Материал для кислородного электрода электрохимических устройств

Изобретение относится к электрохимическим устройствам с твердым оксидным электролитом и может быть использовано в качестве кислородного электрода в электрохимических датчиках кислорода, работающих в окислительных средах в интервале температур 700-1000°C. Согласно изобретению, материал содержит оксид иттрия, оксид кальция, оксид хрома и оксид кобальта при следующих соотношениях по формуле: Y1-xCaxCr1-yCoyO3, где x=0,1; y=0,4. Максимальная электропроводность материала достигается при температуре от 700°C до 1000°C. Повышение электропроводности материала указанного состава, является техническим результатом изобретения. 2 табл.

 

Изобретение относится к электрохимическим устройствам с твердым оксидным электролитом и может быть использовано в качестве кислородного электрода в электрохимических датчиках кислорода, работающих в окислительных средах в интервале температур 700-1000°C.

Известен материал для кислородного электрода электрохимических устройств (RU 2460178, публ. 27.08.2012) [1]. Этот материал содержит оксид празеодима в качестве оксида редкоземельного элемента, оксид стронция в качестве оксида щелочноземельного элемента, а также никель в следующих соотношениях по формуле: Pr2-xSrxCu1-yNiyO4, где x=0,16; y=0,9.

Данный материал относится к слоистым перовскитам A2BO4, преимуществом которых является хорошая проводимость при средних температурах 500-600°C. Этот материал может использоваться в среднетемпературных электрохимических устройствах. Электропроводность данного материала начинает падать при температурах выше 400-500°C.

Наиболее близким к заявляемому материалу является электродный материал для электрохимических датчиков кислорода, полученный из оксида хрома, оксида кальция и оксида самария по SU 1233028, опубл. 23.05.1986 [2]. Данный материал имеет структуру перовскита и относится к системе Sm1-xCr1-yCax+yO3, 0≤x≤0.5 при y=0; 0≤y≤0.1 при x=0. Как известно из источника (Высокотемпературные оксидные электронные проводники для электрохимических устройств // С.Ф. Пальгуев, В.К. Гильдерман, В.И. Земцов. - М.: Наука, 1990. - 197 с. ) [3], электропроводность материала из вышеприведенной системы, такой, например, как Sm1-xCaxCrO3, при температуре 900°С для состава с максимальной проводимостью Sm0,6Ca0,4CrO3, составляет 19,5 Ом-1 см-1.

Задача настоящего изобретения заключается в получении электродного материала для кислородного электрода на основе хромитов со структурой перовскита, обладающего высокой электропроводностью, применяемого в электрохимических датчиках кислорода, работающих в окислительных средах в интервале температур 700-1000°C.

Поставленная задача решается тем, что материал для кислородного электрода содержит оксид редкоземельного элемента, оксид щелочноземельного элемента и оксид хрома, при этом материал дополнительно содержит оксид кобальта, в качестве оксида редкоземельного элемента - оксид иттрия, а в качестве оксида щелочноземельного элемента - оксид кальция в следующих соотношениях по формуле: Y1-xCaxCr1-yCoyO3, где x=0,1; y=0,4.

Сущность заявленного решения заключается в том, что в подрешетку хрома перовскита дополнительно введены атомы кобальта, а в подрешетку иттрия - атомы кальция. Рентгенофазовый анализ образцов системы Y1-xCaxCr1-yCoyO3 показал, что в ней образуются высокопроводящие твердые растворы со структурой перовскита АВО3 при высоких температурах. Состав этих твердых растворов можно представить следующей формулой Y1-xCaxCr1-yCoyO3. Иттрий и кальций находятся в позициях А, а хром и кобальт в позициях В. При замещении иттрия кальцием в соединении образуется Cr4+, так иттрий и кальций проявляют стабильную валентность 3+ и 2+ соответственно, а хром является поливалентным элементом и легко переходит в четырехвалентное состояние. В результате чего реализуется перескоковый механизм по хрому, т.е. электронная дырка перескакивает от Cr4+ на Cr3+. При замещении хрома на кобальт, который также является поливалентным элементом и может проявлять валентность Co3+ и Co2+, образуется дефектность .

Рентгенофазовый анализ показал, что твердые растворы существуют при соотношениях x=0,1, y=0,0-0,4. При у>0,4 образуются плохопроводящие фазы CoO и Y2O3. При малых содержаниях кобальта электропроводность мала, так как концентрация Cr4+. Исследования электропроводности показали также, что при температурах выше 600°C, кроме механизма электропроводности по хрому дополнительно осуществляется механизм электропроводимости по кобальту, т.е. как перескок электронной дырки от Со3+ на кобальт Со2+. При этом максимальная электропроводность материала достигается при температуре от 700°C до 1000°C.

Новый технический результат, достигаемый заявляемым изобретением, заключается в достижении высокой электропроводности материала для кислородного датчика, работающего в интервале температур 700-1000°C.

Материал заявленного состава получали следующим образом:

Исходные материалы:

- оксид иттрия Y2O3;

- оксид кальция СаО;

- оксид хрома Cr2O3;

- оксиды кобальта СоО, Со2О3.

Из данных материалов по керамической технологии синтезировали составы Y1-xCaxCr1-yCoyO3 (х=0,1; у=0,0; 0,1; 0,2; 0,3; 0,4; 0,5; 0,6; 0,7; 0,8; 0,9 и 1). Составы материала 1-10, а также условия синтеза, такие как длительность и температура обжига образцов Y1-xCaxCr1-yCoyO3 на воздухе, представлены в таблице 1. В таблице 2 приведены результаты измерения электропроводности образцов при различных температурах и давлении PO2=0,21 атм.

Рентгенофазовый анализ, осуществленный после синтеза, показал, что фазу хромита иттрия со структурой перовскита имеют составы 1-5, а составы 6-10, кроме фазы хромита иттрия, содержат фазы СоО и Y2O3. Из составов Y1-xCaxCr1-yCoyO3 (x=0,1; y=0,0; 0,1; 0,2; 0,3; 0,4; 0,5; 0,6; 0,7; 0,8; 0,9 и 1) были приготовлены образцы размера (35×5×5) мм для исследования электропроводности.

Измерения электропроводности осуществляли 4-зондовым методом на постоянном токе в атмосфере воздуха. Из таблицы 2 видно, что образец заявленного состава Y0.9Ca0.1Cr0.6Co0.4O3 обладает наилучшей электропроводностью в широком диапазоне высоких температур (от 700°C до 1000°C) по сравнению с образцами других составов и прототипом.

Таким образом, получен материал для кислородного электрода электрохимических устройств на основе хромита редкоземельного элемента со структурой перовскита, применяемого в электрохимических датчиках кислорода, работающих в окислительных средах в интервале температур 700-1000°C.

Материал для кислородного электрода электрохимических устройств, содержащий оксид редкоземельного элемента, оксид щелочноземельного элемента и оксид хрома, отличающийся тем, что он дополнительно содержит оксид кобальта, при этом в качестве оксида редкоземельного элемента материал содержит оксид иттрия, а в качестве оксида щелочноземельного элемента - оксид кальция в следующих соотношениях по формуле: Y1-xCaxCr1-yCoyO3, где x=0,1; y=0,4.



 

Похожие патенты:

Настоящее изобретение относится к литий-ионной вторичной батарее, имеющей электродный элемент, в котором положительный электрод и отрицательный электрод размещены таким образом, чтобы быть напротив друг друга, раствор электролита и наружный корпус контейнера для содержания электродного элемента и раствора электролита, в которой: отрицательный электрод формируют с использованием второго активного материала отрицательного электрода, который получают легированием литием первого активного материала отрицательного электрода, который содержит металл (а), способный образовывать сплав с литием, оксид (b) металла, способный абсорбировать и десорбировать ионы лития, и углеродсодержащий материал (с), способный абсорбировать и десорбировать ионы лития; и раствор электролита содержит соединение на основе фторированного простого эфира, представленное предварительно заданной формулой, в которой содержатся алкильная группа или фторзамещенная алкильная группа.

Изобретение относится к области производства литий-ионных источников тока, в частности к способу с получения стержневидных кристаллов оксида ванадия, способу получения из них электрода, а также к электроду, содержащему в своем составе стержневидные кристаллы оксида длиной 1-1000 мкм и толщиной 0,01-1 мкм с формулой LixV2O5·nH2O, где x=0,01-5, n=0-5.
Изобретение относится к области электротехники, а именно к способу изготовления электродов электрохимических устройств с твердым электролитом. Снижение поляризационного сопротивления электрода, а также улучшение протекания электродных реакций газообмена является техническим результатом предложенного изобретения.

Изобретение относится к области электротехники, а именно к способу получения катодного материала со структурой НАСИКОН для литиевой автономной энергетики (гибридного транспорта, электромобилей, буферных систем хранения энергии и т.д.).
Изобретение может быть использовано при получении электродных материалов для литий-ионных химических источников тока. Для получения титаната лития состава Li4Ti5O12 со структурой шпинели готовят раствор соли титана.

Изобретение может быть использовано в аналитической химии. Гидратированную оксидную ванадиевую бронзу аммония состава (NH4)0,5V2O5·0,5H2O используют в качестве ионоселективного материала для селективного определения концентрации ионов аммония в растворах.
Изобретение относится к получению материала для электронной промышленности, в частности, для литий-ионных аккумуляторов. Способ получения нанопорошков композита на основе титаната лития Li4Ti5O12/C включает смешивание диоксида титана, карбоната лития и крахмала и термическую обработку полученной смеси до получения материала с 100% структурой шпинели.

Изобретение относится к области катализа, а именно каталитическим активным пористым композитным материалам, которые могут быть использованы в качестве несущих электродов электрохимических устройств для получения водорода и/или кислорода либо высоко- и среднетемпературных твердооксидных топливных элементов (ТОТЭ).

Изобретение относится к области электротехники. Предложен литиевый аккумулятор, включающий, по крайней мере, два объемных электрода, разделенных сепаратором и помещенных вместе с электролитом, содержащим безводный раствор литиевой соли в органическом полярном растворителе, в корпус аккумулятора, каждый электрод имеет минимальную толщину 0,5 мм, и хотя бы один из этих электродов содержит гомогенный спрессованный раствор электропроводного компонента и активного материала, способного поглощать и выделять литий в присутствии электролита, при этом пористость спрессованных электродов составляет от 25% до 90%, активный материал имеет структуру полых сфер с максимальной толщиной стенки 10 микрометров или структуру агрегатов или агломератов с максимальным размером 30 микрометров, при этом сепаратор содержит высокопористый электроизоляционный керамический материал с открытыми порами и пористостью от 30% до 95%.

Изобретение может быть использовано в производстве аккумуляторов на основе лития, применяемых в перезаряжаемых батареях. Для получения титаната лития, имеющего формулу Li4Ti5O12-x, где 0<x<0,02, получают смесь оксида титана и компонента на основе лития, при этом компонент на основе лития и оксид титана присутствуют в полученной смеси в количествах, необходимых для обеспечения атомного отношения лития к титану 0,8.

Изобретение направлено на возможность измерения горючего газа в смеси с азотом или другим инертным газом. Способ заключается в том, что в поток анализируемого горючего газа помещают электрохимическую ячейку с полостью, образованной герметично соединенными между собой двумя дисками из твердого электролита, на противоположных поверхностях одного из которых расположена пара электродов, к электродам подают напряжение, необходимое для получения предельного тока, протекающего через ячейку, по величине которого определяют концентрацию горючего газа в анализируемой газовой смеси.

Изобретение относится к измерительной технике. Твердоэлектролитный датчик концентрации кислорода в газовых средах содержит керамический чувствительный элемент (3), герметично размещенный в металлическом корпусе (4), электрод сравнения (8), потенциалосъемный вывод (5), измерительный электрод (2), нанесенный на внешнюю часть керамического чувствительного элемента (3).

Изобретение может быть использовано в энергетике, металлургии, химической промышленности для определения концентрации водорода в жидких и газовых средах в широком интервале температур и давлений.

Чувствительный элемент электрохимического датчика водорода в газовых смесях. Может быть использован для измерения концентрации водорода в воздухе и в инертном газе.

Изобретение может быть использовано для измерения концентрации монооксида углерода в воздухе и в инертном газе. Чувствительный элемент электрохимического датчика монооксида углерода в газовых смесях выполнен в виде таблетки из твердого оксидного электролита, на одну из поверхностей таблетки припечен электрод сравнения, на противоположную - измерительный электрод, при этом твердый оксидный электролит выполнен на основе оксида церия состава Ce0.8(Sm0.8Ca0.2)0.2O2, электрод сравнения выполнен из манганита лантана-стронция состава La0.6Sr0.4MnO3, а измерительный электрод - из оксида цинка ZnO.

Использование: для контроля заполнения сорбентом кулонометрических чувствительных элементов после их изготовления или регенерации. Сущность: заключается в том, что с целью улучшения качества контроля заполнения сорбентом чувствительного элемента после его изготовления или регенерации количество сорбента определяют периодом времени активного поглощения влаги этим сорбентом без воздействия на электроды элемента постоянного напряжения.

Изобретение относится к аналитической технике, в частности к датчикам для анализа газовых сред. .

Изобретение относится к газовым датчикам, используемым во многих областях техники для удовлетворения растущих требований по экологии и безопасности. .

Изобретение относится к аналитической технике, в частности к твердоэлектролитным датчикам для анализа газовых сред. .

Изобретение относится к аналитической технике, в частности к твердо-электролитным датчикам для анализа газовых сред. .

Изобретение относится к датчикам выхлопных газов. Датчик (100, 200) выхлопных газов сконфигурирован для определения концентрации кислорода или соотношения компонентов в воздушно-топливной смеси в составе выхлопных газов. Датчик выхлопных газов содержит чувствительный элемент (10) и реакционный слой (20) для марганца. Чувствительный элемент определяет концентрацию кислорода или соотношение компонентов в воздушно-топливной смеси. Реакционный слой для марганца нанесен, по меньшей мере, на часть чувствительного элемента и образован веществом, содержащим элемент, который образует сложный оксид, содержащий марганец, в ходе реакции с оксидом марганца в составе выхлопных газов. Датчик выхлопных газов сконфигурирован для определения концентрации кислорода или соотношения компонентов в воздушно-топливной смеси выхлопных газов двигателя внутреннего сгорания, который работает на топливе с содержанием Mn выше 20 ppm. Техническим результатом является обеспечение возможности эффективно предотвращать задержку сигнала датчика, а следовательно, повышение точности определения концентрации кислорода. 7 з.п. ф-лы, 15 ил., 2 табл.
Наверх