Способ определения расстояния до места повреждения на линии электропередачи

Изобретение относится к области электротехники и электроэнергетики и может быть использовано для определения места повреждения в трехфазной линии электропередачи (ЛЭП) высокого и сверхвысокого напряжения. Технический результат: повышение чувствительности и точности определения места повреждения ЛЭП за счет более точного выделения фронта волны переходного процесса из совокупности помех и аварийных составляющих, подчиняющихся нормальному закону распределения. Сущность: на каждом из концов линии измеряют токи и напряжения, выделяют из измеренных токов и напряжений аварийный сигнал, производят вычисления внутри скользящего временного окна и сравнение с величиной порога, фиксируют момент превышения порога с помощью спутниковой навигационной системы и вычисляют расстояние до места повреждения по разности моментов превышения порога, зафиксированных на концах линии. При этом внутри скользящего окна реализуют согласованную фильтрацию аварийного сигнала, а результаты согласованной фильтрации сравнивают с величиной порога. Характеристику согласованного фильтра выбирают по результатам предварительного имитационного моделирования повреждений на линии электропередачи. 3 ил.

 

Изобретение относится к области электротехники и электроэнергетики и может быть использовано для определения места повреждения в трехфазной линии электропередачи (ЛЭП) высокого и сверхвысокого напряжения.

Известно техническое решение [Патент US 659718, Fault point location system от 22.07.2003], заключающееся в определении расстояния до места повреждения на линии электропередачи, по которому измеряют и синхронизируют токи фаз линии на каждом из концов линии, формируют математические комбинации этих токов, выделяют аварийные составляющие этих комбинаций, последовательно фиксируют время превышения аварийными составляющими порогового значения на данном конце линии и, с помощью спутниковой навигационной системы, время превышения аварийными составляющими порогового значения на другом конце линии, измеряют разность этих времен, вычисляют расстояние L1 до места повреждения линии по выражению

L1= (L+(t1-t2)×V)/2,

где L - длина ЛЭП, V - скорость распространения аварийных составляющих, t1, t2 - время превышения аварийных составляющих порогового значения на концах ЛЭП.

При этом пороговое значение для аварийных составляющих устанавливается на уровне, значительно превышающем уровень помех. После обнаружения превышения аварийными составляющими данного порогового значения производится уточнение фронта с использованием предыстории и установлением порогового значения чуть выше уровня помех.

Недостатком этого технического решения является установление порогового значения выше уровня помех, что не позволяет с высокой точностью выделить фронт волны переходного процесса, кроме того, из-за возможного различия в уровне помех на одном и другом концах ЛЭП возможна различная задержка по времени от фронта волны переходного процесса до момента его обнаружения, что негативно сказывается на точности определения места повреждения.

Наиболее близким техническим решением к предлагаемому изобретению является «Способ определения расстояния до места повреждения на линии электропередачи» [Патент РФ №2475768, МПК G01R 31/08, опубл. 20.02.2013, бюл. №5], по которому на каждом из концов линии измеряют токи и напряжения, выделяют из измеренных токов и напряжений аварийный сигнал, вычисляют коэффициент эксцесса выделенного аварийного сигнала внутри скользящего временного окна, сравнивают вычисленный коэффициент эксцесса с величиной порога, фиксируют момент превышения порога с помощью спутниковой навигационной системы и вычисляют расстояние до места повреждения по разности моментов превышения порогов, зафиксированных на концах линии.

В описании способа-прототипа отмечается, что техническим результатом, на достижение которого направлено предлагаемое техническое решение, является повышение чувствительности и точности определения места повреждения на ЛЭП за счет более точного выделения фронта волны переходного процесса из совокупности аварийных составляющих, подчиняющихся нормальному закону распределения.

Однако из статистической теории обнаружения сигналов на фоне помех [например, Хелстром К. Статистическая теория обнаружения сигналов. - М.: Изд-во Иностранной литературы, 1963, 433 с.] известно, что оптимальная, с точки зрения обнаружения сигнала на фоне помех, подчиненных нормальному закону распределения, процедура обнаружения сигнала состоит в согласованной фильтрации. Она обеспечивает наибольшее отношение сигнал/шум на выходе устройства обработки и наилучшее измерение параметров сигнала на фоне гауссовского (нормального) шума [например, Ширман Я.Д., Манжос В.Н. Теория и техника обработки радиолокационной информации на фоне помех. - М.: Радио и связь, 1981, 416 с.].

Поэтому неоптимальность процедуры обнаружения аварийного сигнала на фоне помех, реализованная в способе-прототипе, приводит к занижению чувствительности устройства, реализованного на его основе, а также в конечном итоге к снижению точности определения места повреждения ЛЭП.

Следует отметить, что характеристику согласованного фильтра следует выбирать согласованной аварийному сигналу. Поэтому выбор характеристики фильтра целесообразно реализовать по результатам имитационного моделирования повреждений на ЛЭП. Для чего фиксируются аварийные составляющие при имитации повреждений на различных точках ЛЭП, усреднение которых приводит к характеристике согласованного фильтра. В качестве средства моделирования целесообразно применять программный комплекс PSCAD, позволяющий имитировать волновые процессы на ЛЭП (например, www.ennlab.ru).

Задачей изобретения является повышение чувствительности и точности определения места повреждения ЛЭП за счет более точного выделения фронта волны переходного процесса из совокупности помех и аварийных составляющих, подчиняющихся нормальному закону распределения.

Поставленная задача достигается способом определения расстояния до места повреждения на линии электропередачи, по которому на каждом из концов линии измеряют токи и напряжения, выделяют из измеренных токов и напряжений аварийный сигнал, производят вычисления внутри скользящего временного окна и производят сравнение с величиной порога, фиксируют момент превышения порога с помощью спутниковой навигационной системы и вычисляют расстояние до места повреждения по разности моментов превышения порога, зафиксированных на концах линии. Согласно предложения внутри скользящего окна реализуют согласованную фильтрацию аварийного сигнала, а результаты согласованной фильтрации сравнивают с величиной порога, при этом характеристику согласованного фильтра выбирают по результатам предварительного имитационного моделирования повреждений на линии электропередачи.

Сущность предложенного изобретения поясняется чертежом на фиг.1, где изображено устройство, реализующее способ определения расстояния до места повреждения на ЛЭП.

Устройство содержит блок 1, выделяющий аварийный сигнал из измеренных фазных токов и напряжений. Ко входам блока 1 подключены измеритель VА напряжения фазы А, измеритель VВ напряжения фазы В, измеритель VС напряжения фазы С, измеритель АА тока фазы А, измеритель АВ тока фазы В, измеритель АС тока фазы С. К выходу блока 1 подключен блок 2, реализующий согласованную фильтрацию аварийного сигнала внутри скользящего временного окна. К выходу блока 2 подключен первый вход компаратора 3, сравнивающий результаты согласованной фильтрации с величиной порога, задаваемого на втором входе компаратора 3 блоком 4. Выход компаратора 3 подключен к входу захвата таймера 5. К счетному входу таймера 5 подключен выход блока 6, принимающего хронирующие импульсы спутниковой навигационной системы. Выход таймера 5 соединен с блоком 7 связи, который передает на диспетчерский пульт время прихода фронта аварийного сигнала на соответствующий конец ЛЭП.

Определение места повреждения осуществляется следующим образом.

Перед началом работы устройства производится имитационное моделирование повреждений на линии электропередачи для получения характеристики фильтра, согласованного аварийному сигналу. Для этого привлекаются средства имитационного моделирования и соответствующий программный комплекс. В результате формируют импульсную характеристику фильтра для заданной линии электропередачи, на основе которой реализуется блок 2 согласованной фильтрации аварийного сигнала. Пример импульсной характеристики согласованного фильтра, полученной по результатам имитационного моделирования, приведен на фиг.2. Принципы построения, а также схемные решения согласованных фильтров изложены, например, в [Ширман Я.Д., Манжос В.Н. Теория и техника обработки радиолокационной информации на фоне помех. - М.: Радио и связь, 1981, 416 с.].

Выделение аварийного сигнала в блоке 1 осуществляют аналогично прототипу путем формирования математической комбинации измеренных токов и напряжений. Комбинацию формируют так, чтобы в нормальном режиме работы ЛЭП, когда в линии отсутствует переходный процесс, на выходе блока 1 отсутствовал аварийный сигнал и присутствовали лишь помехи. Эти помехи представляют собой шум, подчиняющийся нормальному закону распределения. Нормальность закона распределения подтверждается теоретически наличием большого количества факторов, влияющих на величину сигналов аварийных составляющих, и их недоминирующим вкладом (центральная предельная теорема), а также экспериментально. С выхода блока 1 аварийный сигнал поступает на блок 2, в котором в реальном времени внутри скользящего окна реализуется согласованная фильтрация аварийного сигнала, выделенного блоком 1. Из теории известно [например, Ширман Я.Д., Манжос В.Н. Теория и техника обработки радиолокационной информации на фоне помех. - М.: Радио и связь, 1981, 416 с.], что согласованная фильтрация является оптимальной (наилучшей) процедурой при обнаружении и измерении сигналов на фоне шума с нормальным законом распределения. Поскольку предлагаемый способ основан на оптимальной процедуре, то он обладает большей чувствительностью по сравнению с другими способами и позволяет выделять начало переходного процесса при значении аварийного сигнала, меньшем уровня шума. При превышении сигналом с выхода блока 2 значения порога, заданного блоком 4, срабатывает компаратор 3. Блок 4 задает чувствительность устройства по определению начала аварийного переходного процесса. Принятые блоком 6 хронирующие импульсы спутниковой навигационной системы поступают на счетный вход таймера 5 и формируют временную базу. Сигнал с выхода компаратора 3 при его срабатывании подается на вход захвата таймера 5. При этом таймер 5 фиксирует момент превышения порога и через блок 7 связи передает начала переходного процесса на диспетчерский пункт. На диспетчерском пункте вычисляется расстояние до места повреждения по выражению

L1= (L+(t1-t2)×V)/2,

где L - длина ЛЭП, V - скорость распространения аварийных составляющих, t1, t2 - моменты превышения порога, зафиксированные таймерами 5 на противоположных концах ЛЭП.

Для обоснования преимуществ предлагаемого способа определения расстояния до места повреждения на линии электропередачи проводилось имитационное моделирование обнаружения сигналов аварийного переходного процесса в условиях шума с нормальным законом распределения. В качестве характеристики процесса обнаружения аварийного сигнала было выбрано отношение сигнал/шум. При этом имитация работы устройства, реализующего способ сопровождалась построением «рабочих характеристик приемника» [например, Ширман Я.Д., Манжос В.Н. Теория и техника обработки радиолокационной информации на фоне помех. - М.: Радио и связь, 1981, с. 24-25, 65-68], характеризующих обнаружение сигнала на фоне шума. Результаты моделирования (рабочие характеристики приемника) представлены на фиг.3. Анализ фиг.3 показывает, что предлагаемый способ позволяет обнаружить аварийный сигнал при существенно меньшем отношении сигнал/шум, а следовательно, обладает большей чувствительностью и точностью определения места повреждения за счет выявления фронта аварийного сигнала при большем уровне шума.

Способ определения расстояния до места повреждения на линии электропередачи, по которому на каждом из концов линии измеряют токи и напряжения, выделяют из измеренных токов и напряжений аварийный сигнал, производят вычисления внутри скользящего временного окна и производят сравнение с величиной порога, фиксируют момент превышения порога с помощью спутниковой навигационной системы и вычисляют расстояние до места повреждения по разности моментов превышения порога, зафиксированных на концах линии, отличающийся тем, что внутри скользящего окна реализуют согласованную фильтрацию аварийного сигнала, а результаты согласованной фильтрации сравнивают с величиной порога, при этом характеристику согласованного фильтра выбирают по результатам предварительного имитационного моделирования повреждений на линии электропередачи.



 

Похожие патенты:

Изобретение относится к защите подземных сооружений от коррозии и может быть использовано при контроле работы устройств катодной защиты от коррозии. Сущность: поиск места повреждения протяженного анодного заземлителя (ПАЗ) индукционным способом осуществляют в три этапа с использованием различных схем подключения источников переменного тока к ПАЗ и с использованием переменного тока с частотой ниже 128 Гц, исключая частоты 100 и 50 Гц.

Изобретение относится к области электрохимической защиты подземных трубопроводов. Способ включает выявление поврежденной секции протяженного анодного заземлителя (ПАТ), а затем нахождение места повреждения на секции, при этом к концу секции подключают низкочастотный генератор тока, работающий на частотах менее 100 Гц, с помощью измерителя и датчика индуктивности определяют положение ПАТ в грунте, поиск места обрыва производят при помощи измерения поперечного градиента потенциала поверхности земли между измерительными электродами, при этом первый электрод расположен над ПАТ, а второй электрод - на расстоянии не менее 7 м со стороны, противоположной защищаемому трубопроводу, перпендикулярно ходу движения, причем измерения проводят с шагом 1 м, при определении измерителем максимального сигнала устанавливают контрольный знак, далее генератор переключают на другой конец поврежденной секции ПАТ и проводят измерения в обратном направлении, а за место повреждения ПАТ принимают среднюю точку между двумя контрольными знаками, установленными в местах обнаружения максимальных значений измеренных сигналов.

Изобретение относится к обнаружению замыканий на землю в электрической сети. Сущность: способ включает обнаружение короткого замыкания на землю на основе измеренных трехфазных токов iA, iB и iC и получение момента времени t, соответствующего моменту времени, когда было только что обнаружено короткое замыкание на землю; определение того, является ли это короткое замыкание на землю однофазным коротким замыканием на землю или двухфазным коротким замыканием на землю, на основе трех инкрементных фазных токов ΔiA, ΔiB и ΔiC в момент времени t; и когда определено однофазное короткое замыкание на землю, определение того, является ли это короткое замыкание на землю коротким замыканием выше по линии или коротким замыканием ниже по линии, на основе амплитуды инкрементного фазного тока замкнутой фазы.

Изобретение относится к устройствам контроля и может быть использовано для избирательного контроля сопротивления изоляции многофазных сетей переменного тока с изолированной нейтралью, находящихся под напряжением.

Использование: в области электротехники. Технический результат - повышение чувствительности дистанционной защиты.

Изобретение относится к поиску трассы и определению мест повреждения электропроводки индукционным методом. Сущность: способ осуществляется подачей переменного напряжения в исследуемую линию от генератора и обнаружением магнитного поля приемником, настроенным на частоту генератора.

Изобретение относится к релейной защите и автоматике распределительных сетей, характеризующихся малыми установившимися токами при однофазных замыканиях. Сети - сложной конфигурации с большим числом ответвлений.

Изобретение относится к области контроля состояния высоковольтных воздушных линий (ВЛ) и может быть использовано для контроля состояния изоляторов ВЛ. Заявленная система содержит терминал контроля, который связан оптоволоконной линией с модулями первичной обработки, размещенными на опорах ВЛ.

Использование: в области электротехники. Технический результат - повышение точности определения места замыкания.

Изобретение относится к линиям электроснабжения, в частности к определению местоположения электрических повреждений. Способ заключается в том, что в момент короткого замыкания измеряют на одной или смежных тяговых подстанциях напряжение на шинах, токи линий, питающих контактные сети, и фазовые углы токов.

Изобретение относится к электротехнике, а именно к релейной защите и автоматике линий электропередачи, и может быть использовано при создании устройств защиты и автоматики, требующих высокой степени адаптации характеристик срабатывания к режимам защищаемого объекта. Технический результат: упрощение способа. Сущность: предварительно проводят имитации повреждений в различных точках линии электропередачи, определяют токи и напряжения по меньшей мере на одном конце линии электропередачи. Реализуют процедуру определения места повреждения по токам и напряжениям, полученным в результате имитации повреждения. Вычисляют разность расстояний между имитируемым местом повреждения и определенным по значениям токов и напряжений по модели. Реализуют адаптацию дистанционной защиты и определителя места повреждения путем корректировки расстояний, определенных в дистанционной защите и определителе места повреждения, на разность расстояний, сформированную в результате имитационного моделирования. 2 ил., 3 табл.

Изобретение относится к электроэнергетике, а именно к релейной защите и автоматике распределительных сетей, работающих в режиме с изолированной нейтралью. Сущность: используется модель контролируемого фидера. Входные величины - комплексные фазные токи и напряжения, получаемые в результате наблюдения фидера в его начале. В месте предполагаемого повреждения на нагрузочную часть модели фидера воздействуют трехфазным источником напряжений, полученных для этого места. Фиксируют реакцию нагрузочной части модели в виде нормальных токов фидера. Находят локальные токи фидера как разности фазных токов, полученных для этого места, и составляющих нормальных токов. Сравнивают уровни локальных токов фаз фидера на его входе. Две фазы фидера с более высокими уровнями локальных токов идентифицируют как поврежденные. Определяют токи предполагаемых замыканий в поврежденных фазах как разности локального тока поврежденной фазы и локального тока неповрежденной третьей фазы в месте предполагаемого замыкания. Преобразуют фазное напряжение и ток предполагаемого замыкания каждой из двух поврежденных фаз в два информационных параметра места предполагаемого замыкания. Определяют ближайшее к началу фидера место перехода одного из информационных параметров через нулевое значение как первое место замыкания фидера, а ту фазу фидера, которой принадлежит этот параметр, идентифицируют как первую поврежденную фазу фидера. Укорачивают модель фидера на длину неповрежденной части от входа фидера до места первого замыкания. В качестве входных напряжений укороченной модели принимают фазные напряжения в месте первого замыкания. В качестве входных токов второй и третьей фаз укороченной модели принимают фазные токи в месте первого замыкания. В качестве входного тока первой фазы принимают разность между соответствующим фазным током и током замыкания. Преобразуют в укороченной модели фидера ее входные токи и напряжения во вторичные фазные величины места второго предполагаемого замыкания. Определяют ток второго замыкания, преобразуют вторичное фазное напряжение второй поврежденной фазы фидера и ток второго замыкания в информационные параметры мест предполагаемых повреждений этой фазы и определяют координату второго замыкания фидера на землю. Технический результат: упрощение способа и расширение его функциональных возможностей. 4 з.п. ф-лы, 10 ил.

Изобретение относится к контрольно-измерительной технике, в частности к устройствам, предназначенным для контроля качества электрической энергии. Сущность: передающие линейные полукомплекты снабжены блоком сравнения напряжений передающих линейных полукомплектов. Этот блок соединен с блоком модемов линейного полукомплекта. Входы блока сравнения напряжений линейного полукомплекта соединены с выходом блока питания линейного полукомплекта и выходом блока измерения напряжения линейного полукомплекта. Сущность: повышение эффективности контроля состояния проводов за счет использования дополнительного диагностического признака - разности фаз питающих напряжений в соседних точках подключения. 1 ил.

Изобретение относится к электроэнергетике и может быть использовано для определения места короткого замыкания в длинных линиях электропередач. Технический результат: снижение трудоемкости и повышение точности при определении места короткого замыкания за счет более полного учета параметров линий. Сущность: на предварительной стадии формируют полную модель линии в трехфазном виде с учетом взаимоиндуктивных и емкостных связей между проводами линий. При возникновении короткого замыкания измеряют и регистрируют значения комплексных фазных напряжений на шинах и фазных токов в линии. Далее разбивают модель линии на равные участки, например от опоры до опоры, формируют напряжения в конце каждого участка в каждой фазе, начиная от шин с одного и другого концов линии, формируют токи в конце каждого участка в каждой фазе, начиная от шин с одного и другого концов линии. Регистрируют модули фазных напряжений в конце каждого участка в каждой фазе, начиная от шин с одного и другого концов линии. По модулям напряжений строят графики с осями с двух сторон зависимости модулей напряжений от номера участка (от расстояния). Точка пересечения графиков с одного и другого концов линии соответствует точке короткого замыкания.

Предлагаемое изобретение относится к электроэнергетике и может быть использовано для определения места короткого замыкания на линиях электропередачи по замерам мгновенных значений токов и напряжений при несинхронизированных замерах с двух ее концов. Техническая задача изобретения заключается в повышении точности определения места повреждения. Технический результат изобретения достигается за счет учета фазных и междуфазных параметров линии при наличии точной синхронизации измеренных величин токов и напряжений по концам линии не синхронизированных по времени при измерении, которая выполняется путем совмещения осциллограмм с двух концов линии по срезу начала короткого замыкания. 2 ил.

Группа изобретений относится к электроизмерительной технике и может быть использована для определения местоположения обрыва в многожильном кабеле, не имеющем экранной оболочки, в частности геофизическом. Технический результат заключается в повышении точности за счет применения тонального детектора с узкой полосой пропускания, снижении влияния сигналов от недоступных для заземления жил за счет использования второго генератора с частотой вне полосы пропускания тонального детектора, снижении влияния сигналов промышленной частоты за счет применения фильтра высоких частот. Способ нахождения места обрыва многожильного электрического кабеля включает подачу первого переменного электрического сигнала на первый конец оборванной жилы, второго переменного электрического сигнала с частотой, отличной от частоты первого, на второй конец оборванной жилы, при этом устанавливают уровень второго переменного электрического сигнала выше уровня первого переменного электрического сигнала на втором конце оборванной жилы, но ниже уровня первого переменного электрического сигнала на первом конце оборванной жилы, затем определяют емкостным датчиком наличие электрического поля вдоль кабеля на частоте первого переменного электрического сигнала, находят место обрыва жилы по смене наличия электрического поля на отсутствие или наоборот. 2 н.п. ф-лы, 5 ил.
Наверх