Транзистор с металлической базой



Транзистор с металлической базой
Транзистор с металлической базой

 

H01L29/00 - Полупроводниковые приборы для выпрямления, усиления, генерирования или переключения, а также конденсаторы или резисторы, содержащие по меньшей мере один потенциальный барьер, на котором имеет место скачкообразное изменение потенциала, или поверхностный барьер, например имеющие обедненный слой с электронно-дырочным переходом или слой с повышенной концентрацией носителей; конструктивные элементы полупроводниковых подложек или электродов для них (H01L 31/00-H01L 47/00,H01L 51/00 имеют преимущество; способы и устройства для изготовления или обработки приборов или их частей H01L 21/00; конструктивные элементы иные чем полупроводниковые приборы или электроды для них H01L 23/00; приборы, состоящие из нескольких компонентов на твердом теле, сформированные на одной общей подложке или внутри нее, H01L 27/00; резисторы

Владельцы патента RU 2583866:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет" (RU)

Использование: для усиления, генерации и преобразования электрических сигналов. Сущность изобретения заключается в том, что транзистор с металлической базой, содержащий эмиттер, базу из материала с металлической проводимостью и коллектор, при этом между эмиттером и базой сформирован барьер Шотки, эмиттер выполнен из полупроводникового материала с n+-типом проводимости, коллектор - из материала с n-типом проводимости, причем между базой и коллектором размещен тонкий буферный слой из материала с p-типом проводимости, при этом между базой и буферным слоем сформирован омический контакт, а между буферным слоем и коллектором - p-n-переход. Технический результат: обеспечение возможности увеличения статического коэффициента передачи тока эмиттера в схеме с общей базой. 1 ил.

 

Изобретение относится к области полупроводниковой микро- и наноэлектроники, а именно к транзисторам, содержащим эмиттер, базу из материала с металлической проводимостью и коллектор, и может быть использовано в различных электронных устройствах и интегральных схемах, предназначенных для усиления, генерации и преобразования электрических сигналов.

Транзистор с металлической базой (ТМБ) является униполярным транзистором, так как в нем в качестве носителей заряда используются только электроны [1, 2]. Благодаря возможности значительного уменьшения толщины базы движение электронов в ней носит баллистический характер без процессов рекомбинации, что уменьшает шумы в транзисторе. Кроме того, вследствие небольшого удельного сопротивления металла поперечное сопротивление металлической базы значительно меньше, чем в обычных биполярных транзисторах, поэтому частотные свойства ТМБ улучшаются. Использование металлической базы также улучшает радиационную стойкость и уменьшает мощность рассеяния в транзисторе.

Однако у ТМБ статический коэффициент передачи тока эмиттера в схеме с общей базой α небольшой и находится в пределах 0,3-0,6, что является существенным недостатком таких транзисторов. Для устранения этого недостатка в [2] предложена конструкция ТМБ, содержащая эмиттерный переход, базу из материала с металлической проводимостью и коллектор из полупроводникового материала, причем эмиттерный переход выполнен в виде туннельного перехода проводник-диэлектрик, при этом диэлектрик расположен между эмиттером и базой. На эмиттерный переход подают прямое напряжение, величина которого достаточна для того, чтобы сообщить инжектируемым электронам энергию, необходимую для ионизации материала коллектора и образования там электронно-дырочных пар, что приводит к увеличению тока коллектора и, следовательно, коэффициента передачи α. Однако процесс ионизации материала в коллекторе увеличивает коэффициент шума и ухудшает частотные свойства транзистора.

Наиболее близким к заявленному прибору, выбранному в качестве прототипа, является прибор, описанный в [1]. Прототип содержит эмиттер, выполненный из кремния с n-типом проводимости, базу из дисилицида кобальта (CoSi2) с металлической проводимостью и коллектор из кремния с более высоким уровнем легирования, чем эмиттер. Применение дисилицида кобальта в качестве базы вместо, например, вольфрама (W) или золота (Аu) упрощает технологический процесс изготовления ТМБ, однако не устраняет основной недостаток, связанный с небольшим значением α (α≅0,6).

Техническим результатом предлагаемого изобретения является увеличение статического коэффициента передачи тока эмиттера в схеме с общей базой α до значений больше 0,95 при сохранении преимуществ, связанных с использованием базы с металлической проводимостью.

Сущность изобретения заключается в том, что в транзисторе, содержащем эмиттер с n+-типом проводимости, базу из материала с металлической проводимостью и коллектор с n-типом проводимости (n-область), между базой и коллектором размещен тонкий буферный слой из полупроводникового материала с р-типом проводимости (р-область). Между эмиттером и базой формируют барьер Шотки, а между базой и р-областью - омический контакт. Коллектор отделен от базы p-n-переходом. Инжектированные из эмиттера электроны баллистически пролетают тонкую базу, затем проходят без отражений омический контакт, р-область, далее попадают в ускоряющее поле p-n-перехода, и будет появляться управляемый ток коллектора. Предлагаемый транзистор также является униполярным, так как в нем носителями заряда являются только электроны.

Известно, что частотные свойства транзистора зависят от времени перехода электронов из эмиттера в коллектор, поэтому металлическая база и р-область должны быть очень тонкими, причем в р-области целесообразно сформировать ускоряющее для электронов внутреннее электрическое поле, для этого концентрация легирующей акцепторной примеси вблизи базы должна быть выше, чем около коллектора с n-типом проводимости.

Предлагаемый транзистор с металлической базой, в котором между базой и коллектором сформирован буферный слой с р-типом проводимости, благодаря чему устранен отражающий барьер Шотки между базой и коллектором в прототипе, позволяет получить заявленный технический результат.

На чертеже изображены возможный вариант транзистора в плане и его поперечное сечение, где 1 - база из материала с металлической проводимостью, 2 - буферный слой из полупроводникового материала с р-типом проводимости, 3 - коллектор из полупроводникового материала с n-типом проводимости. Между базой и р-областью осуществлен омический контакт, а между р- и n-областями сформирован выпрямляющий контакт (р-n-переход), 4 и 5 - обедненные области (области пространственного заряда) в р- и n-областях соответственно. Для получения омического контакта с выводом коллектора 6 сформирована область 7 с n+-типом проводимости. Эмиттер 8 с n+-типом проводимости размещен на базе 1, 9 - вывод эмиттера, 10 - вывод базы. Между эмиттером и базой сформирован барьер Шотки.

Прибор работает аналогично обычному биполярному транзистору. В схеме с общей базой на эмиттер подают отрицательное напряжение UЭБ относительно базы, на коллектор подают положительное напряжение UКБ также относительно базы. Напряжение UЭБ смещает эмиттерный переход (барьер Шотки) в прямом направлении, что приводит к инжекции электронов из эмиттера в базу, а напряжение UКБ является обратным для коллекторного перехода (p-n-переход). Инжектированные из эмиттера электроны баллистически пролетают тонкую базу, затем проходят буферный слой из полупроводникового материала с р-типом проводимости, далее попадают в ускоряющее поле p-n-перехода, и будет появляться управляемый ток коллектора.

В предлагаемом приборе значение коэффициента передачи тока эмиттера α может быть больше, чем в обычных биполярных транзисторах, так как в приборе отсутствует дырочная составляющая тока эмиттера. Для уменьшения времени пролета электронов через р-область необходимо толщину р-области уменьшать, при этом ток рекомбинации электронов и дырок в ней будет также уменьшаться, что приведет к увеличению α. Кроме того, в р-области можно создать ускоряющее внутреннее электрическое поле, тогда будет уменьшаться время пролета электронов через область и, следовательно, ток рекомбинации, а значение коэффициента передачи тока эмиттера α будет увеличиваться.

Прибор может быть изготовлен из материалов, обычно используемых в полупроводниковой электронике, например кремния, полупроводниковых материалов группы AIII ВV в качестве эмиттера, р-области и коллектора, а в качестве базы - дисилицида кобальта (CoSi2), алюминия (Аl), вольфрама (W) и других материалов, позволяющих сформировать барьер Шотки с эмиттером и омический контакт с р-областью.

Предлагаемый транзистор с металлической базой позволит увеличить значение статического коэффициента передачи тока эмиттера α и улучшить усилительные свойства прибора.

Источники информации

1. Викулин И.М., Стафеев В.И. Физика полупроводниковых приборов. - М.: Радио и связь, 1990. - С. 246-248.

2. Грехов И.В. Транзистор. Патент № RU 2062531, С1, МПК: H01L 29/73, заявл. 06.04.1992, опубл. 20.06.1996.

Транзистор с металлической базой, содержащий эмиттер, базу из материала с металлической проводимостью и коллектор, при этом между эмиттером и базой сформирован барьер Шотки, отличающийся тем, что эмиттер выполнен из полупроводникового материала с n+-типом проводимости, коллектор - из материала с n-типом проводимости, причем между базой и коллектором размещен тонкий буферный слой из материала с p-типом проводимости, при этом между базой и буферным слоем сформирован омический контакт, а между буферным слоем и коллектором - p-n-переход.



 

Похожие патенты:

Использование: для изготовления полевых эмиссионных элементов на основе углеродных нанотрубок. Сущность изобретения заключается в том, что прибор на основе углеродосодержащих холодных катодов, содержит полупроводниковую подложку, на поверхности которой сформирован изолирующий слой, катодный узел, расположенный над изолирующим слоем, состоит из токоведущего слоя катодного узла, каталитического слоя и массива углеродных нанотрубок (УНТ), расположенных на поверхности каталитического слоя перпендикулярно его поверхности, опорно-фокусирующую система, состоящая из первого диэлектрического, затворного электропроводящего и второго диэлектрического слоев, содержит сквозную полость, анодный токоведущий слой, расположенный на внешней поверхности второго диэлектрического слоя опорно-фокусирующей системы, в котором сформированы сквозные технологические отверстия, катодный узел дополнительно содержит слой проводящего материала, который расположен в сквозной полости на боковой поверхности первого диэлектрического слоя опорно-фокусирующей системы, высота углеродных нанотрубок одинакова по всей площади массива, на поверхности массива углеродных нанотрубок расположен слой интеркалированного материала, а токоведущий слой катодного узла и слой проводящего материала катодного узла обладают адгезионными свойствами.

Изобретение относится к области технологии микроэлектроники и может быть использовано для получения тонкого легированного примесью слоя в кремнии для создания мелко залегающих p-n-переходов.

Использование: для изготовления СВЧ полевого транзистора. Сущность изобретения заключается в том, что осуществляют создание n+-n-i-типа полупроводниковой структуры путем ионного легирования полуизолирующих пластин арсенида галлия ионами кремния, при этом после формирования n+-n-i-типа структуры и топологических элементов транзистора на этой структуре проводится дополнительное легирование пластины ионами кремния и имплантация в пластину ионов бора, вследствие чего значительно сокращается канал транзистора, а на открытой поверхности n+-n-i-структуры формируется пассивный слабопроводящий слой.

Изобретение относится к области химической технологии высокомолекулярных соединений. .

Изобретение относится к области электронной техники и может быть использовано для определения заданного уровня тока в диапазоне от 150 мА и выше. .

Изобретение относится к области электронной техники, в частности к материалам, воздействующим на электромагнитные поля с целью управления ими и их преобразования, и может быть использовано при создании гетероэлектриков с наперед заданными оптическими, электрическими и магнитными характеристиками.

Изобретение относится к устройствам для электромагнитного воздействия на биологический объект и может быть использовано в медицине и ветеринарии для изменения биологической активности биологических объектов.

Изобретение относится к электронной технике. .

Изобретение относится к технологии получения алмаза для использования в электронике. .
Наверх