Способ моделирования травматического остеомиелита



Способ моделирования травматического остеомиелита
Способ моделирования травматического остеомиелита
Способ моделирования травматического остеомиелита

 


Владельцы патента RU 2584402:

Краснов Ефим Авраамович (RU)
Скороходова Марина Геннадьевна (RU)
Авдеева Елена Юрьевна (RU)
Государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ГБОУ ВПО СибГМУ Минздрава России) (RU)
Иванов Владимир Владимирович (RU)
Зоркальцев Максим Александрович (RU)
Фомина Татьяна Ивановна (RU)
Слизовский Григорий Владимирович (RU)

Изобретение относится к экспериментальной медицине и может быть использовано для моделирования травматического остеомиелита трубчатых костей. Способ включает предварительную сенсибилизацию крыс путем трехкратного внутрибрюшинного введения ослабленной нагреванием при 60°С в течение 30 минут культуры слабовирулентного золотистого стафилококка. Причем через каждые 3 дня сенсибилизацию проводят с постепенным увеличением дозы от 1 до 3 млн бактериальных тел. Далее, через три дня после окончания сенсибилизации, в стерильных условиях под наркозом производят разрез мягких тканей. Через дистальный метафиз бедренной кости толстой иглой формируют отверстие в костно-мозговом канале, в которое вводят активный стафилококк в дозе 6 млн бактериальных тел в 0,1 г 30% раствора желатина. После этого мягкие ткани ушивают кетгутом, рану обрабатывают. Способ обеспечивает получение физиологически точной модели различных стадий послеоперационного травматического остеомиелита при снижении летальности испытуемых животных. 3 ил., 2 табл..

 

Изобретение относится к области медицины и может быть использовано для моделирования острого и хронического травматического остеомиелита.

В современном представлении о патогенезе остеомиелита остаются нерешенные задачи. Невозможность их решения клиническим путем актуализирует поиск модели остеомиелита, которая соответствует закономерностям возникновения и обеспечивает возможность изучения механизма его развития.

Известен способ моделирования остемиелита, предполагающий использование крольчат [1, 2]. Для развития заболевания проводят первоначальную сенсибилизацию организма с последующим депонированием микробов в костно-мозговую полость помощью вязких веществ (ланолина или желатина) [3].

Указанная модель вполне эффективна и приемлема для изучения патогенеза заболевания, но требует значительных материальных затрат и не всегда целесообразна для проведения скрининговых исследований.

Для испытания новых лекарственных средств для лечения заболевания необходимо наличие эффективной и легко реализуемой модели, включающей различные стадии развития остеомиелита. Представляется целесообразным усовершенствование указанной модели остеомиелита с применением крыс, что значительно удешевит эксперимент и сделает более доступным возможность его применения.

Известен способ моделирования развития остеомиелита на крысах [4]. Он заключается в следующем. В костно-мозговой канал большеберцовой кости вводят полую трубку с глухим концом. Производят поперечный дефект кости. Одновременно выполняют сквозное отверстие в стенке трубки. Инфицирующий материал вводят дробно через свободный конец трубки, находящийся вне раны. Введение инфицирующего материала осуществляют в место дефекта кости. Однако у данной модели имеется ряд недостатков:

- модель не предполагает предварительной сенсибилизации организма, в связи с этим возможен большой процент не заболевших животных, что требует повторного инфицирования;

- игла постоянно находится в костно-мозговом канале, дополнительно травматизирует животных и доставляет неудобство в их жизнедеятельности, что не согласуется с «Правилами лабораторной практики в Российской Федерации (GLP) (утв. Приказом Министерства здравоохранения Российской Федерации от 19.06.2003 N 267);

- диаметр большеберцовой кости красы довольно мал, что затрудняет введение инъекционной иглы в костно-мозговой канал;

- введение стафилококка осуществляется без использования вязких веществ, поэтому в ряде случаев наблюдается тяжелое течение заболевания с генерализацией инфекции и гибель животных.

Новый технический результат - получение более физиологически точной модели различных стадий травматического остеомиелита, соответствующей диагнозу, расширение области применения модели и снижение летальности испытуемых животных.

Для достижения нового технического результата в способе моделирования травматического остеомиелита, включающем формирование дефекта костной ткани большеберцовой кости у экспериментального животного с последующим введением в место дефекта инфицирующего материала, предварительно крыс сенсибилизируют путем трехкратного внутрибрюшинного введения ослабленной нагреванием при 60°С в течение 30 мин культуры слабовирулентного золотистого стафилококка, причем через каждые 3 дня сенсибилизацию проводят с постепенным увеличением дозы от 1 до 3 млн бактериальных тел, далее, через три дня после окончания сенсибилизации, в стерильных условиях, под наркозом производят разрез мягких тканей, через дистальный метафиз бедренной кости толстой иглой формируют отверстие в костно-мозговом канале, куда вводят активный стафилококк в дозе 6 млн бактериальных тел в 0,1 г 30%-ного раствора желатина, после этого мягкие ткани ушивают кетгутом, рану обрабатывают.

Способ осуществляют следующим образом. У экспериментального животного формируют дефект костной ткани большеберцовой кости с последующим введением в место дефекта инфицирующего материала, при этом предварительно крыс сенсибилизируют путем трехкратного внутрибрюшинного введения ослабленной нагреванием при 60°С в течение 30 мин культуры слабовирулентного золотистого стафилококка, причем через каждые 3 дня сенсибилизацию проводят с постепенным увеличением дозы от 1 до 3 млн бактериальных тел, далее, через три дня после окончания сенсибилизации, в стерильных условиях, под наркозом производят разрез мягких тканей, через дистальный метафиз бедренной кости толстой иглой формируют отверстие в костно-мозговом канале, куда вводят активный стафилококк в дозе 6 млн бактериальных тел в 0,1 г 30%-ного раствора желатина, после этого мягкие ткани ушивают кетгутом, рану обрабатывают и появление на 10-й день таких признаков изменений лейкоцитарной формулы крови, наличии таких клинических проявлений, как боль при пальпации коленного сустава, увеличение коленного сустава в 2-3 раза по сравнению со здоровой конечностью, наличие гнойного отделяемого из раны, регистрация при проведении сцинтиграфии ускоренного и повышенного поступления препарата в артерии на стороне поражения, также определение участков гиперфиксации индикатора в мягкотканую и костную фазы исследования, подтверждает формирование модели острой стадии травматического остеомиелита, а при появлении к 21 дню признаков снижения общего количества миелокариоцитов, мегакариоцитов, моноцитов и лимфоцитов в костном мозге, изменении лейкоэритробластического отношения клеток костного мозга в сторону уменьшения клеток миелоидного ряда, элементов подтверждающих гнойная инфильтрация костного мозга подтверждает создание модели хронической стадии травматического остеомиелита

Предлагаемый способ основан на анализе результатов экспериментальных исследований. Эксперименты выполняли на 20 белых нелинейных крысах-самцах массой 200-250 г. Животных содержали в стандартных условиях вивария при свободном доступе к воде и пище. При проведении экспериментов руководствовались «Правилами проведения работ с использованием экспериментальных животных» (Приложение к приказу МЗ СССР от 12.08.1977 г., №755).

Крыс распределяли на две группы: интактные (группа-1) и животные с экспериментальным остеомиелитом (группа-2). Предварительно крыс группы-2 сенсибилизировали путем внутрибрюшинного введения ослабленной нагреванием (60°С, 30 мин) культуры слабовирулентного золотистого стафилококка через каждые 3 дня. Сенсибилизацию проводили с постепенным увеличением дозы (1 млн, 2 млн и 3 млн бактериальных тел). Микробную взвесь готовили по стандарту мутности ГНИИСК им. Л.А. Тарасевича.

Через три дня после окончания сенсибилизации в стерильных условиях, под наркозом (Золетил, 10 мг/кг в/м) в дистальный метафиз правой бедренной кости вводили дозу активного стафилококка (6 млн. бактериальных тел в 0,1 г 30%-ного раствора желатина). Для чего производили разрез мягких тканей, толстой иглой формировали отверстие в костномозговой канал и, с помощью шприца вводили инфицирующий материал. Затем мягкие ткани ушивали кетгутом. Рану обрабатывали раствором бриллиантового зеленого.

Со следующего дня после проведения операции начинали наблюдение клинических проявлений. Фиксировали показатели общего состояния животных (вялость, малоподвижность, ректально определяли температуру тела) и местные проявления (отек мягких тканей конечности, локальную гипертермию, щадящее положение конечности, наличие свищей, абсцессов). Маркерами развития воспаления служили данные анализов крови, результаты исследования костного мозга, сцинтиграфии и гистологического исследования.

Анализ крови проводили на 7 сутки после операции на автоматическом гематологическом анализаторе для ветеринарии РСЕ 90 Vet (США, High Technology). На 21 сутки эксперимента после эвтаназии СО2-асфиксией левую бедренную кость забирали для количественного определения клеток костного мозга, правую бедренную кость помещали в раствор формалина для последующего гистологического исследования. Костный мозг для подсчета миелограмм брали из грудины, мазки фиксировали в метиловом спирте в течение 5 мин и окрашивали азур II - эозином, приготовленном по Нохту. Для определения общего количества миелокариоцитов (ОКМ), костный мозг из канала левой бедренной кости вымывали 1 мл 5% раствора уксусной кислоты и ресуспендировали. Дополнительное разведение проводили с помощью лейкоцитарного меланжера (конечное разведение в 20000 раз). Вычисление ОКМ проводили с помощью камеры Горяева [5].

Трехфазная сцинтиграфия с 99mТс-технефор (ООО «Диамед», Россия, 18,5 МБк) выполнена на 10 сутки эксперимента на однофотонном эмиссионном компьютерном томографе Philips BrightView (США). Исследование включало в себя радионуклидную ангиографию, мягкотканую фазу (blood-pool) и костную фазу исследования (остеосцинтиграфию).

Для гистологического исследования кость декальцинировали по Грипу [6], обезвоживали в спиртах восходящей концентрации и заливали в парафин. Депарафинированные срезы толщиной 7 мкм окрашивали гематоксилином и эозином.

Результаты экспериментальных исследований статистически обрабатывали в программе Statistica 10.

К 6-7-му дню после проведения операции температура тела заболевших животных повысилась до 38,5°С, но к 20-му дню произошло снижение этого показателя до 36,9°С. На 2-й день у крыс группы-2 наблюдали малоподвижность, щадящее положение конечности, которые сохранялись на протяжении всего эксперимента. К 10 дню у всех крыс группы-2 появилась боль при пальпации, увеличение коленного сустава в 2-3 раза по сравнению со здоровой конечностью, гнойное отделяемое из раны. К 15 суткам у трех животных группы-2 образовались абсцессы в области правой бедренной кости. К 21 суткам животные стали более подвижны, уменьшились боль при пальпации и отек коленного сустава.

На развитие острого воспалительного процесса указывало достоверное увеличение в крови животных группы-2 количества лейкоцитов, нейтрофильных гранулоцитов и моноцитов на 7 сутки заболевания (табл. 1). Количество лимфоцитов достоверно снижалось по сравнению с интактными.

В результате сцинтиграфии на 10 сутки в группе здоровых крыс определялось одновременное поступление индикатора в магистральные сосуды задних конечностей, отсутствие участков гиперфиксации препарата в мягкотканную и костные фазы исследования. Во второй группе регистрировалось ускоренное и повышенное поступление препарата в артерии на стороне поражения, также определялись участки гиперфиксации индикатора в мягкотканую и костную фазы исследования (средняя разница счета по сравнению с симметричным участком 115±5% и 121±10% соответственно), что расценивалось нами как проявление острой стадии остеомиелита (Фиг. 1).

ОКМ в костном мозге заболевших крыс значительно снижалось в сравнении с интактными. В результате развития заболевания был нарушен преимущественно миелоидный росток, на что указывает уменьшение индекса созревания нейтрофилов (ИСН) заболевших в сравнении со здоровыми животными (табл. 2). При этом индекс созревания эритрокариоцитов (ИСЭ) животных обеих групп значительно не отличался. Вследствие этого лейкоэритробластическое отношение (ЛЭО) клеток костного мозга животных группы-2 смещалось в сторону значительного уменьшения клеток миелоидного ряда в сравнении с группой-1. Кроме того, в костном мозге заболевших животных снижалось количество мегакариоцитов на 73%, моноцитов на 61% и лимфоцитов на 51% в сравнении с контролем.

При морфологическом исследовании в диафизе бедренной кости отмечалась гнойная инфильтрация костного мозга. Происходил некроз и аутолиз костных перекладин, кортикального слоя кости, стенок каналов остеонов. Резорбция кости сопровождалась появлением в ней мелких дефектов, заполненных гноем, которые сливались в более крупные фокусы, содержащие секвестры (Фиг. 2). Одновременно с воспалительно-некротическими изменениями в костной ткани происходили репаративные процессы. По периферии остеомиелитического очага отмечалось образование грануляционной ткани, содержащей большое количество фибробластов и остеобластов. Участки некроза замещались молодой костной тканью (Фиг. 3). Полученные результаты характеризовали классическую картину хронического остеомиелита.

Источники информации

1. Стрелков Н.С. Моделирование гнойного остеомиелита в эксперименте: Труды Ижевского мед. ин-та. - 1995. - Т. 33. Ч. 3 - С. 114-115.

2. Переслыцких П.Ф. Экспериментально-теоретические аспекты патогенеза гематогенного остеомиелита. - Иркутск, 1993. - 145 с.

3. Масликов В.М. Сравнительная оценка методов хирургического лечения острого гематогенного остемиелита у детей: автореф. … к.м.н., М., 1979.

4. Матузов С.А., Бусоедов А.В., Котляров В.Н., Сизоненко В.А. Способ моделирования травматического остеомиелита, патент №2129735 от 27.04.1999.

5. Руководство к практическим занятиям по гематологи: учеб.пособие / Новицкий В.В., Уразова О.И. - Томск: Изд-во Томского университета, 2007. - 230 с.

6. Пирс Э. Гистохимия. М.: изд-во иностранной литературы, 1962, 690 с.

Таблица 1. Результаты анализов крови опытных животных

Таблица 2. Миелограмма костного мозга опытных животных

Фиг. 1. Сцинтиграфия крысы на 20 сутки после моделирования остеомиелита. Повышенная концентрация радиофармацевтического препарата в мягкотканую фазу (а) и костную фазу (б) исследования в зоне поражения правой бедренной кости.

Фиг. 2. Бедренная кость крысы на 21 сутки после моделирования остеомиелита. Некроз и резорбция костной балки в зоне гнойного воспаления. Окраска гематоксилином и эозином. Ув. 100 х.

Фиг. 3. Бедренная кость крысы на 21 сутки после моделирования остеомиелита. Грануляционная ткань с большим количеством остеобластов. Участки остеогенеза. Окраска гематоксилином и эозином. Ув. 100 х.

Способ моделирования травматического остеомиелита, включающий формирование дефекта костной ткани большеберцовой кости у экспериментального животного с последующим введением в место дефекта инфицирующего материала, отличающийся тем, что предварительно крыс сенсибилизируют путем трехкратного внутрибрюшинного введения ослабленной нагреванием при 60°С в течение 30 минут культуры слабовирулентного золотистого стафилококка, причем через каждые 3 дня сенсибилизацию проводят с постепенным увеличением дозы от 1 до 3 млн бактериальных тел, далее, через три дня после окончания сенсибилизации, в стерильных условиях, под наркозом производят разрез мягких тканей, через дистальный метафиз бедренной кости толстой иглой формируют отверстие в костно-мозговом канале, куда вводят активный стафилококк в дозе 6 млн бактериальных тел в 0,1 г 30%-ного раствора желатина, после этого мягкие ткани ушивают кетгутом, рану обрабатывают.



 

Похожие патенты:

Изобретение относится к медицине и может быть использовано для профилактики экспериментальной молибденовой нефропатии и протеинурии у крыс. Для этого в течение одного месяца вводят препарат «Аквадетрим» в дозировке 3000 МЕ/100 г.

Изобретение относится к медицине, а именно к экспериментальной неврологии, нейрохирургии, и может быть использовано для изучения дегенеративных повреждений позвоночника.
Изобретение относится к медицине, в частности к патологической физиологии, и касается моделирования ожирения в эксперименте. Моделирование проводят в условиях гиподинамии животного.

Изобретение относится к медицине, экспериментальной хирургии. Моделируют механическую желтуху в эксперименте.

Изобретение относится к медицине, в частности патологической физиологии, и касается моделирования стандартного термического ожога у лабораторного животного. Способ включает использование в качестве термического агента электромагнитного излучения и контроль температуры в зоне ожога.

Изобретение относится к экспериментальной медицине, а именно к моделированию артифициального флегмонозного воспаления мягких тканей. Для этого лабораторному животному (крысе) в одном шприце однократно вводят смесь, состоящую из человеческой слюны в количестве 0,3 мл, раствора дексаметазона 0,5 мг, суспензии гидрокортизона ацетата 2,5% в дозировке 20 мг на 100 г массы тела.

Изобретение относится к средствам обучения и информирования населения и может быть использовано для подготовки населения в области гражданской обороны и защиты от чрезвычайных ситуаций в отдаленных районах.

Изобретение относится к медицине, в частности к экспериментальной гинекологии, и касается моделирования хронического воспаления эндометрия. Для этого крысе в маточный рог вводят 0,1 мл взвеси аутокала.

Изобретение относится к экспериментальной медицине и может быть использовано для моделирования хронического дефекта костной ткани со склерозированной стенкой. Для этого на медиальной поверхности проксимального метаэпифиза большеберцовой кости под острым углом относительно ее поверхности круговыми движениями формируют несквозной дефект цилиндрической формы с округлым дном глубиной до противоположной кортикальной пластинки.
Изобретение относится к медицине, а именно к ортопедии и травматологии, и может быть использовано для моделирования очага хронического остеомиелита. Для этого формируют костный дефект у подопытного животного с помещением в этот дефект носителя штамма патогенного микроорганизма.

Изобретение относится к экспериментальной медицине. Набор для моделирования отравления угарным газом мелких лабораторных животных содержит устройство для синтеза угарного газа, включающее соединенные трубками колбу с концентрированной серной кислотой, снабженную делительной капельной воронкой, в которой находится муравьиная кислота, и три склянки Дрекселя, причем в первой склянке находится раствор гидроксида натрия, в двух других - дистиллированная вода, и резиновый резервуар для накопления угарного газа, который с одной стороны соединен с трубкой, отходящей от склянки Дрекселя, а с другой - с трубкой с роликовым зажимом для соединения со шприцем. Камера для контакта животного с угарным газом выполнена в виде плоскодонного стеклянного сосуда цилиндрической формы объемом 3 л, горло которого вытянуто и сужено, с округлой формы отверстием диаметром 90 мм, при этом сосуд закрыт крышкой, через которую внутрь сосуда проходит силиконовая трубка для подачи угарного газа, на наружной части которой установлен роликовый зажим, и размещен на прямоугольной деревянной подставке длиной 200 мм, шириной 15 мм, толщиной 30 мм, передняя поверхность которой снабжена жестко закрепленным металлическим хомутом в форме полукруга диаметром 150 мм для фиксации стеклянного сосуда в горизонтальном положении. Шприц служит для забора угарного газа из резинового резервуара и введения его в камеру для контакта животного с угарным газом. Использование изобретения обеспечивает визуализацию реакции животного на контакт с угарным газом, равномерное распределение в камере угарного газа и фиксацию устройства в заданном положении независимо от действий исследуемого животного, расположенного внутри него. 5 ил.
Изобретение относится к медицине, логопедии и может быть использовано для лечения нарушений артикуляционного аппарата. Обучают изолированной артикуляции звука с одновременным сравнением артикуляции пациента и артикуляции, демонстрируемой на имитационной модели (ИМ). При этом на первом этапе не менее 4 мин проводят артикуляционную гимнастику в виде подражания пациента движениям органов артикуляционного аппарата, демонстрируемым на ИМ. На втором этапе в течение не менее 3 мин корректируют собственную артикуляцию звука с учетом места и способа его образования у пациента и сравнения собственных движений органов артикуляционного аппарата с движениями, демонстрируемыми на ИМ. На третьем этапе не менее 3 мин изолированно произносят звук, вычленяя его из слогов и слов, контролируя его артикуляцию с использованием артикуляции звука, демонстрируемой на ИМ. На четвертом этапе не менее 5 мин произносят слоги и слова различной слоговой структуры с заданным звуком под контролем сравнения их артикуляции с артикуляцией, демонстрируемой на ИМ, с учетом экскурсии, выдержки и рекурсии заданного звука. На пятом этапе не менее 15 мин выполняют упражнения по автоматизации артикуляции звука под контролем сравнения собственной артикуляции с артикуляцией, демонстрируемой на ИМ. Способ обеспечивает быстрое и целенаправленное воздействие на пораженный участок того или иного органа артикуляционного аппарата, активизируя и восстанавливая его деятельность. 3 пр.

Изобретение относится к области медицины, а именно к стоматологическим методам экспериментального моделирования процессов, протекающих в полости рта человека, в частности образования зубного камня. Для этого предложен способ моделирования процесса образования зубного камня из аналога раствора слюны человека, основанный на синтезе зубного камня в искусственно созданной модельной среде, при котором готовят модельную среду указанного состава: NaCl - 9,00 ммоль/л, K2CO3 - 5,00 ммоль/л, (NH4)2HPO4 - 5,60 ммоль/л, NH4Cl - 29,49 ммоль/л, NH4F - 0,01 ммоль/л, KCl - 25,00 ммоль/л, CaCl2·H2O - 6,90 ммоль/л, MgCl2·6H2O - 3,00 ммоль/л. Синтез проводят при значении pH=6,95±0,05 и температуре 37.0±0.5°C, при этом через 60 дней образуется фаза в виде брушита, а через 90 дней из модельной системы образуется гидроксилапатит, который является основным компонентом зубных камней человека. Изобретение позволяет обнаружить предрасположенность к заболеванию и выработать профилактические меры для предотвращения роста зубного камня. 5 ил., 2 табл.,1 пр.

Изобретение относится к медицине, в частности к экспериментальной вирусологии, и может быть использовано для ингибирования инфекционной активности вируса Эбола в эксперименте. Способ включает введение морским свинкам препарата рекомбинантного интерферона альфа-2 человека до начала или в период попадания возбудителя инфекции в организм животного в суточной дозе, достаточной для проявления противовирусным препаратом ингибирующей активности. Для этого используют препарат в липосомальной форме «Реаферон-Липинт» в суточной дозе от 200000 до 300000 МЕ/кг. При моделировании профилактики и лечения вирусной инфекции этот препарат вводят за 12 и 1 час до заражения вирусом Эбола, в момент заражения и через 12, 24, 36, 48, 60, 72 часов после заражения вирусом Эбола. Способ обеспечивает достижение ингибирующего эффекта при снижении профилактической и лечебной дозы рекомбинантного интерферона альфа-2 человека. 1 з.п. ф-лы, 3 табл., 2 ил.

Изобретение относится к экспериментальной медицине, а именно к ревматологии, и может быть использовано для моделирования остеоартроза (OA), апробации средств и методов его лечения. Способ моделирования остеоартроза у крыс линии Wistar проводят путем ежедневных подкожных инъекций 1% 0.1 мл раствора мезатона на протяжении 2 недель. После каждой инъекции обеспечивают животным плавание в течение 20 минут. Далее помещают животных на 2 месяца в тесные клетки с обеспечением им высококалорийного питания. Диета включает не менее 55% углеводов, не менее 30% жиров и не менее 9% белков от рациона питания. Способ обеспечивает создание остеоартроза с поражением суставного хряща 2-3 степени 2 стадии, являясь нетравматичным, максимально учитывающим этиопатогенез заболевания, не требует специального оборудования и больших временных затрат. 3 табл., 20 ил.

Изобретение относится к медицине и ветеринарии и может быть использовано для повышения репродуктивной активности особей мужского пола (самцов). Способ включает пероральное курсовое введение животным меланина с водорастворимостью не менее 80% и концентрацией парамагнитных центров не менее 8×1017 спин/г в растворенном виде в дистиллированной воде в эффективной концентрации. Воду с меланином животные употребляют в качестве питьевой в течение 8-10 суток перед спариванием и в период спаривания. Способ позволяет повысить репродуктивную активность интактных мышей самцов и восстановить репродуктивную активность самцов, сниженную путем воздействия ионизирующего излучения. 4 табл., 5 пр.
Изобретение относится к области образования и медицины, точнее к способам формирования у студентов в медицинских учреждениях навыков владения профессиональной компетенцией «Аускультация сердца» и контроля над владением данной компетенцией и ее усовершенствованием у работающих врачей. Проводят аускультацию сердца студентом с выделением тонов сердца. Студенту предлагается синхронно с аускультативным способом провести мануальное подтверждение выслушиваемых тонов при одновременном осуществлении аускультативного и визуального контроля со стороны преподавателя над действиями обучаемого. Способ позволяет улучшить наглядность учебного процесса и более быстро овладеть профессиональной компетенцией «Аускультация сердца», а также повысить точность диагностики за счет мануального подтверждения при выделении тонов. 3 пр.

Изобретение относится к области медицины, а именно к экспериментальной онкологии, фармакологии, патологической физиологии. Для увеличения осмотической резистентности мембран эритроцитов в условиях экспериментального канцерогенеза предложено использовать ресвератрол. Для создания модели интоксикации и канцерогенеза животным вместе с питьевой водой в течение 4 месяцев вводят N-нитрозодиэтиламин в дозе 100 мг/л. При этом с пищей вводят ресвератрол в дозе 100 мг/кг массы тела на протяжении 6 месяцев. Способ обеспечивает значительное повышение стойкости мембран эритроцитов, способствуя снижению процента гемолизированных клеток крови и повышению их жизнеспособности в условиях экспериментального канцерогенеза. 1 ил., 1 пр.

Изобретение относится к медицине, в частности к экспериментальной биологии, экологии, токсикологии, и может быть использовано при исследовании механизмов токсического действия молибдата аммония на функциональное состояние почек. Для этого экспериментальным животным 1 раз в сутки ежедневно внутрижелудочно вводят 10% хлорид кальция в количестве 0,15 мл/100 г в течение 50 дней. При этом, начиная с 20 дня от начала эксперимента, животным через час после введения кальцийсодержащего раствора интрагастрально вводят молибдат аммония в дозировке 50 мг/кг в пересчете на металл в течение 30 дней. Способ обеспечивает создание такого уровня гиперкальциемии в организме, который оказывает благоприятное влияние на сохранность функционального состояния почек в условиях молибденовой интоксикации. 1 пр., 2 табл., 2 ил.
Наверх