Автономная система энергоснабжения космических аппаратов

Изобретение относится к космической технике и может быть использовано для обеспечения электропитания космических аппаратов (КА) и станций. Технический результат - использование системы терморегулирования для получения дополнительной энергии. Система энергоснабжения предназначена для применения на космических аппаратах и станциях в условиях космического пространства. В предлагаемом изобретении в существующую жидкостную систему терморегулирования, содержащую корпус, внутри которого расположен контур охлаждения и обогрева, состоящий из последовательно соединенных теплообменника с резервуаром теплоносителя, имеющего управляющий клапан, радиатора с травящим клапаном, магнитогидродинамического насоса для циркуляции теплоносителя в конуре, после теплообменника введена турбина, соединенная с электрогенератором, который через систему управления соединен с аккумуляторной батареей и нагрузкой. 1 ил.

 

Изобретение относится к космической технике и может быть использовано для обеспечения электропитания космических аппаратов (КА) и станций. Система энергоснабжения предназначена для применения на космических аппаратах и станциях в условиях космического пространства.

Подавляющее большинство систем космического аппарата требуют электропитания, в качестве источника электроэнергии обычно используется связка из солнечных батарей и химических аккумуляторов. Реже используются иные источники, такие как топливные элементы, радиоизотопные батареи, ядерные реакторы, одноразовые гальванические элементы.

Система энергоснабжения космического аппарата (СЭП) - система космического аппарата, обеспечивающая электропитание других систем, является одной из важнейших систем, во многом именно она определяет геометрию космических аппаратов, конструкцию, массу, срок активного существования. Выход из строя системы энергоснабжения ведет к отказу всего аппарата.

В настоящее время самым распространенным первичным источником электроэнергии являются солнечные батареи, на сегодняшний день считающиеся одним из самых надежных и достаточно хорошо отработанных вариантов обеспечения космического аппарата энергией.

Но и у солнечной батареи есть недостатки, она со временем деградируют под действием следующих факторов:

- метеорная эрозия, уменьшающая оптические свойства поверхности фотоэлектрических преобразователей;

- радиационное излучение, понижающее фото-ЭДС, особенно при солнечных вспышках и при полете в радиационном поясе Земли;

- термические удары из-за глубокого охлаждения конструкции на затененных участках орбиты, нагрева на освещенных, и наоборот. Это явление разрушает крепление отдельных элементов батареи, соединения между ними.

Существует ряд мер по защите батарей от этих явлений. Время эффективной работы солнечных батарей один из лимитирующих факторов, определяющих время активного существования космического аппарата.

При затенении батарей в результате маневров или входа в тень планеты выработка энергии фотоэлектрическими преобразователям прекращается, поэтому систему энергопитания дополняют химическими аккумуляторами (буферные химические батареи).

Но космический аппарат объединяет в себе различные системы, обязательные для сохранения работоспособности КА, и существует возможность использовать их для решения дополнительных задач параллельно с решением главной. Так жидкостную систему терморегулирования КА при незначительной доработке можно использовать как дополнительную систему энергоснабжения, а при определенных условиях эксплуатации и как основную. Поэтому в качестве ближайшего аналога для заявляемой автономной системы энергоснабжения космических аппаратов предлагается использовать эндотермическую систему терморегулирования космических аппаратов (RU 2463222, от 25.05.2011), содержащую корпус, контур охлаждения и обогрева, теплообменники, радиатор, магнитогидродинамический насос, резервуар теплоносителя, управляющий клапан, травящий клапан и токопроводящий экзотермический теплоноситель.

Недостатком известных автономных систем электропитания КА является использование только первичного источника электроэнергии (солнечной батареи и др.) и незадействование других систем используемых КА для производства электроэнергии, что становится наиболее актуально с возрастающим энергопотреблением приборов и устройств полезной нагрузки.

Задачей заявляемого изобретения является использование системы терморегулирования для получения дополнительной электроэнергии и, как следствие, повышение эффективности и увеличение мощности автономной системы электроснабжения КА.

В предлагаемом изобретении требуемый технический результат достигается тем, что в существующую жидкостную систему терморегулирования, содержащую корпус, внутри которого расположен контур охлаждения и обогрева, состоящий из последовательно соединенных теплообменника с резервуаром теплоносителя, имеющего управляющий клапан, радиатора с травящим клапаном, магнитогидродинамического насоса для циркуляции теплоносителя в конуре, после теплообменника введена турбина, соединенная с электрогенератором, который через систему управления соединен с аккумуляторной батареей и нагрузкой.

Автономная система энергоснабжения космических аппаратов показана на Фиг. 1., где:

1 - корпус;

2 - магнитогидродинамический насос;

3 - турбина;

4 - радиатор;

5 - резервуар теплоносителя;

6 - управляющий клапан;

7 - травящий клапан;

8 - контур охлаждения и обогрева;

9 - электрогенератор;

10 - система управления;

11 - нагрузка;

12 - аккумуляторная батарея;

13 - теплообменник.

Система работает следующим образом: в корпусе КА тепло от греющихся блоков аппаратуры КА передается теплоносителю, циркулирующему по внутреннему контуру охлаждения и обогрева (8). Нагретый теплоноситель после теплообменников (13) подается МГД-насосом (2) на лопатки турбины (3), приводя ее в движение. Турбина (3) соединена с электрогенератором (9) и при работе приводит его в движение, вследствие чего вырабатывается электроэнергия, поступающая в систему управления (10), которая в зависимости от существующих на данный момент времени потребностей распределяет ее или на нагрузку (11), которой являются все системы и устройства КА, потребляющие электроэнергию. При отсутствии потребности электроэнергия накапливается в аккумуляторной батарее (12). Отработанный нагретый теплоноситель поступает на радиатор (4), излучающий тепло в наружное пространство и охлаждающий теплоноситель. Далее цикл повторяется. Для предотвращения выхода системы из строя дополнительно введен резервуар теплоносителя (5) с управляющим клапаном (6). При понижении давления в системе клапан (6) обеспечивает дополнительную подачу теплоносителя, при повышении его происходит стравливание избыточного давления через клапан (7).

В качестве теплоносителя предлагаем использовать жидкости с низкой температурой кипения, например аммиак с добавлением H2O, чтобы жидкость стала токопроводящей, для работы МГД-насоса.

Автономная система энергоснабжения космических аппаратов, содержащая корпус, внутри которого расположен контур охлаждения и обогрева, состоящий из последовательно соединенных теплообменника с резервуаром теплоносителя, имеющего управляющий клапан, радиатора с травящим клапаном, магнитогидродинамического насоса для циркуляции теплоносителя в конуре, отличающаяся тем, что в контур охлаждения и обогрева после теплообменника введена турбина, соединенная с электрогенератором, который через систему управления соединен с аккумуляторной батареей и нагрузкой.



 

Похожие патенты:

Изобретение относится к области электротехники. Автономная система электропитания содержит солнечную батарею, накопитель электроэнергии, зарядно-разрядное устройство и нагрузку, состоящую из одного или нескольких стабилизаторов напряжения с подключенными к их выходам конечными потребителями электроэнергии.

Устройство для передачи энергии автономному подводному аппарату содержит источник энергии на борту судна-носителя, кабель-трос, герметичный светодиодный излучатель высокой интенсивности, герметичную светоприемную панель.

Изобретение относится к электротехнической промышленности и может быть использовано при проектировании автономных систем электропитания искусственных спутников Земли (ИСЗ). Технический результат - повышение удельных энергетических характеристик и надежности автономной системы электропитания ИСЗ. Предлагается способ питания нагрузки постоянным током в автономной системе электропитания искусственного спутника Земли от солнечной батареи и комплекта из вторичных источников электроэнергии - аккумуляторных батарей, содержащих Nакк аккумуляторов, соединенных последовательно, заключающийся в стабилизации напряжения на нагрузке, проведении заряда и разряда аккумуляторных батарей через индивидуальные зарядные и разрядные преобразователи, при этом разрядные преобразователи выполнены без вольтодобавочных узлов, для чего число аккумуляторов Nакк в каждой аккумуляторной батарее выбирают из соотношения: Nакк≥(Uн+1)/Uакк.мин, где Nакк - число аккумуляторов в последовательной цепи каждой аккумуляторной батареи; Uн - напряжение на выходе автономной системы электропитания, В; Uакк.мин - минимальное разрядное напряжение одного аккумулятора, В, зарядные преобразователи выполнены без вольтодобавочных узлов, для чего напряжение в рабочей точке солнечной батареи выбирают из соотношения:Uрт>Uакк.макс·Nакк+1, где Uрт - напряжение в рабочей точке солнечной батареи в конце гарантированного ресурса ее работы, В; Uакк.макс - максимальное зарядное напряжение одного аккумулятора, В, при этом рассчитанное число аккумуляторов Nакк дополнительно увеличивают исходя из соотношения: Nакк≥(Uн+1)/Uакк.мин+Nотказ, где Nотказ - число допустимого отказа аккумуляторов, а стабилизацию напряжения на нагрузке и заряд аккумуляторных батарей проводят с использованием экстремального регулирования напряжения солнечной батареи.

Изобретение относится к электротехнической промышленности и может быть использовано при создании автономных систем электропитания преимущественно связных космических аппаратов (КА).

Электросамолет содержит фюзеляж, крылья, двигатели, оперение и шасси. На фюзеляже и крыльях установлены солнечные батареи, соединенные с аккумуляторами и двигателями.

Изобретение относится к области электротехники. Технический результат заключается в расширении эксплуатационных возможностей системы, увеличении его нагрузочной мощности и обеспечении максимальной бесперебойности работы при поддержании оптимальных параметров работы аккумуляторной батареи при питании потребителей постоянным током.

Изобретение относится к области электротехники. Описаны системы и способы использования различных типов аккумуляторов для выборочного аккумулирования и отдачи энергии.

Изобретение относится к области солнечной энергетики, в частности к непрерывно следящим за Солнцем солнечным установкам как с концентраторами солнечного излучения, так и с плоскими кремниевыми модулями, предназначенным для питания потребителей, например, в районах ненадежного и децентрализованного электроснабжения.

Изобретение относится к электротехнической промышленности и может быть использовано при проектировании автономных систем электропитания искусственных спутников Земли (ИСЗ).

Использование: в области электротехники для электроснабжения космических аппаратов от первичных источников разной мощности. Технический результат - повышение надежности электроснабжения. Система электроснабжения космического аппарата содержит: группу солнечных батарей прямого солнечного света (1), группу солнечных батарей отраженного солнечного света (7), генерирующий контур (8), стабилизатор напряжения (2), зарядное устройство (3), разрядное устройство (4), аккумуляторную батарею (5), выпрямительное устройство (9), контроллер заряда аккумуляторной батареи (10) и потребителей (6). Переменное напряжение с генерирующего контура (8) преобразуется в постоянное в блоке (9) и поступает на первый вход контроллера заряда аккумуляторной батареи (10). Постоянное напряжение от солнечных батарей отраженного солнечного света (7) поступает на второй вход контроллера заряда аккумуляторной батареи (10). Суммарное напряжение от генерирующего контура и солнечных батарей отраженного солнечного света с первого выхода контроллера (10) попадает на второй вход аккумуляторной батареи (5). Со второго выхода контроллера на первый вход аккумуляторной батареи (5) поступают сигналы управления переключателями (15-21), имеющими контакты 1-3, и выключателями (22-25), имеющими контакты 1-2. Количество управляемых коммутационных аппаратов зависит от числа аккумуляторов в батарее. Для подзаряда выбранного аккумулятора (11-14) на соответствующих переключателях их первые контакты размыкаются с третьим и замыкаются со вторым, на соответствующих выключателях первый и второй контакты замыкаются. Подключенный таким образом ко второму входу батареи соответствующий аккумулятор подзаряжается номинальным зарядным током до поступления команды от контроллера (10) на смену очередного аккумулятора. Потребитель (6) получает питание от оставшихся аккумуляторов, в обход отключенного, с первого выхода батареи (5). 5 ил.

Использование: в области электротехники. Технический результат - повышение надежности и живучести систем электропитания и уменьшение вероятности возникновения аварийных ситуаций. Согласно способу управления системой электропитания космического аппарата (КА), содержащей фотоэлектрическую батарею, и n АБ, стабилизатор напряжения, и по n зарядных и разрядных устройств, управляют стабилизатором напряжения, зарядными и разрядными устройствами в зависимости от входного и выходного напряжений СЭП; контролируют степень заряженности АБ; вводят запрет на работу соответствующего зарядного устройства при достижении максимального уровня заряженности данной АБ и снимают этот запрет при снижении уровня заряженности; вводят запрет на работу соответствующего разрядного устройства при достижении установленного минимального уровня заряженности данной АБ и снимают этот запрет при повышении уровня заряженности данной АБ; контролируют выходное напряжение с помощью порогового датчика. При аварийном разряде нескольких m (m≤n) АБ до минимального уровня заряженности формируют управляющий сигнал в бортовой комплекс управления КА для отключения части бортовой аппаратуры и запоминают его; при аварийном разряде всех n работающих АБ до минимального уровня заряженности снимают запрет на работу всех разрядных устройств; в случае если после запоминания управляющего сигнала выходное напряжение СЭП снижается до заданного порогового значения, запрещают работу всех разрядных устройств; после восстановления ориентации батареи фотоэлектрической (БФ) на Солнце производят питание оставшейся включенной части бортовой нагрузки от БФ; сброс запоминания управляющего сигнала производят после заряда всех АБ или по внешней разовой команде, в качестве параметра для оценки состояния аккумуляторных батарей выбирают напряжение аккумулятора или группы включенных между собой параллельно аккумуляторов; для управления режимами функционирования АБ формируют соответствующие управляющие сигналы, отличающиеся между собой по величине порогового напряжения аккумулятора или группы аккумуляторов; отключение АБ от заряда выполняют ступенчато; введение и снятие запрета на работу соответствующего зарядного устройства осуществляют соответственно при превышении температуры в какой-либо АБ максимально допустимого уровня и снимают при снижении температуры до заданного уровня; введение и снятие запрета на работу соответствующего зарядного устройства осуществляют в зависимости от температуры АБ; контроль глубины разряда каждой АБ осуществляют с помощью счетчиков ампер-часов (САЧ), включенных в разрядно-зарядные цепи каждой из n АБ; при этом показания САЧ со всех n АБ суммируют и определяют интегральную глубину разряда; в случае достижения интегральной глубины разряда пороговых значений формируют соответствующие команды управления для изменения режима функционирования КА. 3 ил.

Использование: в области электротехники в системах электроснабжения (СЭС) космических аппаратов (КА). Технический результат - обеспечение штатного отключения сеансной нагрузки при нештатной ситуации. Способ управления автономной системой электроснабжения, которая содержит солнечную батарею и n аккумуляторных батарей, стабилизатор напряжения, включенный между солнечной батарей и нагрузкой и по n зарядных и разрядных устройств заключается в управлении стабилизатором напряжения и зарядно-разрядными устройствами в зависимости от входного и выходного напряжения системы, контроле степени заряженности и разряженности аккумуляторных батарей, запрете на работу соответствующего зарядного устройства при достижении предельного уровня заряженности данной аккумуляторной батареи, снятии этого запрета при достижении определенного уровня разряженности данной аккумуляторной батареи, запрете на работу соответствующего разрядного устройства при достижении предельного уровня разряженности данной аккумуляторной батареи и снятии этого запрета при достижении определенного уровня заряженности данной аккумуляторной батареи. Нагрузку делят на дежурную и сеансную составляющие и при достижении предельного уровня разряженности какой-либо аккумуляторной батареи проводят отключение сеансной части нагрузки, а запрет на работу соответствующего разрядного устройства устанавливают после отключения сеансной части нагрузки. 1 ил.

Изобретение относится к солнечной энергетике, в частности к получению электрической энергии путем прямого преобразования солнечного излучения, и приборостроению. Предложен способ повышения эффективности отбора электрической энергии от параллельно соединенных батарей фотоэлектрических преобразователей, имеющих различные напряжения, или при шунтировании диодом части фотоэлектрических преобразователей вследствие затенения, загрязнения, выхода из строя. Способ заключается в их согласовании посредством последовательного включения в них дополнительного элемента питания с изменяемыми электрическими характеристиками, номинал которых устанавливается из соображения получения максимальной мощности. Электрическая энергия в дополнительный элемент питания подается от этих же батарей фотоэлектрических преобразователей через устройство, обеспечивающее гальваническую развязку, или внешнего источника электрической энергии. Обеспечивается повышение эффективности отбора электрической энергии от батарей фотоэлектрических преобразователей. 2 н. и 6 з.п. ф-лы, 6 ил.

Использование: в области электротехники. Технический результат - повышение надежности и живучести функционирования системы электропитания (СЭП). Способ управления системой электропитания космического аппарата (КА) повышенной живучести, содержащей фотоэлектрическую батарею (БФ), n аккумуляторных батарей (АБ) и по n зарядных и разрядных устройств, заключается в том, что управляют зарядными и разрядными устройствами в зависимости от освещенности БФ, степени заряженности всех АБ, входного и выходного напряжения СЭП; вводят запрет на работу соответствующего зарядного устройства при достижении максимального уровня заряженности данной АБ и снимают этот запрет при снижении уровня заряженности данной АБ; вводят запрет на работу соответствующего разрядного устройства при достижении установленного минимального уровня заряженности данной АБ и снимают этот запрет при повышении уровня заряженности данной АБ; формируют управляющий сигнал в бортовой комплекс управления КА для отключения части бортовой аппаратуры при аварийном разряде нескольких m (m≤n) АБ до минимального уровня заряженности; запрещают работу всех разрядных устройств, если выходное напряжение СЭП снижается до заданного порогового значения; производят сброс запоминания управляющего сигнала по запрету всех разрядных устройств после заряда всех АБ до заданного уровня заряженности. При этом для связи с бортовой вычислительной системой (БВС), осуществляемой по дублированному магистральному последовательному интерфейсу (мультиплексному каналу обмена), в качестве устройства интерфейса используют оконечное устройство (ОУ) с контроллером. Каждое зарядно-разрядное устройство (ЗРУm) оснащают основным (ОУi-m) и резервным (ОУj-m) оконечными устройствами. С заданной периодичностью опрашивают параметры (массивы) СЭП и идентифицируют отказ (работоспособность) каждого ОУi-m. В качестве критерия отказа ОУ принимают факт появления ошибки обмена. После идентификации отказа ОУi-m в каком-либо ЗРУm программно перезагружают ОУi-m, при этом перезагрузку ОУ выполняют путем перехода на резервное ОУj-m с последующим возвратом на основное ОУi-m. Повторяют последовательность данных операций, в случае парирования отказа ОУi-m обмен продолжают с использованием ОУi-m, в случае повторной идентификации отказа ОУi-m осуществляют программно переход на резервное оконечное устройство ОУj-m, используя соответствующую КУ, последовательность функционирования ОУj-m выбирают аналогичной последовательности функционирования ОУi-m, возврат с ОУj-m на ОУi-m при необходимости выполняют по разовой команде с наземного комплекса управления. 2 ил.

Изобретение относится к области электротехники и может быть использовано для управления режимом работы фотоэлектрической (солнечной) батареи с целью отбора максимальной мощности в изменяющихся внешних условиях. Технический результат - повышение эффективности экстремального регулирования за счет уменьшения отклонений поддерживаемой рабочей точки вольт-амперной характеристики фотоэлектрической батареи от оптимального положения. Способ экстремального регулирования выходной мощности фотоэлектрической батареи включает в себя установку и поддержание оптимальной рабочей точки вольт-амперной характеристики, соответствующей максимуму выходной мощности, путем пошагового изменения регулирующего воздействия на выходной ток или напряжение фотоэлектрической батареи в соответствии с изменением величины ее выходной мощности на каждом шаге регулирования, периодическое сканирование выходов группы из двух или более реперных фотопреобразователей одинаковыми линейно или ступенчато - линейно изменяющимися пилообразными токами, сдвинутыми по времени на величину, кратную заданному шагу временного сдвига, непрерывные измерения напряжений и токов каждого из реперных фотопреобразователей, на основании которых определяют текущие значения их выходных мощностей, усреднение токов или напряжений каждой пары смежных реперных фотопреобразователей, сканируемых пилообразными токами, сдвинутыми по времени на однократную величину заданного временного шага, запоминание усредненных значений токов или напряжений каждой пары смежных реперных фотопреобразователей в моменты равенства их выходных мощностей и формирование регулирующего воздействия на выходной ток или напряжение фотоэлектрической батареи путем масштабного преобразования запоминаемых усредненных значений токов или напряжений пар смежных реперных фотопреобразователей. 1 з.п. ф-лы, 3 ил.
Наверх