Тепловой насос дистилляционный колонны с пароперегревателем на впуске компрессора



Тепловой насос дистилляционный колонны с пароперегревателем на впуске компрессора
Тепловой насос дистилляционный колонны с пароперегревателем на впуске компрессора
Тепловой насос дистилляционный колонны с пароперегревателем на впуске компрессора
Тепловой насос дистилляционный колонны с пароперегревателем на впуске компрессора
Тепловой насос дистилляционный колонны с пароперегревателем на впуске компрессора
Тепловой насос дистилляционный колонны с пароперегревателем на впуске компрессора

 


Владельцы патента RU 2585175:

ЮОП ЛЛК (US)

Изобретение относится к способу дистилляции углеводородов, который включает в себя: подачу потока углеводородного сырья в зону фракционирования в первом местоположении; фракционирование потока углеводородного сырья с образованием головного потока и донного потока; нагревание первой части головного потока до температуры выше температуры конденсации головного потока; сжатие нагретой первой части головного потока; удаление части потока из зоны фракционирования во втором местоположении, расположенном ниже первого местоположения; нагревание удаленной части потока за счет косвенного контакта удаленной части потока с сжатой первой частью головного потока; возвращение нагретой удаленной части потока в зону фракционирования в третьем местоположении, расположенном выше второго и ниже первого местоположения; снижение давления сжатой первой части головного потока с образованием головного потока пониженного давления; возвращение части головного потока пониженного давления наверх зоны фракционирования; в котором нагревание первой части головного потока включает в себя косвенный контакт первой части головного потока с сжатой первой частью головного потока после косвенного контакта удаленной части потока с сжатой первой частью головного потока и до снижения давления указанной сжатой первой части головного потока. Использование настоящего способа позволяет более эффективно использовать предлагаемую систему. 8 з.п. ф-лы, 3 ил., 2 табл.

 

Область техники, к которой относится изобретение

В общем, настоящее изобретение относится к дистилляционным колоннам, более конкретно к способам дистилляции и дистилляционным колоннам, имеющим тепловой насос с кипятильником (ребойлером) и входным пароперегревателем.

Уровень техники

Процесс PenexTM разработан фирмой UOP LLC для каталитической изомеризации пентана, гексана и их смесей. Как показано на фиг. 1, сырье 10 направляют в реакторы 15, где реакции протекают в неподвижном слое катализатора, в присутствии водорода и в условиях эксплуатации, которые способствуют изомеризации при минимальном гидрокрекинге. Поток 20 из реактора направляют в устройство 25 стабилизации продукта. Донный поток 30 устройства стабилизации может быть разделен на нормальные парафины и изопарафины путем фракционирования в колонне 35 выделения изогексанов («деизогексанизаторе»). В этой колонне 35 выделения изогексанов происходит разделение более высокооктановых диметилбутановых C6 изомеров и более легкого материала в головной поток 40 и более низкооктановых метилпентановых C6 изомеров и более тяжелого материала в донный поток 45. Обычно в колонне 35 выделения изогексанов имеется боковая фракция, в которой обогащенный метилпентаном поток 60 отводят и рециркулируют обратно в реактор 10. Головной поток 40 конденсируется в конденсаторе 65 и направляется в приемник 70. Поток 75, выходящий из приемника, делят на первую часть 80, которую возвращают в колонну 35 выделения изогексанов, и вторую часть 85, которую извлекают.

Часть 50 донного потока 45 направляют в кипятильник 55, где она нагревается, и возвращают в колонну 35 выделения изогексанов. Обычно в кипятильнике 55 колонны выделения изогексанов используют водяной пар низкого или среднего давления в качестве источника тепла, причем это представляет собой один из самых крупных потребителей энергии в процессе переработки нафты. Уменьшение потребления пара в колонне выделения изогексанов могло бы снизить энергозатраты всего процесса.

Тепловые насосы экономически целесообразно могут быть использованы в колоннах дистилляции углеводородов, в которых перепад температур между головным и донным потоком является незначительным, например меньше, чем 27,7°C (50°F). Примерами колонн, в которых экономически целесообразно могут быть использованы тепловые насосы, являются пропан/пропиленовые разделяющие устройства. Указанные колонны описаны, например, в патентах США №№ 4 753 667 и 7 842 847. Другие примеры использования тепловых насосов в процессах разделения можно найти в патентах США №№ 4 336 046, 4 559 108 и 7 908 861.

Однако использование теплового насоса в колонне для разделения компонентов C5 и C6 обычно не является экономически целесообразным, поскольку более высокий перепад температур между головным потоком и донным потоком (например, 38,9°C (70°F) или больше) требует более высокой степени сжатия в компрессоре теплового насоса и, следовательно, более высоких затрат на сжатие.

Кроме того, сжатие головного потока паров С5 и C6 приводит к частичной конденсации потока. С целью предотвращения такой конденсации, головной поток паров необходимо перегревать до его поступления в компрессор теплового насоса. В статье Galstaun и др. (Heat pumping pays out in C5/C6 isom plant, Oil & Gas Journal, Nov. 12, 1979, с. 223-226) обсуждается использование водяного пара для предварительного нагревания паров, до их поступления в компрессор. Требование перегрева водяного пара дополнительно ухудшает экономические показатели теплового насоса.

Раскрытие изобретения

Одним аспектом изобретения является способ дистилляции углеводородов. Указанный способ включает в себя подачу потока углеводородного сырья в зону фракционирования в первом местоположении. Поток углеводородного сырья фракционируется с образованием головного потока и донного потока. Первую часть головного потока нагревают до температуры выше температуры конденсации головного потока, и нагретую первую часть головного потока подвергают сжатию. Часть потока удаляют из зоны фракционирования во втором местоположении, расположенном ниже первого местоположения. Удаленную часть потока нагревают за счет косвенного контакта удаленной части потока с сжатой первой частью головного потока. Нагретую удаленную часть потока возвращают в зону фракционирования в третьем местоположении, расположенном выше второго и ниже первого местоположения. Давление сжатой первой части головного потока снижают с образованием головного потока пониженного давления. Часть головного потока пониженного давления возвращают наверх зоны фракционирования. Первую часть головного потока нагревают за счет косвенного контакта первой части головного потока с сжатой первой частью головного потока, после косвенного контакта удаленной части потока с сжатой первой частью головного потока.

Другим аспектом изобретения является дистилляционная колонна и тепловой насос. В одном варианте осуществления дистилляционная колонна и тепловой насос содержат дистилляционную колонну, имеющую впуск сырья в первом местоположении, выпуск головного потока и выпуск донного потока. Имеется кипятильник, имеющий впуск и выпуск, при этом впуск кипятильника сообщается по текучей среде с вторым местоположением, расположенным ниже первого местоположения, а выпуск кипятильника сообщается по текучей среде с третьим местоположением в дистилляционной колонне, при этом указанное третье местоположение находится выше второго местоположения и ниже первого местоположения. Теплообменник находится в теплообменном сообщении с по меньшей мере частью выпуска головного потока дистилляционной колонны. Имеется компрессор, имеющий впуск компрессора, сообщающийся по текучей среде с по меньшей мере указанной частью выпуска головного потока дистилляционной колонны, и выпуск компрессора, находящийся в теплообменном сообщении с кипятильником и теплообменником, и расширительный клапан, имеющий впуск расширительного клапана, сообщающийся по текучей среде с выпуском компрессора, и выпуск расширительного клапана, сообщающийся по текучей среде с впуском в местоположении, расположенном выше первого местоположения и ниже выпуска головного потока.

Краткое описание чертежей

Фиг. 1 представляет собой схему современной установки разделения с колонной выделения изогексанов.

На фиг. 2 приведена схема одного варианта осуществления установки разделения с колонной выделения изогексанов, имеющей тепловой насос.

Фиг. 3 является схемой другого варианта осуществления дистилляционной колонны, имеющей тепловой насос.

Осуществление изобретения

В одном аспекте изобретения тепловой насос объединен с дистилляционной колонной, чтобы извлечь теплоту конденсации головного потока. Указанная колонна содержит кипятильник. Сжатый головной поток используется как для нагревания кипятильника, так и для перегревания головного потока, до его поступления в компрессор теплового насоса. Термин дистилляционная колонна означает колонну для разделения двух или больше компонентов.

В одном варианте осуществления, для снижения нагрузки на кипятильник донного потока используют боковой кипятильник, при этом также уменьшается перепад температур между головным потоком и боковым кипятильником и необходимая степень сжатия в компрессоре теплового насоса. Боковой кипятильник расположен между головным потоком и донным потоком. Если используется боковой отвод, то возвратный поток из бокового кипятильника находится ниже указанного бокового отвода, например ниже на 4 теоретических тарелки.

Желательно, чтобы в кипятильнике использовались трубы с высокой плотностью потока, чтобы сократить поверхность теплообменника, и, возможно, количество оболочек теплообменника при поддержании малого перепада температур меньше чем 16,7°C (30°F), между головным потоком после сжатия и потоком, удаляемым из колонны до повторного нагревания в боковом кипятильнике. Небольшой перепад температур позволит снизить технические требования к компрессору теплового насоса.

Кроме того, было установлено, что на выходе из горячей стороны бокового кипятильника имеется достаточно тепла, оставшегося после нагрева бокового потока, для перегревания головного потока для ввода в компрессор теплового насоса. Это тепло устраняет потребность теплообменника в водяном паре из внешнего источника и значительно улучшает экономику процесса. По желанию, можно использовать небольшой пароперегреватель, нагреваемый водяным паром, чтобы обеспечить дополнительное тепло при запуске процесса.

Как могут понять специалисты в этой области техники, применение указанной разработки не ограничивается колонной выделения изогексанов. Изобретение может быть использовано в любой колонне дистилляции углеводородов, которая имеет аналогичный перепад температур между головным и донным потоками (например, 38,9°C (70°F) или больше). Подходящие углеводороды включают (но не ограничиваются указанным) легкие углеводороды, такие как углеводороды С4-С7. Например, разработка может быть использована для углеводородного сырья С5-С7. Кроме того, изобретение может быть использовано для разделения углеводородов С4 (то есть, нормального бутана и изобутана) в колонне выделения изобутана («деизобутанизаторе»). Изобретение также может быть использовано с дистилляционными колоннами, имеющими более низкий перепад температур между головным и донным потоком, но в которых требуется перегревание головного потока для предотвращения конденсации в процессе сжатия. Например, изобретение может быть использовано для легкого углеводородного сырья с более узким диапазоном кипения (например, углеводороды С5-C6 с небольшой примесью углеводородов С7 (или они отсутствуют)) без кипятильника бокового потока, как описано ниже.

Фиг. 2 представляет собой иллюстрацию теплового насоса, использованного с колонной выделения изогексанов (или другой колонной дистилляции углеводородов). Сырье 110 поступает в реактор 115, и поток 120 из реактора поступает в устройство 125 стабилизации. Донный поток 130 устройства стабилизации содержит, главным образом, углеводороды С5-С6. Выражение "содержит, главным образом, углеводороды С5-С6" означает, что поток сырья содержит по меньшей мере 50 масс. % углеводородов С5-С6, или по меньшей мере 60 масс. %, или по меньшей мере 70 масс. %, или по меньшей мере 80 масс. %, или по меньшей мере 85 масс. %, или по меньшей мере 90 масс. %.

Донный поток 130 устройства стабилизации разделяют в колонне 135 выделения изогексанов на головной поток 140, который содержит, главным образом, диметилбутан и более легкие углеводороды, донный поток 145, содержащий, главным образом, углеводороды С7+ и поток 160 боковой фракции. Выражение "содержащий, главным образом, диметилбутан и более легкие углеводороды" означает, что головной поток содержит по меньшей мере 60 масс. % диметилбутана и более легких углеводородов, или по меньшей мере 70 масс. %, или по меньшей мере 80 масс. %, или по меньшей мере 90 масс. %. Выражение "содержащий главным образом, углеводороды С7+" означает, что донный поток содержит по меньшей мере 60 масс. % углеводородов С7+, или по меньшей мере 70 масс. %, или по меньшей мере 80 масс. %, или по меньшей мере 90 масс. %. Часть 150 донного потока 145 направляют в кипятильник 155, где поток нагревается, и возвращают в колонну 135 выделения изогексанов.

Поток 160 боковой фракции отводят из колонны 135 выделения изогексанов и направляют обратно в реактор 110. Поток 160 боковой фракции содержит, главным образом, метилпентаны, нормальный гексан и нафтены C6. Выражение "содержит, главным образом, метилпентаны, нормальный гексан, и нафтены C6" означает, что боковая фракция содержит по меньшей мере 60 масс. % метилпентанов, нормального гексана и нафтенов C6, или по меньшей мере 70 масс. %, или по меньшей мере 80 масс. %, или по меньшей мере 85 масс. %, или по меньшей мере 90 масс. %. Поток 160 боковой фракции отводят в местоположение ниже положения, в котором донный поток 130 устройства стабилизации подают в колонну 135 выделения изогексанов.

Головной поток 140 делят на первую часть 190 и вторую часть 195. Первую часть 190 пропускают через теплообменник 200, с целью повышения температуры до температуры, выше температуры конденсации. Затем поток направляют в компрессор 205, где он сжимается, с повышением температуры первой части 190.

Боковой поток 215 из колонны 135 выделения изогексанов направляют в боковой кипятильник 220. Боковой поток нагревается в боковом кипятильнике 220 с использованием сжатого потока 210 из компрессора 205 и возвращается в колонну 135 выделения изогексанов в точку выше места, где он был отобран, но ниже уровня потока 160 боковой фракции (если она имеется).

После контактирования бокового потока 215 температура сжатого потока 210 снижается. Сжатый поток 225 с пониженной температурой направляют в теплообменник 200. Сжатый поток 225 с пониженной температурой содержит достаточно тепла для перегревания первой части 190 головного потока 140 до поступления первой части 190 в компрессор 205. После перегревания первой части 190 температура потока 230 дополнительно снижается. Поток 230 проходит через расширительный клапан 235, который сбрасывает давление. Затем поток 240 с пониженным давлением (которое ниже, чем давление головного потока 140) объединяют со второй частью 195 головного потока 140. Температуру объединенного потока 245 снижают в теплообменнике 165, и поток направляют в приемник 170. Выходящий поток 175 из приемника 170 делят, причем первую часть 180 направляют в колонну 135 выделения изогексанов, а вторую часть 185 извлекают как поток головного продукта.

Используемый в изобретении термин "часть" означает часть потока, материала или объекта вплоть до (и включая) всего потока, материала или объекта.

В другом варианте осуществления головной поток 140 не делят на первую и вторую части 190, 195, и весь головной поток 140 обрабатывают таким же образом, как описано для первой части 190.

В другом варианте осуществления, поток 240 с пониженным давлением не объединяют со второй частью 195 головного потока 140 с образованием объединенного потока.

В другом варианте осуществления, только часть бокового потока 215 направляют в боковой кипятильник 220.

Использование бокового кипятильника снижает перепад температур между головным потоком и потоком, используемым в боковом кипятильнике (по сравнению с донным кипятильником), что способствует улучшению экономики процесса. Желательно, чтобы указанный перепад температур был меньше чем 38,9°C (70°F), или меньше чем 27,7°C (50°F), или меньше чем 24,9°C (45°F), или меньше чем 22,2°C (40°F), или меньше чем 19,4°C (35°F), или меньше чем 16,6°C (30°F). Например, температура головного потока 140 на выходе из колонны выделения изогексанов может составлять 76°C (169°F), а температура бокового потока 215 до нагревания в боковом кипятильнике 220 может составлять 109°C (229°F).

Если используется поток боковой фракции, поток бокового кипятильника можно возвратить в колонну выделения изогексанов в местоположение, которое определяется с использованием средств технологического моделирования, чтобы оптимизировать конструкцию колонны с тепловым насосом, как известно специалистам в этой области техники. Поток бокового кипятильника можно возвращать в колонну в местоположение, находящееся выше или ниже точки, где поток боковой фракции был отведен. В одном варианте осуществления, определяемое оптимальное местоположение находится на две (2) теоретических тарелки ниже точки отбора потока боковой фракции.

Подходящие условия эксплуатации для колонны выделения изогексанов включают избыточное давление от 103 кПа (15 фунт/кв. дюйм) до 262 кПа (38 фунт/кв. дюйм) и температуру головного потока от 65,5°C (150°F) до 85,0°C (185°F). В тарельчатой колонне используется донный кипятильник, который обычно нагревается водяным паром. Обычно режим колонны оптимизируется на основе необходимого октанового числа продукта, причем условия эксплуатации могут изменяться с учетом указанного фактора. Специалистам в этой области техники понятно, как регулировать условия эксплуатации с целью получения желаемого октанового числа продукта.

Типичные составы сырья и продукта для колонны приведены в таблице 1. Углеводороды С5 и диметилбутаны концентрируются в головном потоке, который имеет пониженную концентрацию метилпентанов. Компоненты С7+ концентрируются в донном потоке. В боковой фракции имеется высокая концентрация метилпентанов, нормального гексана и нафтенов C6, которые могут рециркулироваться обратно в реактор для дополнительной переработки.

В другом варианте осуществления, способ изобретения может быть использован для разделения потока сырья, которое содержит, главным образом, углеводороды С4. Выражение "содержит, главным образом, углеводороды С4" означает, что поток сырья содержит по меньшей мере 50 масс. % С4 углеводородов, или по меньшей мере 60 масс. %, или по меньшей мере 70 масс. %, или по меньшей мере 80 масс. %, или по меньшей мере 85 масс. %, или по меньшей мере 90 масс. %, или по меньшей мере 95 масс. %.

Сырьевой поток может быть разделен в колонне выделения изобутана на головной поток, содержащий, главным образом, изобутан и более легкие углеводороды, донный поток, содержащий, главным образом, С5+ углеводороды, и поток боковой фракции. Выражение "содержащий, главным образом, изобутан и более легкие углеводороды" означает, что головной поток содержит по меньшей мере 80 масс. %, или по меньшей мере 85 масс. %, или по меньшей мере 90 масс. %, или по меньшей мере 92 масс. %, или по меньшей мере 95 масс. %, или по меньшей мере 98 масс. %, или по меньшей мере 99 масс. %. Выражение "содержащий, главным образом, углеводороды С5+" означает, что донный поток содержит по меньшей мере 60 масс. % углеводородов С5+, или по меньшей мере 70 масс. %, или по меньшей мере 80 масс. %, или по меньшей мере 90 масс. %, или по меньшей мере 95 масс. %.

Поток боковой фракции отводят из колонны выделения изобутана и направляют обратно в реактор. Поток боковой фракции содержит, главным образом, нормальный бутан. Выражение "содержащий, главным образом, нормальный бутан" означает, что боковая фракция содержит по меньшей мере 60 масс. % нормального бутана, или по меньшей мере 70 масс. %, или по меньшей мере 80 масс. %, или по меньшей мере 85 масс. %, или по меньшей мере 90 масс. %, или по меньшей мере 95 масс. %.

Типичные составы сырья и продукта для варианта осуществления изобретения для разделения бутанов приведены в таблице 2. Изобутан концентрируется в головном потоке, тогда как нормальный бутан концентрируется в боковой фракции. Углеводороды С5+ концентрируются в донном потоке.

Фиг. 3 иллюстрирует другой вариант осуществления дистилляционной колонны с тепловым насосом. Указанная компоновка может быть подходящей для колонны разделения легких углеводородов, кипящих в более узком диапазоне, например, главным образом, С5-С6 углеводородов с небольшой примесью (или отсутствием) углеводородов С7+. Выражение "главным образом, С5-С6 углеводороды с небольшой примесью (или отсутствием) углеводородов С7+" означает, что сырьевой поток по меньшей мере на 90 масс. % состоит из углеводородов С5-С6, и менее 2 масс. % составляют углеводороды С7+. Перепад температур между головным потоком и донным потоком может быть меньше 38,9°C (70°F). В указанном случае отсутствует потребность в боковом кипятильнике. Вместо этого тепловой насос используется для нагревания донного потока и части головного потока, до его поступления в компрессор.

Сырьевой поток 130, содержащий, главным образом, С5-С6 углеводороды с небольшой примесью (или отсутствием) углеводородов С7+, разделяют в колонне 135 на головной поток 140, содержащий, главным образом, диметилбутан и более легкие углеводороды, и донный поток 145, содержащий, главным образом, метилпентаны, нормальный гексан и C6 нафтены.

Головной поток 140 делят на первую часть 190 и вторую часть 195. Первую часть 190 пропускают через теплообменник 200 с целью нагревания до температуры выше температуры конденсации. Затем первую часть 190 направляют в компрессор 205 для сжатия, повышающего температуру потока.

Часть 150 донного потока 145 направляют в кипятильник 220, где эта часть нагревается с использованием сжатого потока 210 из компрессора 205, и возвращают в колонну 135 в точку выше места ее отбора.

После контактирования части 150 донного потока 145 со сжатым потоком 210 температура последнего снижается. Сжатый поток 225 с пониженной температурой направляют в теплообменник 200. Сжатый поток 225 с пониженной температурой имеет достаточное количество тепла для перегревания первой части 190 головного потока 140 до поступления первой части 190 в компрессор 205. После перегревания первой части 190 температура потока 230 дополнительно снижается. Поток 230 проходит через расширительный клапан 235, который сбрасывает давление. Затем поток 240 с пониженным давлением объединяют со второй частью 195 головного потока 140. Температуру объединенного потока 245 снижают в теплообменнике 165, и поток направляют в приемник 170. Выходной поток 175 из приемника 170 делят, причем первую часть 180 направляют в колонну 135, а вторую часть 185 извлекают в виде потока головного продукта.

После подробного описания изобретения со ссылкой на конкретные варианты его осуществления будет очевидно, что возможны модификации и вариации изобретения, без отклонения от его объема, который определен в прилагаемой формуле изобретения. Более конкретно, хотя некоторые аспекты настоящего изобретения определены как предпочтительные или особенно выгодные, предполагается, что настоящее изобретение не обязательно ограничивается указанными предпочтительными аспектами изобретения.

1. Способ дистилляции углеводородов, который включает в себя:
подачу потока (130) углеводородного сырья в зону (135) фракционирования в первом местоположении;
фракционирование потока (130) углеводородного сырья с образованием головного потока (140) и донного потока (145);
нагревание (200) первой части (190) головного потока до температуры выше температуры конденсации головного потока (140);
сжатие (205) нагретой первой части (190) головного потока;
удаление части потока (215) из зоны (135) фракционирования во втором местоположении, расположенном ниже первого местоположения;
нагревание (220) удаленной части потока (215) за счет косвенного контакта удаленной части потока (215) с сжатой первой частью (210) головного потока;
возвращение нагретой удаленной части потока (215) в зону (135) фракционирования в третьем местоположении, расположенном выше второго и ниже первого местоположения;
снижение давления (235) сжатой первой части головного потока с образованием головного потока (240) пониженного давления;
возвращение части (180) головного потока пониженного давления наверх зоны (135) фракционирования;
в котором нагревание (200) первой части (190) головного потока включает в себя косвенный контакт первой части (190) головного потока с сжатой первой частью (225) головного потока после косвенного контакта удаленной части потока (215) с сжатой первой частью (210) головного потока и до снижения давления указанной сжатой первой части головного потока.

2. Способ по п. 1, который дополнительно включает в себя удаление боковой фракции (160) из зоны (135) фракционирования в четвертом местоположении, расположенном ниже первого местоположения, причем боковая фракция (160) имеет температуру кипения между температурой кипения головного потока (140) и температурой кипения донного потока (145).

3. Способ по п. 1, который дополнительно включает объединение головного потока (240) пониженного давления со второй частью (195) головного потока.

4. Способ по п. 1, в котором косвенный контакт удаленной части потока (215) с сжатой первой частью (210) головного потока включает нагревание удаленной части потока (215) в теплообменнике.

5. Способ по п. 1, в котором перепад температур между головным потоком (140) и донным потоком (145) составляет по меньшей мере 38,9°С (70°F).

6. Способ по любому из пп. 1-5, в котором поток (130) углеводородного сырья содержит, главным образом, углеводороды C56, причем головной поток (140) содержит, главным образом, диметилбутан и более легкие углеводороды, а донный поток (145) содержит, главным образом, С7+ углеводороды.

7. Способ по п. 6, который дополнительно включает удаление боковой фракции (160) из зоны (135) фракционирования в четвертом местоположении, расположенном ниже первого и выше третьего местоположения, причем боковая фракция (160) имеет температуру кипения между температурой кипения головного потока (140) и температурой кипения донного потока (145), и где боковая фракция (160) содержит, главным образом, метилпентаны, нормальный гексан и С6 нафтены.

8. Способ по любому из пп. 1-5, в котором поток (130) углеводородного сырья содержит, главным образом, углеводороды C56, с небольшой примесью (или отсутствием) углеводородов С7+, причем головной поток (140) содержит, главным образом, диметилбутан и более легкие углеводороды, а донный поток (145) содержит, главным образом, метилпентаны, нормальный гексан и С6 нафтены.

9. Способ по п. 1, в котором поток углеводородного сырья (130) содержит, главным образом, углеводороды С4, причем головной поток (140) содержит, главным образом, изобутан и более легкие углеводороды, а донный поток (145) содержит, главным образом, С5+ углеводороды.



 

Похожие патенты:

Изобретение относится к способу изомеризации C5-C6 углеводородов с подачей циркулирующего водорода, включающему загрузку водорода и сырья, содержащего C5-C6 углеводороды, в зону изомеризации, продукты которой направляют в сепаратор, с низа сепаратора отводят на разделение в блок фракционирования, состоящий по крайней мере из одной ректификационной колонны, поток продукта, содержащего C4 и более тяжелые углеводороды, а с верха сепаратора отводят газовый поток, состоящий из водорода и легких углеводородов, который подвергают рециркуляции с использованием рециркулирующего компрессора для объединения с сырьем, куда при необходимости вводят дополнительное количество водорода.

Изобретение относится к способу и устройству для гидрогенизации и дециклизации бензола и изомеризации С5-С6-парафинов в сырье, содержащем С5-С6-парафины и, по меньшей мере, 1 вес.% бензола.

Изобретение относится к установке для изомеризации потока углеводородов, богатого углеводородом С4 и/или по меньшей мере одним из углеводородов С5 и С6. Установка содержит: A) емкость, в которой находится текучая среда, содержащая газ, богатый водородом; B) устройство для перемещения текучей среды, принимающее из указанной емкости указанную текучую среду, содержащую газ, богатый водородом; C) по меньшей мере один осушитель, принимающий текучую среду, содержащую газ, богатый водородом, из указанного устройства для перемещения текучей среды, при этом указанный по меньшей мере один осушитель функционирует в первом режиме для осушки текучей среды, содержащей газ, богатый водородом, и во втором режиме в условиях регенерации, проводимой с помощью регенерирующего агента; D) реактор, сообщающийся, по меньшей мере, с одним осушителем для приема текучей среды, содержащей газ, богатый водородом, при этом по меньшей мере один осушитель сообщается с указанной емкостью, по меньшей мере, посредством подачи текучей среды, содержащей газ, богатый водородом, или регенерирующий агент, через сужающее устройство для текучей среды, по меньшей мере, для регулирования расхода и/или уменьшения давления регенерирующего агента, поступающего в указанную емкость.

Изобретение относится к установке для изомеризации потока углеводородов, богатого углеводородом С4 и/или, по меньшей мере, одним из углеводородов С5 и С6. Установка содержит: первый осушитель и второй осушитель, приспособленные для приема текучей среды, содержащей, по меньшей мере, один реагент, при этом указанный первый осушитель выполнен с возможностью функционирования в первом режиме для осушки текучей среды, содержащей, по меньшей мере, один реагент, и второй осушитель выполнен с возможностью функционирования во втором режиме в условиях регенерации с помощью регенерирующего агента; и реакционную зону, сообщающуюся с первым осушителем для приема текучей среды, содержащей, по меньшей мере, один реагент, и со вторым осушителем для приема регенерирующего агента, при этом регенерирующий агент проходит через сужающее устройство для текучей среды для регулирования расхода регенерирующего агента, поступающего в реакционную зону; первый трубопровод для подачи текучей среды, содержащей жидкость, богатую углеводородом С4 и/или богатую, по меньшей мере, одним из углеводородов С5 и С6, из первого осушителя в реакционную зону; и второй трубопровод для сообщения второго осушителя с реакционной зоной, при этом сужающее устройство для текучей среды содержит ограничительное отверстие или регулирующий клапан, соединенный, по меньшей мере, с одним из первого и второго трубопроводов.

Изобретение относится к способу изомеризации легких бензиновых фракций, состоящий из подготовки прямогонной и вторичной бензиновых фракций на изомеризацию, с последующим выделением сырьевого изопентана в первой ректификационной колонне - деизопентанизаторе, далее подачу его на изомеризацию в реактор изомеризации с последующим выделением газов и рефлюкса во второй ректификационной колонне - дебутанизаторе, с низа которого стабильный изомеризат направляют последовательно на разделение в третью ректификационную колонну для извлечения раздельно изопентана и пентана и в четвертую ректификационную колонну для извлечения раздельно изогексанов и гексана, боковые погоны третьей и четвертой ректификационных колонн, содержащие, соответственно, пентан и гексан - рециркулируют на изомеризацию в реактор изомеризации.

Изобретение относится к установке для вытеснения регенерирующего агента из осушителя. Установка содержит первый осушитель и второй осушитель, приспособленные для приема газообразной текучей среды, содержащей, по меньшей мере, один реагент.

Изобретение относится к способу разделения изопентан-пентан-гексановой фракции в процессе изомеризации, состоящему из первой ректификационной колонны подготовки сырья, из которой дистиллятом отводят балластный продукт, содержащийся в сырье.

Изобретение относится к способу получения алкилбензина путем алкилирования изобутана олефинами в каталитическом реакторе при повышенной температуре и давлении, в котором изобутан подают в верхнюю секцию реактора и последовательно пропускают через все секции с катализатором, а олефинсодержащее сырье распределяют на несколько потоков, число которых равно числу секций катализатора, и подают одновременно в секции с катализатором параллельными потоками для проведения реакции алкилирования, углеводородный поток, содержащий непрореагировавший изобутан и продукты реакции, разделяют на два потока: паровой, полученный путем испарения изобутана, который затем конденсируют и направляют на рецикл, и жидкостной, представляющий собой продукты реакции, который выводят из реакционной системы или частично направляют на рецикл.

Изобретение относится к способу получения разветвленных насыщенных углеводородов, характеризующемуся тем, что на первой стадии сырье, содержащее, по меньшей мере, одну жирную кислоту, имеющую общее количество атомов углерода от 8 до 26, этерифицируют, по меньшей мере, одним жирным спиртом, имеющим общее количество углерода от 8 до 26, с получением сложных эфиров, на второй стадии полученные сложные эфиры гидрируют до жирных спиртов, на третьей стадии полученные жирные спирты дегидратируют до альфа-олефинов, на четвертой стадии альфа-олефины олигомеризуют в олигомеры, а на пятой стадии олигомеры гидрируют.

Изобретение относится к смеси изоалканов, в качестве масляных тел для косметических или фармацевтических средств, 1H-ЯМР-спектр которой в области химического сдвига от 0,6 до 1,0 м.д.

Изобретение относится к области нефте- и газодобывающей промышленности. Изобретение касается способа подготовки смеси газообразных углеводородов для транспортировки, в котором проводят низкотемпературную сепарацию исходной смеси газообразных углеводородов с выделением газовой фракции и нестабильного углеводородного конденсата, с последующей стабилизацией углеводородного конденсата и выделением сжиженной пропан-бутановой фракции.

Изобретение относится к области нефте- и газодобывающей промышленности. Изобретение касается установки подготовки смеси газообразных углеводородов для транспортировки, содержащей установленные последовательно магистраль подачи исходного сырьевого потока, первый сепаратор, второй сепаратор, первый рекуперативный теплообменник 4, рекуперативный теплообменник 9, подключенный к колонне деэтанизации.
Изобретение относится к стабилизации обезвоженной и обессоленной газонасыщенной нефти и может быть использовано в нефтедобывающей промышленности, в частности на промыслах или головных перекачивающих станциях.

Изобретение относится к вариантам способа отделения олефина от парафина в потоке продукта из системы дегидрирования. .
Изобретение относится к улучшенному способу получения и очистки винилароматических мономеров, включающему: а) подачу потока, состоящего из ароматического углеводорода, вместе с потоком, состоящим по существу из С2-С3 олефина, в секцию алкилирования; б) подачу продуктов реакции, выходящих из секции алкилирования, в первую секцию разделения; в) выпуск из первой секции разделения первого потока, состоящего из непрореагировавшего ароматического углеводорода, который направляют для повторного использования в секцию алкилирования, второго потока, состоящего по существу из моноалкилированного ароматического углеводорода, третьего потока, состоящего по существу из диалкилированных ароматических углеводородов, направляемого в секцию трансалкилирования, и четвертого потока, состоящего по существу из смеси полиалкилированных ароматических углеводородов; г) подачу второго потока стадии (в) в секцию дегидрирования; д) подачу продуктов реакции, выходящих из секции дегидрирования, во вторую секцию разделения/очистки, включающую по меньшей мере одну дистилляционную колонну; е) выпуск потока, состоящего из винилароматического мономера чистотой, превышающей 99,7 масс.%, из верхней части указанной по меньшей мере одной дистилляционной колонны, и характеризующемуся тем, что: после первого охлаждения с возвратом тепла покидающий стадию дегидрирования газ после промывания распыляемой водой подают в оболочку пучка труб расположенного вертикально или горизонтально теплообменника, в трубах которого течет охлаждающая текучая среда, причем в теплообменнике газ конденсируется; подачу газа осуществляют из нижней части теплообменника с жидкостью, полученной конденсацией, которая стекает противотоком и покидает теплообменник, полностью или частично, также из нижней части оболочки теплообменника и которую направляют во вторую секцию разделения/очистки (д); возможный газ и несконденсированные вещества выходят из верхней части оболочки теплообменника.

Изобретение относится к способу рекуперации водорода и метана из потока крекинг-газа в низкотемпературной части установки для получения этилена, заключающемуся в том, что фракцию С 2, поступающую из устройства отделения этана (деэтанизатора), подают через теплообменник (Е1) в первую секцию (А) многосекционного отделителя (D1) конденсата, конденсат отбирают из первой секции (А) многосекционного отделителя (D1) конденсата и подают в отделитель (Т1) метана, газ из многосекционного отделителя (D1) конденсата подают в следующий теплообменник (Е2) и дополнительно охлаждают в нем, дополнительно охлажденный газ подают на отделение от него жидкости во второй секции (В) многосекционного отделителя (D1) конденсата, образовавшийся при этом конденсат вновь подают в отделитель (Т1) метана, газ из второй секции (В) многосекционного отделителя (D1) конденсата подают в расширитель (X1), расширяют в нем и затем подают в отделитель (Т1) метана и фракцию С 2 из низа отделителя (Т1) метана дросселируют с понижением ее давления до давления, преобладающего в колонне для отгонки углеводородов С2, частично испаряют в теплообменнике (Е1) и подают в колонну для отгонки углеводородов С2 .

Изобретение относится к химической технологии, а именно к способам разделения трудноразделимых смесей, содержащих моноалкилбензол и полиалкилбензол, и может быть использовано в технологиях основного органического синтеза.

Изобретение относится к способу разделения продуктов пиролиза дихлорэтана в производстве винилхлорида. .

Изобретение относится к способам переработки легких алифатических углеводородов, в частности попутных /нефтяных/ газов, и может быть использовано в нефтепереработке и нефтехимии.

Изобретение относится к способу конверсии углеводородов. Описан способ конверсии неравновесного C8-ароматического сырья.
Наверх