проводят вольтамперометрическое определение концентрации палладия (II), при этом палладий переводят в растворе в хлоридный комплекс и проводят определение концентрации ионов палладия (II) на графитовом электроде в перемешиваемом растворе, при контролируемом потенциале минус 0,8 В и регистрацией сигнала на фоновом электролите 0,1 М HCl, относительно насыщенного хлоридсеребряного электрода методом добавок аттестованных смесей. Изобретение обеспечивает снижение предела и нижней границы определяемых содержаний палладия (II). 2 ил., 1 табл.

Изобретение относится к аналитической химии и может быть использовано для анализа пищевых продуктов, кормов и кормовых добавок, сельскохозяйственной продукции растительного происхождения, а также в медицине. Способ одновременного количественного определения смеси афлатоксинов В1, В2, G1, G2 методом инверсионной вольтамперометрии включает перевод афлатоксинов из пробы в раствор, использование анодной инверсионной вольтамперометрии в дифференциальном режиме и стеклоуглеродного электрода в качестве индикаторного. Накопление смеси афлатоксинов в перемешиваемом растворе проводят в течение от 30 до 40 с при потенциале электролиза Еэ=(0,0±0,05) В относительно насыщенного хлоридсеребряного электрода на фоне 0,1 M сульфата аммония в диапазоне рН от 4 до 5 с последующей регистрацией анодных пиков в дифференциальном режиме съемки вольтамперограмм при скорости развертки потенциала от 20 до 30 мВ/с. Концентрацию смеси афлатоксинов В1, В2, G1, G2 определяют по высоте пиков в диапазоне потенциалов Εп(G1)=(+0,252±0,001) В, Εп(Β1)=(+0,505±0,002) В, Еп(В2)=(+0,675±0,007) В, Eп(G2)=(+0,902±0,001) В методом добавок аттестованных смесей. Технический результат - одновременное определение смеси афлатоксинов В1, В2, Gl, G2. 4 ил., 3 табл.

Изобретение относится к аналитической химии. Способ заключается в том, что в течение 150 с проводят электрохимическое концентрирование глицирризиновой кислоты на поверхности ртутно-пленочного электрода при потенциале электролиза (-1,8) В на фоне 0,01 М калия хлорида с последующей регистрацией вольтамперных кривых при линейной скорости развертки потенциала 50 В/с, а концентрацию глицирризиновой кислоты определяют по высоте пика в диапазоне потенциалов (-0,2) до (-0,3) В относительно хлорид-серебряного электрода. Способ характеризуется высокой чувствительностью (1 пг/мл) и экспрессностью (время единичного анализа не превышает 10-15 мин). 1 пр., 4 табл.

Изобретение относится к аналитической химии и касается способа определения молочной кислоты на платиновом электроде. Сущность способа заключается в том, что определяют молочную кислоту на платиновом электроде в фоновом электролите - боратный буфер (рН 9.18), при потенциале предельного тока восстановления Е=-0,7 В с помощью хлоридсеребряного электрода сравнения. Способ определения молочной кислоты включает перевод молочной кислоты из пробы в раствор с последующим титрованием раствора щелочью (0.01-0,1М KOH) и одновременной регистрацией предельного тока восстановления молочной кислоты, построением кривой амперометрического титрования, из которой находят объем щелочи в точке эквивалентности, затраченный на титрование молочной кислоты. Использование способа позволяет определять молочную кислоту в диапазоне концентраций 3,0⋅10-5-1⋅10-1 моль/дм3. 6 ил., 3 табл., 3 пр.

Изобретение относится к области аналитической химии и может быть использовано в медицине, сельском хозяйстве, мониторинге окружающей среды. Способ определения тиолов согласно изобретению проводят инверсионной вольтамперометрией в 3М растворе NaOH в присутствии ионов серебра с концентрацией в растворе 4⋅10-5…8⋅10-5 М, вводят пробу, содержащую от 3⋅10-8 до n⋅10-5 М тиолов, перемешивают раствор в течение 10-30 с, подают потенциал электролиза +0,05 В в течение 60 с на серебряный электрод. Тиолы концентрируются на поверхности серебряного электрода в виде комплексного малорастворимого соединения, затем регистрируют вольтамперограмму при линейной развертке потенциала 5 мВ/с. Пик растворения тиолятов серебра наблюдается при потенциале -0,98 В и линейно зависит от концентрации тиолов в водных растворах. Способ согласно изобретению позволяет снизить нижнюю границу определяемых содержаний и использовать экологически чистый серебряный электрод. 4 ил.

Изобретение относится к области аналитической химии, в частности к вольтамперометрическому способу определения лекарственного препарата триазавирина. Способ может быть использован для количественного определения указанного соединения в порошке и его лекарственных формах. Изобретение может быть использовано в фармацевтической промышленности для контроля технологических процессов и качества фармпрепаратов, сточных вод и воздушной зоны химико-фармацевтических предприятий, в лабораториях фармацевтического контроля для определения действующих веществ лекарственных средств. Сущность изобретения основана на способности триазавирина восстанавливаться на различных типах графитовых электродов и заключается в переводе триазавирина из пробы в водный раствор и прямом (без предварительного накопления на электроде) вольтамперометрическом определении в ней триазавирина на фоне 0,1 моль/л азотной кислоты с регистрацией катодных пиков в квадратно-волновом режиме съемки вольтамперограмм в интервале от 0,2 до (-0,6) В при скорости развертки потенциала 160 мВ/с. Концентрацию триазавирина определяют по высоте пика в диапазоне потенциалов от 0,10 до (-0,40) В относительно хлоридсеребряного электрода методом добавки стандартного раствора триазавирина. Изобретение обеспечивает возможность создания чувствительного и экспрессного способа количественного определения триазавирина методом вольтамперометрии в субстанции и лекарственной форме для обеспечения контроля качества лекарственного средства. 2 н.п. ф-лы, 1 ил., 3 табл., 2 пр.

Изобретение относится к области измерения значений гидрохимикофизических параметров водной среды и может быть использовано отдельно или в составе многоканального преобразователя гидрохимикофизических параметров водной среды, для измерения содержания растворенного кислорода в водной среде, в частности пресной и морской воды при проведении экологических исследований. Согласно изобретению в полярографическом датчике кислорода, содержащем наполненный электролитом корпус с отверстием в верхней части, мембрану, выполненную по меньшей мере из двух слоев газопроницаемого материала, герметично закрывающую указанное отверстие, два электрода - катод, прилегающий к мембране, и анод, размещенные в объеме электролита, нижний опорный слой мембраны выполнен из материала, обеспечивающего возможность беспрепятственного прохождения молекул растворенного в воде кислорода к катоду с прочностными характеристиками, обеспечивающими возможность сопротивления разрыву при динамических и статических нагрузках, возникающих в процессе эксплуатации, а верхний селективный слой выполнен в виде нанесенного на опорный слой полимерного покрытия. Техническим результатом изобретения является снижение постоянной времени при обеспечении необходимого ресурса работы датчика. 1 з.п. ф-лы, 1 ил.

Изобретение относится к аналитической. Способ определения метионина в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модифицированном коллоидными частицами золота, заключается в том, что проводят модифицирование графитовых электродов коллоидными частицами золота из золя золота (мольное соотношение HAuCl4:Na3C6H5O7:NaBH4 = 1:15:5) в течение 300 с при потенциале накопления -1,0 B, с последующей регистрацией обратных пиков электроокисления метионина на катодной кривой при скорости развертки потенциала 100 мВ/с на фоне 0,1 М раствора NaNO3 в диапазоне потенциалов от -1,0 B до 1,0 B. Концентрацию метионина определяют по величине обратных максимумов вольтамперных кривых в диапазоне потенциалов от -0,20 B до 0,40 B относительно насыщенного хлоридсеребряного электрода методом добавок аттестованных смесей. Изобретение обеспечивает повышение чувствительности определения метионина до 5⋅10-14 моль/л. 3 ил., 1 табл., 2 пр.

Изобретение относится к области аналитической химии, электрохимии и биохимии Задачей настоящего изобретения является разработка способа электрохимического анализа аминокислотных замен и модификаций пептида Aβ без и в присутствие ионов Zn(II), который основан на измерении сигнала окисления единственного остатка Тир-10 Аβ. Способ анализа аминокислотных замен и модификаций Aβ (без или в комплексе с ионами Zn(II) ) согласно изобретению заключается в том, что на печатный графитовый электрод наносят аликвоту (60-100 мкл) 50 мкМ раствора Aβ (контроль) или его изоформы в буферном растворе без или с 100 мкМ Zn(II) (после инкубации в течение 10 минут) и осуществляют электрохимическое определение Aβ на электроде путем регистрации квадратно-волновой вольтамперограммы окисления пептида; измеряют высоту и потенциал максимума полученного пика окисления в области 0,6-0,7 В (отн. Ag/AgCl) при нейтральном рН и по изменению интенсивности сигнала относительно контроля констатируют аминокислотную замену или модификацию. 3 ил., 1 табл.,
Наверх