Воздушная автоматическая нагревательная система для поддержания рабочей температуры масла в маслобаке газотурбинного двигателя


 


Владельцы патента RU 2583201:

Общество с ограниченной ответственностью "Газпром трансгаз Сургут" (RU)

Изобретение относится к технике, применяемой при транспорте газа по магистральным газопроводам, и может быть использовано в газотранспортной отрасли промышленности для модернизации нагревательных систем для поддержания рабочей температуры масла в маслобаках газотурбинных двигателей (далее - ГТД) неработающих (находящихся в резерве) газоперекачивающих агрегатов, установленных в компрессорных цехах компрессорных станций магистральных газопроводов. В маслобак неработающего ГТД встроен воздушный пучковый теплообменный модуль, входной патрубок которого соединен со снабженным обратным клапаном и запорным краном воздухопроводом, соединенным с полостью низкого давления осевого компрессора работающего ГТД. К обратному клапану подсоединен снабженный электромагнитным клапаном воздухопровод, соединенный с полостью высокого давления осевого компрессора работающего ГТД. Обратный клапан установлен с возможностью пропуска воздуха в сторону воздушного пучкового теплообменного модуля и открытия посредством воздействия на него воздуха, поступающего по воздухопроводу, соединенному с полостью высокого давления осевого компрессора работающего ГТД, после открытия электромагнитного клапана, управляемого контроллером системы автоматизированного управления и регулирования на основании сигналов от датчика температуры, установленного с возможностью фиксирования температуры масла в маслобаке неработающего ГТД. Технический результат - снижение энергетических затрат для нагрева масла в маслобаке неработающего ГТД за счет использования вторичного источника энергии - нагретого воздуха из полости низкого давления осевого компрессора работающего ГТД без снижения мощности и экономичности работающего ГТД. 1 ил.

 

Изобретение относится к технике, применяемой при транспорте газа по магистральным газопроводам, и может быть использовано в газотранспортной отрасли промышленности для модернизации нагревательных систем для поддержания рабочей температуры масла в маслобаках газотурбинных двигателей (далее - ГТД) неработающих (находящихся в резерве) газоперекачивающих агрегатов (далее - ГПА), установленных в компрессорных цехах компрессорных станций (далее - КС) магистральных газопроводов.

Изобретение может быть также использовано и в области газотурбостроения при изготовлении новых ГТД ГПА.

Известна нагревательная система для поддержания рабочей температуры масла в маслобаке газотурбинного двигателя, включающая термопреобразователи сопротивления, терморегулятор, маслоохладитель, электронасос, электроподогреватель (как правило, блок ТЭНБВ-10Z 220 УХЛЗ мощностью 10 кВт), масляные трубопроводы, обратный клапан и запорные краны. Для равномерного нагрева всего масла в маслобаке по сигналам, поступающим от термопреобразователей сопротивления, включаются электроподогреватель и электронасос и проводится прокачка масла по «закольцовке». При достижении температуры масла, например, МС8П до 10°С или Тп22с до 35°С электроподогреватель и электронасос выключаются (см., например, Двигатель ДГ90Л2 агрегата ГПА-Ц-16С. Техническое описание Г90108000 ТО. НПП «Машпроект», 1995, http://wwwturbinist.ru/31848-to-dvigatelya-dg90-zorya-mashproekt.html).

Недостатком известной системы является большой расход электроэнергии, затрачиваемой на подогрев масла в маслобаке, особенно при низких температурах окружающей среды.

Задачей заявленного изобретения является создание воздушной автоматической нагревательной системы для поддержания рабочей температуры масла в маслобаке неработающего (например, находящегося в резерве) ГТД, нивелирующей указанные недостатки прототипа.

Технический результат, достигаемый при применении заявленного изобретения, заключается в снижении энергетических затрат для нагрева масла в маслобаке неработающего ГТД за счет использования вторичного источника энергии - нагретого воздуха из полости низкого давления осевого компрессора работающего ГТД без снижения мощности и экономичности работающего ГТД.

Поставленная задача и указанный технический результат в воздушной автоматической нагревательной системе для поддержания рабочей температуры масла в маслобаке неработающего ГТД, содержащей запорный кран, обратный клапан и датчик температуры, соответственно решается и достигается тем, что в маслобак неработающего ГТД встроен воздушный пучковый теплообменный модуль, входной патрубок которого соединен со снабженным обратным клапаном и запорным краном воздухопроводом, соединенным с полостью низкого давления осевого компрессора работающего ГТД, к обратному клапану подсоединен снабженный электромагнитным клапаном воздухопровод, соединенный с полостью высокого давления осевого компрессора работающего ГТД, при этом обратный клапан установлен с возможностью пропуска воздуха в сторону воздушного пучкового теплообменного модуля и открытия посредством воздействия на него воздуха, поступающего по воздухопроводу, соединенному с полостью высокого давления осевого компрессора работающего ГТД, после открытия электромагнитного клапана, управляемого контроллером системы автоматизированного управления и регулирования (далее - САУиР) на основании сигналов от датчика температуры, установленного с возможностью фиксирования температуры масла в маслобаке неработающего ГТД.

Заявленное изобретение поясняется чертежом, где схематично представлена воздушная автоматическая нагревательная система для поддержания рабочей температуры масла в маслобаке неработающего ГТД, посредством которой возможна реализация заявленного изобретения в соответствии с его назначением, где:

1 - осевой компрессор работающего ГТД;

2 - запорный кран;

3 - воздухопровод, соединенный с полостью высокого давления осевого компрессора работающего ГТД 1;

4 - воздухопровод, соединенный с полостью низкого давления осевого компрессора работающего ГТД 1;

5 - электромагнитный клапан;

6 - обратный клапан;

7 - воздушный пучковый теплообменный модуль;

8 - маслобак неработающего ГТД.

При этом в маслобак неработающего ГТД 8 встроен воздушный пучковый теплообменный модуль 7.

Входной патрубок (на чертеже показан, но условно не отмечен) воздушного пучкового теплообменного модуля 7 соединен со снабженным обратным клапаном 6 и запорным краном 2 воздухопроводом 4, соединенным с полостью низкого давления осевого компрессора работающего ГТД 1.

Запорный кран 2 предназначен для перекрытия подачи воздуха по воздухопроводу 4, соединенному с полостью низкого давления осевого компрессора работающего ГТД 1, с целью осуществления профилактических, монтажных, ремонтных и других работ с обратным клапаном 6, воздушным пучковым теплообменным модулем 7 и другим оборудованием.

К обратному клапану 6 подсоединен снабженный электромагнитным клапаном 5 воздухопровод 3, соединенный с полостью высокого давления осевого компрессора работающего ГТД 1.

При этом обратный клапан 5 установлен с возможностью пропуска воздуха в сторону воздушного пучкового теплообменного модуля 7 и открытия посредством воздействия на него воздуха, поступающего по воздухопроводу 3, соединенному с полостью высокого давления осевого компрессора работающего ГТД 1, после открытия электромагнитного клапана 5, управляемого контроллером САУиР (условно не показаны) на основании сигналов от датчика температуры (условно не показан), установленного с возможностью фиксирования температуры масла в маслобаке неработающего ГТД 8.

Работа воздушной автоматической нагревательной системы для поддержания рабочей температуры масла в маслобаке неработающего ГТД поясняется с приведением примеров конкретной реализации признаков заявленного изобретения следующим образом.

По сути работа системы, реализованной на основании заявленного изобретения, заключается в использовании горячего воздуха из полости низкого давления осевого компрессора работающего ГТД 1 (например, из полости стравливания осевого компрессора работающего ГТД 1) без снижения мощности и экономичности ГТД для поддержания температуры масла в маслобаке неработающего ГТД 8, например, на резервном ГПА, без использования электронагревателей.

Например, для ГТД ДГ90Л2 агрегата ГПА-Ц-16С согласно ТУ У3.01-14307498-170-97 параметры воздуха в полости низкого давления осевого компрессора указанного ГТД составляют: температура 390°С, избыточное давление 0,2 МПа.

Воздухопровод 4, соединенный с полостью низкого давления осевого компрессора работающего ГТД 1, снабжен обратным клапаном 6, управление которым производится посредством электромагнитного клапана 5 с напряжением питания 24 В, соединенного с контроллером САУиР, на основании сигналов от датчика температуры, установленного с возможностью фиксирования температуры масла в маслобаке неработающего ГТД 8, например внутри маслобака неработающего ГТД 8.

Автоматическая работа воздушной автоматической нагревательной системы для поддержания рабочей температуры масла в маслобаке неработающего ГТД обеспечивается соответствующим алгоритмом управления электромагнитным клапаном 5, который реализуется контроллером САУиР.

Указанный алгоритм обеспечивает возможность автоматического поддержания температуры масла в маслобаке неработающего ГТД 8 путем включения и отключения электромагнитного клапана 5 по уставкам срабатывания: температура включения - tвкл+37°С, температура отключения - tоткл+45°С, значения которых фиксируются датчиком температуры, передающим соответствующие сигналы в контроллер САУиР.

При этом обслуживающий персонал в любой момент может включить и отключить воздушную автоматическую нагревательную систему для поддержания рабочей температуры масла в маслобаке неработающего ГТД с главного щита управления САУиР.

Запорный кран 2 находится в открытом положении.

При открытии электромагнитного клапана 5 воздух, поступающий по воздухопроводу 3, соединенному с полостью высокого давления осевого компрессора работающего ГТД 1, с избыточным давлением (например, для ГТД ДГ90Л2 агрегата ГПА-Ц-16С давление Р составляет 1,9 МПа) воздействует на обратный клапан 6, после чего происходит открытие обратного клапана 6 и подача горячего воздуха в воздушный пучковый теплообменный модуль 7.

При этом в процессе подачи горячего воздуха под давлением в воздушный пучковый теплообменный модуль 7 происходит эффект эжектирования горячего воздуха из воздухопровода 4, соединенного с полостью низкого давления осевого компрессора работающего ГТД 1.

Таким образом, происходит смешение и подача горячего воздуха по воздухопроводу 4, соединенному с полостью низкого давления осевого компрессора работающего ГТД 1, и воздухопроводу 3, соединенному с полостью высокого давления осевого компрессора работающего ГТД 1, к воздушному пучковому теплообменному модулю 7, встроенному в маслобак неработающего ГТД 8.

Пройдя по воздушному пучковому теплообменному модулю 7, горячий воздух нагревает масло, находящееся в маслобаке неработающего ГТД 8.

Отдав свое тепло, воздух утилизируется в атмосферу или в дымовую трубу.

Воздушная автоматическая нагревательная система для поддержания рабочей температуры масла в маслобаке неработающего газотурбинного двигателя реализована с использованием заявленного в одном из компрессорных цехов КС-1 Вынгапуровского Линейно-производственного управления магистральных газопроводов ООО «Газпром трансгаз Сургут» и доказала свою работоспособность и эффективность.

Применение воздушной автоматической нагревательной системы для поддержания рабочей температуры масла в маслобаке неработающего ГТД обеспечило экономию электроэнергии, а также улучшило такие показатели ГПА, как надежность и экологичность, поскольку пуск неработающих ГТД ГПА производился на разогретом масле.

Воздушная автоматическая нагревательная система для поддержания рабочей температуры масла в маслобаке неработающего газотурбинного двигателя, содержащая запорный кран, обратный клапан и датчик температуры, отличающаяся тем, что в маслобак неработающего газотурбинного двигателя встроен воздушный пучковый теплообменный модуль, входной патрубок которого соединен со снабженным обратным клапаном и запорным краном воздухопроводом, соединенным с полостью низкого давления осевого компрессора работающего газотурбинного двигателя, к обратному клапану подсоединен снабженный электромагнитным клапаном воздухопровод, соединенный с полостью высокого давления осевого компрессора работающего газотурбинного двигателя, при этом обратный клапан установлен с возможностью пропуска воздуха в сторону воздушного пучкового теплообменного модуля и открытия посредством воздействия на него воздуха, поступающего по воздухопроводу, соединенному с полостью высокого давления осевого компрессора работающего газотурбинного двигателя, после открытия электромагнитного клапана, управляемого контроллером системы автоматизированного управления и регулирования на основании сигналов от датчика температуры, установленного с возможностью фиксирования температуры масла в маслобаке неработающего газотурбинного двигателя.



 

Похожие патенты:

Изобретение относится к области авиационного двигателестроения и, в частности, к маслосистеме авиационного газотурбинного теплонапряженного двигателя. В магистраль суфлирования маслобака установлен дополнительный теплообменник, выход из которого подключен к входу в суфлер-сепаратор, а выход из последнего сообщен с атмосферой, причем воздухоотделитель установлен внутрь маслобака так, что воздухоотводящий его канал сообщен со свободным объемом маслобака, а канал подвода соединен с магистралью суфлирования масляных полостей подшипниковых опор ротора.

Изобретение относится к роторным газотурбинным машинам и может быть использовано при монтаже их роторов, в том числе у высокооборотных газотурбинных двигателей, у которых критические частоты вращения роторов находятся в рабочем диапазоне частот.

Изобретение относится к системе снабжения маслом для стационарной газовой турбины, в которой на основании нового соединения компонентов системы снабжения маслом, таких как масляный бак, насосы и теплообменник, а также системы трубопроводов, обеспечивается возможность надежной работы газовой турбины даже при возникающих в течение нескольких часов окружающих температурах до 60°С, без необходимости выполнения этих компонентов для более высоких рабочих температур.

Изобретение относится к упругодемпферным опорам ротора газотурбинного двигателя авиационного и наземного применения. Упругодемпферная опора газотурбинного двигателя включает рессору, которая имеет упругий элемент с фланцем, передний торец которого соединен с торцом фланца корпуса центрального привода, а задний торец - с торцом корпуса опоры.

Передняя опора ротора турбины низкого давления двухвального газотурбинного двигателя содержит радиально-упорный подшипник, кольцевой элемент и V-образные элементы.

Изобретение относится к опорам газотурбинных двигателей авиационного и наземного применения. В опоре газотурбинного двигателя на валу ротора компрессора расположены шарикоподшипник и ведущая шестерня с буртом.

Конструкция для авиационного турбореактивного двигателя содержит подшипник качения, опору подшипника, вкладыш между наружным кольцом подшипника и опорой, а также средства соединения наружного кольца с опорой и средства, обеспечивающие осевое удержание наружного кольца.

Изобретение относится к области авиационного двигателестроения и может быть использовано в качестве суфлера-сепаратора в маслосистемах авиационных газотурбинных двигателей.

Газотурбинный двигатель содержит ротор, радиально наружную и внутреннюю статорные части, между которыми проходит воздушный канал компрессора, кольцевой зазор между ротором и радиально внутренней статорной частью, а также выпускной трубопровод.

Турбореактивный двигатель включает в себя вентилятор (2) с входным обтекателем (3) на рабочем колесе (4) и радиально-упорный подшипник (5) с лабиринтными уплотнениями масляной полости (7), а также компрессор низкого давления (8) и компрессор высокого давления (9).

Упругодемпферная опора ротора турбомашины с демпфером с дроссельными канавками, содержащая корпус, втулку, закрепленную в корпусе, упругое кольцо с равномерно чередующимися наружными и внутренними выступами, выполненными соответственно на наружной и внутренней поверхностях кольца, подшипник качения, форсуночное кольцо с форсунками и уплотнение масляной полости опоры. Втулка, закрепляемая в корпусе, выполнена заодно целое с упругим кольцом с равномерно чередующимися наружными и внутренними выступами таким образом, что ее средняя часть выполнена в виде этого упругого кольца и торцевая цилиндрическая часть втулки с фланцем для крепления ее к корпусу и другая торцевая часть втулки с внутренним буртом жестко соединены с упругим кольцом на длине каждого наружного выступа, а на длине каждого внутреннего выступа и прилегающих к нему двух пролетов упругое кольцо отделено от этих частей втулки сквозными прорезями. Между прорезями и торцами внутренних выступов остаются цилиндрические пояски, контактирующие с резиновыми уплотнительными кольцами. В корпусе выполнена герметичная полость в области верхнего наружного выступа, в которую под давлением подается масло, сообщающаяся с кольцевой канавкой с прямоугольным поперечным сечением, выполненной на наружной поверхности упругого кольца в середине его ширины с эксцентриситетом относительно центра опоры, направленным вертикально вниз. На наружной поверхности каждого внутреннего выступа в окружном направлении в середине ширины выступа выполнена дроссельная канавка с прямоугольным поперечным сечением, соединяющая впадины, прилегающие к выступу, впадины, образованные наружными выступами упругого кольца, сообщаются с впадинами, образованными его внутренними выступами, через радиальные отверстия. Торцы впадин, образованных внутренними выступами, уплотнены резиновыми уплотнительными кольцами, размещенными в кольцевых канавках, выполненных во внешнем кольце подшипника. Натяг в них выбран из условия отсутствия проскальзываний рабочих режимах турбомашины. На торце внешнего кольца подшипника выполнен выступ, входящий в ответный паз в бурте втулки с зазором по периметру паза, равным допустимому смещению ротора в опоре, причем паз в бурте размещен в срединной радиальной плоскости наружного выступа упругого кольца. Масло в канавку в форсуночном кольце, соединяющую его форсунки, поступает под давлением подачи из своей герметичной полости в корпусе, также расположенной над одним из наружных выступов упругого кольца, через канавку, выполненную в корпусе, и несколько отверстий, выполненных во втулке. Герметичность полостей, выполненных в корпусе, обеспечивается натягом между этой втулкой и корпусом. Достигается меньший радиальный размер, повышаются упругие и демпфирующие характеристики, снижается темп износа. 1 з.п. ф-лы, 8 ил.

Изобретение относится к области эксплуатации газотурбинных двигателей, в частности к двигателям, применяемым в качестве привода газоперекачивающих агрегатов и энергоустановок. Перед запуском двигателя в нагнетающую магистраль подают масло через дополнительный маслонасос и дополнительную магистраль, масло подают до заполнения нагнетающей магистрали, а полноту заполнения нагнетающей магистрали определяют по моменту появления масла на сливе из опор двигателя или одновременно при появлении масла на сливе из опор двигателя и достижении заданной величины давления масла в нагнетающей магистрали, после чего, дополнительный маслонасос отключают и запускают двигатель. Технический результат изобретения - предотвращение запуска двигателя с незаполненной маслосистемой и исключение выхода из строя двигателя в результате повышенного износа подшипников при эксплуатации газотурбинного двигателя в наземной установке. 1 ил.

Изобретение относится к области авиационного двигателестроения, а именно к разработке энергоустановок с охлаждением масла в замкнутой циркуляционной системе, что характерно для авиационных газотурбинных двигателей. Технический результат изобретения - создание автономной эжекторной системы охлаждения масла, которая конструктивно независима от условий расположения в отсеке летательного аппарата, и максимальное использование поверхности контура двигательного сопла для увеличения эффекта эжекции. Эффективность эжекторной системы достигается применением шевронного сопла, соединенного с выходом из турбины, через которое проходит струя выхлопных газов, и патрубок воздушно-масляного радиатора трапециевидной формы. 2 ил.

Изобретение относится к области авиационного двигателестроения и касается элементов системы суфлирования авиационного газотурбинного двигателя (ГТД). Перед опорным подшипником установлен через радиальное отверстие в валу стопор в виде цилиндрического штифта так, что выступающие за пределы боковой поверхности вала цилиндрические участки штифта расположены перед торцом внутренней обоймы опорного подшипника, зафиксированной относительно корпуса. Торцовые участки штифта спрятаны внутрь выполненной в крыльчатке на входе кольцевой проточки, исключается попадание элементов разрушения в сторону механизма привода (коробки приводов двигательных агрегатов), что повышает надежность конструкции суфлера. 2 ил.

Изобретение относится к области авиационного двигателестроения, в частности к маслобаку системы смазки авиационного двигателя, устанавливаемого на сверхзвуковые маневренные самолеты. Суфлирующая магистраль с заборником в нижней части корпуса выполнена отдельно от блока суфлирующих магистралей, установлена над перегородкой и имеет автономное сообщение с коллектором. Заборник ее соединен с суфлирующей магистралью через коленообразный участок магистрали и параллельно подключен через отверстие в перегородке, выполненное у задней стенки корпуса, к свободному объему маслобака. Заявленное изобретение позволяет при действии на самолет отрицательных перегрузок исключить выброс в атмосферу тех объемов масла, которые скапливаются в погруженной в масло части маслозаборников, что сокращает расход масла и улучшает экологические характеристики двигателя самолета. 1 з.п. ф-лы, 1 ил.

Масляная система авиационного газотурбинного двигателя (ГТД) относится к области авиационного двигателестроения. Магистрали откачки масла насосов, подключенных к масляным полостям подшипниковых опор ротора, сообщены с магистралью откачки масла насоса масляной полости коробки привода агрегатов через обратный клапан, подпружиненный в сторону магистралей откачки насосов масляных полостей подшипниковых опор ротора, сопротивление которого близко к разности напоров давления, создаваемых насосами откачки масла масляных полостей подшипниковых опор ротора и коробки привода агрегатов. Такое выполнение маслосистемы обеспечивает возможность корректировки гидравлического сопротивления в магистралях откачки насосов с приводом от ротора двигателя, что позволяет восстановить баланс подачи и откачки масла в КПА и избежать перегрева масла в масляной полости КПА и падения давления масла на входе в двигатель. 1 ил.

Упругодемпферная опора ротора тяжелой турбомашины относится к ГТД авиационного и наземного применения, а именно к конструкции упругодемпферной опоры компрессора мощной турбомашины наземного применения или мощного ГТД тяжелого самолета, не летающего в перевернутом полете. Предложена упругодемпферная опора ротора тяжелой турбомашины, содержащая корпус, смонтированный на роторе подшипник качения, втулку, жестко закрепленную в корпусе и имеющую на торце внутренний бурт, в который упирается подшипник качения своим внешним кольцом, демпферный зазор, в который под давлением подачи подается масло, уплотненный по торцам резиновыми уплотнительными кольцами, радиально-торцовое уплотнение, выполненное в виде крышки, закрепленной на корпусе, закрепленной на роторе и вращающейся вместе с ним втулки, уплотнительного разрезного графитового кольца, прижатого давлением воздуха к крышке и втулке, лабиринтного уплотнения, образованного крышкой и лабиринтным кольцом, закрепленным на роторе и вращающимся вместе с ним, форсуночное кольцо с форсунками, через которые масло подается на смазку подшипника и уплотнительного стыка разрезного графитового кольца с втулкой радиально-торцового уплотнения. Демпферный зазор выполнен между втулкой, закрепленной в корпусе, и внешним кольцом подшипника, или втулкой, с натягом насаженной на внешнее кольцо подшипника (в этом случае все нижеописанные конструктивные элементы и мероприятия, выполняемые во внешнем кольце подшипника, будут выполняться в этой втулке). Два резиновых уплотнительных кольца уплотняют торцы демпфирующего зазора и торец зазора между втулкой, закрепленной в корпусе, и внешним кольцом подшипника, расположенного над форсуночным кольцом, и третье резиновое уплотнительное кольцо уплотняет второй торец этого зазора, и уплотнительные кольца размещены в кольцевых канавках, выполненных на наружной поверхности внешнего кольца подшипника. Натяг в резиновых уплотнительных кольцах и диаметр их поперечного сечения выбраны таким образом, что обеспечивается надежное уплотнение этих зазоров и отсутствует взаимное проскальзывание с сухим трением резиновых уплотнительных колец по контактным поверхностям канавок и внутренней поверхности втулки, закрепленной в корпусе, при прецессировании ротора с амплитудой смещения ротора в опоре, равной величине демпферного зазора. Форсуночное кольцо запрессовано в расточку внешнего кольца подшипника. Масло поступает под давлением подачи в демпферный зазор из герметичной полости в корпусе через кольцевую канавку, выполненную в корпусе, и отверстия во втулке, закрепленной в корпусе, равнораспределенные по окружности, а в форсуночное кольцо - из другой герметичной полости в корпусе через другую кольцевую канавку в нем, отверстия во втулке, закрепленной в корпусе, также равнораспределенные по окружности, кольцевую канавку, выполненную на наружной поверхности внешнего кольца подшипника в зазоре над форсуночным кольцом и отверстия в этом кольце подшипника, расположенные в секторе, который занимает канавка, выполненная в форсуночном кольце, соединяющая его форсунки. В демпферном зазоре во внешнем кольце подшипника выполнено сквозное дроссельное отверстие. Центрирующая пружина выполнена в виде упругого кольцевого сектора, нижними концами жестко соединенного с крышкой радиально-торцового уплотнения. Во внешнем кольце подшипника выполнен паз под шпонку, а ответный паз под шпонку выполнен в центрирующей пружине. В эти пазы с упором в дно каждого из пазов вставлена шпонка с натягом по ее боковым поверхностям, величина которого подобрана таким образом, что при монтаже ротора в опору со смонтированными в ней втулкой, подшипником с форсуночным кольцом, крышкой радиально-торцового уплотнения с установленной в центрирующей пружине шпонкой, а также при работе турбомашины, не происходило взаимного проскальзывания с сухим трением боковых контактных поверхностей шпонки и пазов. Высота шпонки подобрана таким образом, что при установке ротора в опору и действии на центрирующую пружину силы веса ротора демпфирующий зазор становился концентричным, либо для установления концентричности этого зазора требовалось усилие в несколько десятков Н. Центрирующая пружина выполнена с большой податливостью, например такой, что при действии на нее силы веса ротора, приходящейся на опору, она сдеформируется на 3÷5 мм. На другом торце внешнего кольца подшипника выполнен выступ, входящий в ответный паз в бурте втулки, закрепленной в корпусе, с зазором по периметру паза, равным величине демпферного зазора. В бурте этой втулки выполнены три равнораспределенных по окружности сквозных паза для визуального или с помощью щупа контроля концентричности демпферного зазора. Предложенная упругодемпферная опора ротора компактна и способна обеспечить высокие упругодемпфирующие характеристики мощной турбомашине в условиях воздействия на опору больших статических (силы веса ротора, приходящейся на опору) и динамических нагрузок. 1 з.п. ф-лы, 8 ил.
Наверх