Способ испытания свай статической нагрузкой

Изобретение относится к строительству и может быть использовано для определения несущей способности свай в существующих фундаментах при обследовании зданий перед реконструкцией. Способ испытания свай статической нагрузкой включает отрывку фундамента, обнажение подошвы ростверка, отделение сваи от ростверка, статическое испытание сваи вдавливанием, измерение перемещений испытуемой сваи. Перед отделением сваи от ростверка на испытуемую и смежные сваи устанавливают экстензометры. В ходе испытания регистрируют изменение напряженного состояния стволов свай. Затем оценивают величину влияния смежных свай на испытуемую. Технический результат состоит в повышении надежности и достоверности определения несущей способности свай в фундаментах зданий путем статического нагружения. 3 ил.

 

Изобретение относится к строительству и может быть использовано для определения несущей способности свай в существующих фундаментах при обследовании зданий перед реконструкцией.

Известно, что вокруг свай образуются области напряженного состояния грунта с зонами уплотнения вокруг боковой поверхности ствола и под его нижним концом (Бартоломей А.А., Омельчак И.М., Юшков Б.С. Прогноз осадок свайных фундаментов. - М.: Стройиздат, 1994. - с. 384, 27-29). Взаимодействие указанных областей смежных свай в зависимости от расстояния между ними и вида вмещающего их грунта может приводить как к росту, так и к снижению несущей способности свай в составе фундамента по сравнению с несущей способностью одиночной сваи (Руководство по проектированию свайных фундаментов / НИИОСП им. Н.М. Герсеванова Госстроя СССР. - М.: Стройиздат, 1980, с. 30).

Согласно действующим нормам по испытанию свай статической нагрузкой для исключения влияния анкерных свай расстояние от них до оси испытуемой сваи должно быть не менее 5d и не менее 2 м, где d - размер поперечного сечения сваи (ГОСТ 5686-2012 Грунты. Методы полевых испытаний сваями: утв. Федеральное агентство по техническому регулированию и метрологии, 09.11.2012: дата введ. 01.07.2013. - Москва: [б.и.], 2008. с. 4).

Фактически при устройстве фундаментов с целью уменьшения размеров ростверков и расхода арматуры сваи размещают, как правило, на значительно меньших расстояниях. Согласно нормам проектирования минимальное расстояние между осями забивных свай составляет 3d (СП 24.13330.2011. Свайные фундаменты: утв. Министерством регионального развития России 27.12.2010: дата введ. 20.05.11. - Москва: Стандартинформ, 2014. с. 47). При размере поперечного сечения сваи 0,30 м минимальное допустимое расстояние составляет 0,90 м. Поэтому учет влияния смежных свай при проведении статических испытаний под существующими зданиями позволит повысить достоверность получаемых результатов.

Известен способ определения несущей способности свай в существующих фундаментах, включающий отрывку фундамента, обнажение низа ростверка, отделение сваи от ростверка, установку между ростверком и верхним торцом сваи домкрата, ступенчатое нагружение сваи вдавливающей вертикальной нагрузкой с измерением ее осадки (П.А.Коновалов. Основания и фундаменты реконструируемых зданий. - М: Стройиздат, 1988, с. 106, 188-190, 205 - аналог).

В способе не учитывается возможное влияние на результаты испытаний рядом расположенных свай в составе фундамента. Кроме того, в ходе испытаний возникает погрешность из-за неконтролируемого перемещения сваи вверх после снятия нагрузки. При повторном нагружении домкратом не принимается во внимание, что напряженное состояние вмещающего сваю массива грунта отличается от исходного.

Наиболее близким к предлагаемому изобретению является способ обследования существующего свайного фундамента, включающий отрывку фундамента, обнажение подошвы ростверка, отделение сваи от ростверка, установку между подошвой ростверка и верхним торцом сваи домкрата, статическое испытание сваи вдавливанием и непрерывное с момента отрывки фундамента измерение перемещений фундамента и сваи (Авторское свидетельство СССР №1749389 A1, МПК G02D 33/00, 1992 - прототип).

В способе предусмотрено измерение перемещений сваи после снятия нагрузки и учет этого перемещения при оценке результатов испытаний, однако, как и в предыдущем способе, недостатком является погрешность в определении несущей способности из-за возможного влияния на испытуемую сваю смежных свай в составе фундамента.

Задачей изобретения является повышение надежности и достоверности определения несущей способности свай в фундаментах зданий путем статического нагружения.

Это достигается тем, что в способе испытания свай статической нагрузкой, включающем отрывку фундамента, обнажение подошвы ростверка, отделение сваи от ростверка, статическое испытание сваи вдавливанием, измерение перемещений испытуемой сваи, перед отделением сваи от ростверка на испытуемую и смежные сваи устанавливают приборы для измерения деформаций ствола - экстензометры, с помощью которых в ходе испытания регистрируют изменение напряженного состояния стволов свай, оценивая тем самым наличие и величину влияния смежных свай на испытуемую.

Схема испытаний сваи показана на фиг. 1; результаты испытаний в виде графиков зависимости осадки сваи от нагрузки - на фиг. 2, фиг. 3.

Способ осуществляют следующим образом.

После отрывки грунта рядом с фундаментом обнажаются подошва ростверка 1 и верхние части стволов испытуемой сваи 2 и смежных свай 3 и 4. За пределами шурфа устанавливается реперная система с закрепленными на ней датчиками перемещений или прогибомерами 5 для измерения осадки испытуемой сваи. На испытуемой и смежных сваях крепятся приборы для измерения деформаций ствола - экстензометры 6, 7, 8. Выполняется отделение верха испытуемой сваи 2 от ростверка. В пространство между испытуемой сваей и подошвой ростверка устанавливается домкрат 9, в который с помощью насосной станции нагнетается рабочая жидкость. На первом этапе испытаний, следя за показаниями экстензометров и датчика перемещений, производят нагружение сваи домкратом 9 до момента достижения исходного напряженного состояния, то есть до состояния, имевшего место до отделения испытуемой сваи от ростверка, а по изменению напряжений в стволе испытуемой сваи определяют фактическое усилие, действовавшее на нее до начала испытаний.

Поддерживая постоянное значение усилия, создаваемого домкратом, выдерживают необходимую паузу для стабилизации напряжений в грунте основания и сваях. Затем приступают к наращиванию нагрузки на испытуемую сваю. Нагрузку увеличивают ступенями, регистрируя осадку сваи с помощью датчика 5 и изменение напряжений в ее стволе, а также в стволах смежных свай с помощью экстензометров 6, 7, 8. Завершают испытания при достижении заданного программой испытаний значения нагрузки на сваю 2 или предельных перемещений сваи.

Зная относительную деформацию ствола сваи 2 при различных значениях нагрузки, создаваемой домкратом, получаем зависимость ε=f(F), где ε - относительная деформация ствола сваи, F - нагрузка, кН.

С помощью указанной зависимости по результатам измерения относительной деформации стволов свай 3 и 4 находят ΔN - разницу между конечным и начальным усилием в свае, кН.

В результате предложенного способа по графику "осадка-нагрузка" определяется несущая способность с учетом влияния соседних свай, , кН по формуле:

где Fu - достигнутая нагрузка на сваю, кН;

ΔNi - разница между конечным и начальным усилием в i-той свае, кН.

Знак плюс в формуле берется в случае снижения усилия в случаях смежных свай 3 и 4, а знак минус - при его увеличении.

Резерв несущей способности ΔV, кН:

где N0 - фактическое усилие, действовавшее на нее до начала испытаний, кН.

Предлагаемый способ испытания свай статической нагрузкой позволяет определять несущую способность в существующих фундаментах с учетом влияния соседних свай. Кроме того, в ходе испытаний определяется фактическая нагрузка, действующая на испытуемую сваю в составе фундамента, что является необходимым условием разработки проекта реконструкции сооружения.

Способ испытания свай статической нагрузкой, включающий отрывку фундамента, обнажение подошвы ростверка, отделение сваи от ростверка, статическое испытание сваи вдавливанием, измерение перемещений испытуемой сваи, отличающийся тем, что перед отделением сваи от ростверка на испытуемую и смежные сваи устанавливают экстензометры, в ходе испытания регистрируют изменение напряженного состояния стволов свай, затем оценивают величину влияния смежных свай на испытуемую.



 

Похожие патенты:

Изобретение относится к области строительства и предназначено для исследования деформативности грунтовых оснований при нагружении осесимметричными моделями фундаментов.

Изобретение относится к области строительства, а именно к определению несущей способности буроинъекционной сваи. Способ определения несущей способности буроинъекционной сваи включает изготовление по принятой проектной технологии не менее двух буроинъекционных свай.

Изобретение относится к строительству и может быть использовано для определения несущей способности свай в существующих фундаментах при обследовании зданий перед реконструкцией.

Изобретение относится к строительству и может быть использовано для определения несущей способности сваи, погружаемой в грунт забивкой. Способ забивки сваи в грунт заключается в определении параметров сваи и параметров молота, в проведении динамических испытаний путем забивки сваи в грунт молотом с определением отказов сваи, по которым, параметрам сваи и параметрам молота, несущую способность сваи определяют по приведенной зависимости.

Изобретение относится к области инженерных изысканий и предназначено, в частности, для испытания грунтового основания сваей с ростверком и определения распределения нагрузки на фундамент между сваей и ростверком в конкретных условиях строительства и распределения реактивных нормальных напряжений грунтового основания по подошве ростверка, необходимых для расчета внутренних усилий в теле свайного фундамента.

Изобретение относится к области инженерных изысканий и предназначено, в частности, для испытания грунтового основания сваей с ростверком. Способ испытания грунтового основания сваей с ростверком включает приложение вертикальной силы на сваю с ростверком в виде квадратной плиты в плане, измерение приложенной силы и осадки сваи и расчет сопротивления грунта.

Изобретение относится к области инженерных изысканий и предназначено, в частности, для определения несущей способности натуральных свай в фундаменте сооружений. Сущность: непрерывно возрастающую вдавливающую нагрузку на модельную сваю прикладывают с постоянной скоростью, а ее величину принимают, в зависимости от диаметра модельной сваи, влажности, пределов пластичности и коэффициента пористости грунта под нижним концом опытной сваи, исходя из формулы.

Изобретение относится к строительству и может быть использовано при сооружении свайных фундаментов. .

Изобретение относится к строительной технике к области фундаментостроения и предназначено для длительных измерений касательных сил морозного пучения, действующих на сваи в процессе промерзания грунтов, совместно с измерением сил трения немерзлого грунта у границы промерзания в любых инженерно-геологических условиях.

Изобретение относится к строительству, а именно к испытаниям несущей способности бетонных стволов с использованием кольцевого датчика нагрузки. .

Изобретение относится к области строительства, а именно к способам испытания элементов свайно-плитных и плитно-свайных фундаментов вдавливающей нагрузкой. Способ статических испытаний элемента свайно-плитных и плитно-свайных фундаментов здания путем воздействия статической ступенчато возрастающей нагрузкой на сваю в грунте, построения графика зависимости «нагрузка-осадка» и определения несущей способности сваи. Дополнительно на уплотненный грунт укладывают фрагмент плиты ростверка и воздействуют на него статической ступенчато возрастающей нагрузкой до достижения осадки сваи и фрагмента плиты ростверка не менее 0,2 допустимой осадки здания и определяют несущую способность элемента как суммарную несущую способность сваи и фрагмента плиты ростверка. Технический результат состоит в обеспечении снижения материалоемкости фундамента при обеспечении его несущей способности, обеспечении определения несущей способности по грунту сваи и плиты ростверка. 2 н. и 6 з.п. ф-лы, 6 ил.

Изобретение относится к области строительства, в частности, к определению несущей способности свай в просадочных грунтах. Способ определения несущей способности сваи в просадочных грунтах включает испытание сваи в грунтах природной влажности. Несущую способность сваи в замоченных грунтах определяют по приведенной зависимости, а испытывают сваю, погруженную на проектную глубину, без изоляции от грунта ее верхней части в пределах просадочной толщи. Технический результат состоит в повышении точности определения несущей способности, снижении материалоемкости и трудоемкости проведения испытаний. 1 табл.

Изобретение относится к области строительства и предназначено для исследования деформированного состояния грунтовых оснований при нагружении. Установка для испытания грунтовых оснований маломасштабными моделями фундаментов содержит рабочий лоток в форме параллелепипеда, гидравлический домкрат с динамометром, упорную балку и маломасштабную модель фундамента. Рабочий лоток имеет две прозрачные угловые вертикальные стенки, благодаря которым доступно визуальное наблюдение за перемещениями фиксированных точек в грунтовом основании в процессе нагружения моделей фундаментов для дальнейшего моделирования работы трехмерной системы «фундамент - грунтовое основание» в программно-вычислительных комплексах с использованием значений перемещений фиксированных точек в грунтовом основании по двум взаимно перпендикулярным плоскостям, совпадающим с главными осями симметрии модели фундамента или его отдельного конструктивного элемента. Технический результат состоит в обеспечении визуального наблюдения за перемещениями фиксированных точек в грунтовом основании, а также обеспечении нагружения маломастабными моделями фундаментов для дальнейшего моделирования работы трехмерной системы. 2 ил.
В изобретении раскрыто применение фторсодержащего полимера в получении прозрачного мерзлого грунта, который используется в качестве прозрачного твердого материала при получении прозрачного мерзлого грунта, причем фторсодержащий полимер представлен тефлоном AF 1600 с коэффициентом преломления 1,31 и плотностью 2,1-2,3 г/см3 и имеет вид частиц диаметром 0,25-2,0 мм или частиц диаметром ≤ 0,074 мм с неправильной формой. Когда указанный фторсодержащий полимер используется как прозрачный твердый материал для получения прозрачного мерзлого грунта, полученный грунт обладает высокой прозрачностью, низкозатратен, нетоксичен и не вреден и по своим свойствам подобен естественному мерзлому грунтовому массиву. 2 н.п. ф-лы, 4 пр.

Группа изобретений относится к прозрачному мерзлому грунту, способу его получения и применению. Прозрачный мерзлый грунт получают из фторсодержащего полимера, кубикового льда и бесцветной поровой жидкости. Количество фторсодержащего полимера, кубикового льда и бесцветной поровой жидкости рассчитывают согласно условиям испытаний и размерам проб. Фторсодержащий полимер, представленный частицами неправильной формы диаметром ≤0,074 мм из тефлона AF 1600 с коэффициентом преломления 1,31 и плотностью 2,1-2,3 г/см3, подвергают очистке от примесей и сушат в сушильном шкафу. Кубиковый лед получают путем раздавливания целого блока льда с диаметром частиц ≤0,074 мм. Бесцветная поровая жидкость представлена водой. Смешивают сначала фторсодержащий полимер и кубиковый лед, равномерно перемешивают в криогенной лаборатории при температуре от -6,0°С до -8,0°С, загружают в форму по 2-3 партии для приготовления пробы и утрамбовывают слой за слоем. Затем в форму добавляют воду, и она заполняет промежутки между частицами фторсодержащего полимера и кубиковым льдом. Устройство вакуумирования используют для удаления остаточных пузырьков в пробе, чтобы она достигла полностью насыщенного состояния. Пробу помещают в плотномер для затвердевания со значением степени переуплотнения 0,8-3 и загружают в криогенный бокс при температуре -20°С, где замораживают на 48 часов, чтобы получить прозрачный мерзлый грунт, имитируя насыщенную мерзлую глину, физические свойства которой следующие: плотность - 1,63-2,1 г/см3, удельная масса - 16-21 кН/м3 и значение степени переуплотнения - 0,8-3; а механические свойства следующие: угол внутреннего трения - 19-22°, связность - 1-3 кПа, модуль упругости - 5-9 МПа и коэффициент Пуассона - 0,2-0,3. Применяют прозрачный мерзлый грунт в модельном испытании направленного взрывания мерзлого грунта, в испытании оползания модели мерзлого грунта дорожной насыпи вследствие оттаивания. Прозрачный мерзлый грунт, полученный по настоящему изобретению, может имитировать свойства естественной прозрачной мерзлой глины, эффективно используется в модельных испытаниях в инженерной геологии, обладая точными результатами измерений, и может наглядно показать внутреннюю деформацию грунтового массива. Он низкозатратен и прост в эксплуатации. 4 н. и 5 з.п. ф-лы, 2 ил.

Группа изобретений относится к прозрачному мерзлому грунту, способу его получения и применению. Прозрачный мерзлый грунт получают из фторсодержащего полимера, кубикового льда и бесцветной поровой жидкости. Количество фторсодержащего полимера, кубикового льда и бесцветной поровой жидкости рассчитывают согласно условиям испытаний и размерам проб. Фторсодержащий полимер, представленный частицами неправильной формы диаметром 0,25-2,0 мм из тефлона AF 1600 с коэффициентом преломления 1,31 и плотностью 2,1-2,3 г/см3, подвергают очистке от примесей и сушат в сушильном шкафу. Кубиковый лед получают путем раздавливания целого блока льда с диаметром частиц 0,1-0,5 мм. Бесцветная поровая жидкость представлена водой. Сначала фторсодержащий полимер и кубиковый лед равномерно перемешивают в криогенной лаборатории при температуре от -6,0 до -8,0°С, загружают в форму по 2-3 партии для приготовления пробы и утрамбовывают слой за слоем. Затем в форму добавляют воду, и она заполняет промежутки между частицами фторсодержащего полимера и кубиковым льдом. Устройство вакуумирования используют для удаления остаточных пузырьков в пробе, чтобы она достигла полностью насыщенного состояния. Пробу загружают в криогенный бокс при температуре -20°С и замораживают на 48 часов, чтобы получить прозрачный мерзлый грунт, имитируя насыщенный мерзлый песчаный грунт, физические свойства которого следующие: плотность - 1,53-2,0 г/см3, удельная масса - 15-20 кН/м3 и относительная плотность - 20-80%; а механические свойства следующие: угол внутреннего трения - 30-31°, модуль упругости - 8-61 МПа и коэффициент Пуассона - 0,2-0,4. Применяют прозрачный мерзлый грунт в модельном испытании направленного взрывания мерзлого грунта и в испытании оползания модели мерзлого грунта дорожной насыпи вследствие оттаивания. Прозрачный мерзлый грунт, полученный по настоящему изобретению, может имитировать свойства естественной прозрачной мерзлой глины, эффективно используется в модельных испытаниях в инженерной геологии, обладая точными результатами измерений, и может наглядно показать внутреннюю деформацию грунтового массива. Он низкозатратен и прост в эксплуатации. 4 н. и 6 з.п. ф-лы, 2 ил.

Изобретение относится к испытанию несущей способности бетонных стволов с использованием кольцевого датчика нагрузки. Способ приложения нагрузки к свае, в котором размещают верхнюю часть ниже первого участка сваи, при этом верхнюю часть крепят к первому участку сваи. Размещают донную часть вблизи от верхней части, при этом зону отделения создают таким образом, что введение текучей среды под давлением в зону отделения обеспечивает силу, стремящуюся продвинуть верхнюю часть и донную часть друг от друга, и вызывает продвижение вверх верхней части на первом участке сваи, причем по меньшей мере часть поперечного сечения верхней части и по меньшей мере часть поперечного сечения донной части открыта для обеспечения прохождения материалов сверху от верхней части к низу от донной части, и если происходит отделение верхней части и донной части, то верхняя часть и донная часть сохраняют относительное боковое положение в течение отделения. Вводят текучую среду в зону отделения, чтобы приложить нагрузку к свае, при этом верхнюю часть выполняют кольцеобразной с u-образным поперечным сечением, а донную часть выполняют либо кольцеобразной с формой поперечного сечения, дополняющей u-образное поперечное сечение верхней части, либо кольцеобразной с u-образным поперечным сечением, имеющим открытый конец, при этом открытый конец донной части расположен в u-образной верхней части. Когда текучую среду под давлением вводят в зону отделения, наружная стенка донной части будет продвинута к наружной стенке верхней части, чтобы создать уплотнение, и внутренняя стенка донной части будет продвинута к внутренней стенке верхней части, чтобы создать уплотнение. Технический результат состоит в обеспечении испытаний несущей способности бетонных столбов с их использованием после испытаний, повышении точности испытаний. 3 н. и 29 з.п. ф-лы, 18 ил.

Изобретение относится к области строительства и может быть использовано при сооружении свайных фундаментов зданий. Способ определения несущей способности свай включает погружение сваи статической нагрузкой, измерение глубины погружения и вертикальных перемещений сваи, а также величины вдавливающей нагрузки, раздельное определение по результатам измерений сопротивления по боковой поверхности и под нижним концом сваи. Величину вдавливающей нагрузки перестают увеличивать после достижения нижним концом сваи проектной отметки, после чего сваю испытывают в режиме ползучести-релаксации и по стабилизированному значению вертикальной нагрузки судят о несущей способности сваи. Технический результат состоит в повышении оперативности, точности, достоверности и технологичности измерений, снижении материалоемкости испытаний. 2 з.п. ф-лы, 5 ил.

Изобретение относится к строительству, а именно к технологии изготовления буровых и набивных свай. Способ выявления и устранения дефектов изготавливаемой в грунте сваи включает формирование скважины, установку в нее арматурного каркаса, прокладку линий связи, подачу в скважину отверждаемого состава, например бетонной смеси. Перед установкой арматурного каркаса на нем закрепляют электроды и соединяют их с линиями связи. После подачи в скважину отверждаемого состава осуществляют мониторинг его электропроводности, а при обнаружении дефекта ствола выполняют частичную откачку отверждаемого состава, устраняют дефект и повторно подают отверждаемый состав в скважину. Технический результат состоит в повышении надежности изготовляемых в грунте свай за счет обеспечения возможности контроля сплошности ствола и устранения дефектов в процессе производства работ. 1 табл., 4 ил.
Наверх