Способ получения пористого керамического биоматериала на основе диоксида циркония

Изобретение относится к технологии получения пористого керамического материала и предназначено для получения искусственных эндопротезов костной ткани. Предложен способ получения пористого керамического биоматериала на основе диоксида циркония, включающий приготовление термопластичной смеси из дисперсного порошка диоксида циркония, стабилизированного 5 мас.% MgO, порообразователя и пластификатора с последующим формованием изделий и термообработкой. Термообработка включает предварительный обжиг с равномерным нагревом до температуры 250±5°C и выдержкой в течение 3 часов и окончательный обжиг с равномерным нагревом до температуры 1650±5°C и выдержкой в течение 1 часа. В качестве порообразователя используют порошки карбоната магния, гидроксида алюминия, в качестве пластификатора - парафин, воск при следующем соотношении компонентов, мас.%: MgCO3 10-12, Al(OH)3 5-10, парафин 10-20, воск 1-3, порошок ZrO2 (5 мас.% MgO) - остальное. Используемый порошок ZrO2 содержит фазу с тетрагональной кристаллической решеткой не менее 75%. Перед приготовлением термопластичной смеси стабилизированный порошок диоксида циркония активируют, получая порошок со средним размером частиц не более 0,5 мкм; максимальным размером частиц не более 1,0 мкм и формой, близкой к сферической. Техническим результатом является получение керамического биоматериала с улучшенными эксплуатационными характеристиками: пористостью не менее 40%, предел прочности при сжатии не менее 500 МПа и бимодальным распределением пористости, аналогичным природной кости. 5 з.п. ф-лы, 1 пр., 2 табл.

 

Изобретение относится к технологии получения пористого керамического материала и предназначено для получения искусственных эндопротезов костной ткани.

Известен способ получения пористой структуры керамического материала (RU 2483043, С04В 35/119, С04В 38/06, опубл. 27.05.2013). В известном изобретении глинозем марки ГН, смешивают и измельчают с 0,3-2,0% карбоната магния в шаровой мельнице. После измельчения и перемешивания смесь порошков пересыпают в капсель и спекают в печи при температуре 1000-1500°C. Охлажденный спек загружают в шаровую мельницу и измельчают до получения порошка со средним размером зерна 1,5-2,5 мкм, смешивают с оксидом циркония, стабилизированным оксидом иттрия, с гидроксидом алюминия, с нанопорошком оксида алюминия в гамма-фазе с удельной поверхностью S=245 м2/г, карбонатом аммония, желатином и поливиниловым спиртом. Полученный порошок формуют методом одноосного прессования и обжигают.

Недостатком известного изобретения является то, что во влажной среде исходный оксид циркония, стабилизированный оксидом иттрия, теряет оксид иттрия, т.е. оксид иттрия выходит из решетки диоксида циркония, вследствие этого керамический материал, полученный известным способом не обладает высокими механическими свойства.

Наиболее близким техническим решением является способ получения пористого керамического материала (RU 2476406, С04В 38/00, С04В 35/486, С04В 35/111, опубл. 27.05.2013), включающий приготовление смеси из керамического порошка и добавки, выполняющей функцию пластификатора и порообразователя, формование из порошковой смеси изделия требуемой конфигурации и последующее спекание. В качестве керамического порошка используют ультрадисперсный порошок Аl2О3 или ультрадисперсный порошок твердых растворов на основе ZrO2 с растворенными в нем компонентами MgO или Y2O3, а в качестве пластификатора и порообразователя используют гидрозоль Аl(ОН)3 или Zr(OH)4 в количестве от 1 до 50 об.% от объема смеси. Для придания смеси формовочных свойств добавляют дистиллированную воду. Формование изделия требуемой конфигурации проводят прессованием при давлении 12-25 кН, спекают при температуре 1450-1600°C с изотермической выдержкой в течение 1-5 часов.

Недостатком известного изобретения является то, что пористый керамический материал обладает большим объемным эффектом при разложении гидрозолей из-за образования большого количества пустот, что также не позволяет получать необходимые высокие механические характеристики конечных изделий.

Задачей предлагаемого изобретения является разработка способа получения пористого керамического биоматериала на основе диоксида циркония.

Техническим результатом предлагаемого изобретения является получение керамического биоматериала с улучшенными эксплуатационными характеристиками: пористостью не менее 40%, предел прочности при сжатии не менее 500 МПа и бимодальным распределением пористости, аналогичным природной кости.

Технический результат достигается тем, что способ получения пористого керамического биоматериала на основе диоксида циркония, включает приготовление термопластичной смеси из дисперсного порошка диоксида циркония (стабилизированного MgO) и компонентов, выполняющих функции порообразователя и пластификатора, формование из нее изделия требуемой конфигурации и последующую термообработку, при этом:

- перед приготовлением термопластичной смеси порошок диоксида циркония (стабилизированный MgO) активируют;

- в качестве порообразователя используют порошки карбоната магния, гидроксида алюминия;

- в качестве пластификатора используют парафин, воск при следующем соотношении компонентов, мас.%:

порошок карбоната магния 10-12
порошок гидроксида алюминия 5-10
парафин 10-20
воск 1-3
порошок диоксида циркония (стабилизированный MgO) остальное

В предлагаемом способе используют дисперсный порошок диоксида циркония состава ZrO2 - 5 мас.% MgO, с содержанием фазы ZrO2 с тетрагональной кристаллической решеткой не менее 75%.

Перед приготовлением смеси проводят процесс активации порошка диоксида циркония (стабилизированного MgO) мелющими шарами, взятыми по массе в соотношении 1:5, в полиэтиленовом барабане в течение 10 часов.

Активированный порошок диоксида циркония (стабилизированный MgO) имеет средний размер частиц не более 0,5 мкм, максимальный размер частиц не превышает 1,0 мкм и форму, близкую к сферической.

В предлагаемом способе используют порошок карбоната магния с гранулометрическим составом 160-250 мкм, а порошок гидроксида алюминия с гранулометрическим составом не более 160 мкм.

Термообработка изделия по способу включает предварительный обжиг с равномерным нагревом до температуры 250±5°C и выдержкой в течение 3 часов и окончательный обжиг с равномерным нагревом до температуры 1650±5°C и выдержкой в течение 1 часа.

Сущность предлагаемого изобретения заключается в следующем.

Исходным порошковым материалом при разработке заявляемого способа получения керамического биоматериала с пористой структурой является порошок ZrO2, стабилизированный MgO и полученный химическим методом - разложением жидкофазных прекурсоров в плазме высокочастотного разряда. Используемый в заявляемом изобретении исходный дисперсный порошок диоксида циркония имеет состав ZrO2 - 5 мас.% MgO, с содержанием фазы ZrO2 с тетрагональной кристаллической решеткой не менее 75%, что позволяет получать керамический биоматериал существенно большей прочностью, что весьма важно с точки зрения биомеханической совместимости искусственного материала эндопротеза с костной тканью.

Перед приготовлением термопластичной порошковой смеси исходный порошок диоксида циркония (MgO) активируют механической обработкой. Механическая обработка позволяет достичь гомогенизацию, измельчение диоксида циркония (MgO) вплоть до наноразмеров, способствует появлению новых, свободных от кислорода, поверхностей, уменьшению расстояния между частицами (снижению диффузионного расстояния), накоплению дефектов и активации реагентов.

Для этого порошок диоксида циркония (MgO) подвергают механической обработке в полиэтиленовом барабане в течение 10 часов с мелющими шарами. Соотношение массы шаров к массе порошка в количестве 5:1. Размер мелющих тел от 0,4 мм до 10,0 мм. Активированный порошок диоксида циркония (MgO) имеет средний размер частиц не более 0,5 мкм, максимальный размер частиц не превышающий 1,0 мкм и форму, близкую к сферической.

К активированному порошку диоксида циркония (MgO) добавляют заявленные количества порообразователя: порошок карбоната магния 10-12 мас.% и порошок гидроксида алюминия 5-10 мас.%.

Используют порошок гидроксида алюминия с гранулометрическим составом не более 160 мкм и порошок карбоната магния с гранулометрическим составом 160-250 мкм. Эксперименты по выбору порообразователя основывались на том, чтобы внести в состав порошковой смеси меньше примесей, также исследовались влияние гидроксида алюминия, карбоната магния на образование пор и их величину. Эксперименты и расчеты позволили выбрать необходимые оптимальные соотношения порообразователя, заявленные в предлагаемом изобретении по массе и гранулометрическому составу.

Смесь указанных порошков перемешивают в полиэтиленовом барабане 40 минут с добавлением шаров к массе порошков 1:1.

В отдельной емкости на водяной бане (эмалированной емкости) на водяной бане нагревают парафин в количестве 10-20 мас.% до температуры 90°C и для улучшения текучести добавляют воск в количестве 1-3 мас.% в зависимости от получаемой текучести получаемого термопластичной порошковой смеси. При перемешивании нагретого пластификатора вводят подготовленную смесь порошков. Перемешивание с нагревом всей термопластичной порошковой массы продолжают в течение 2-3 часов. После приготовления термопластичной массы, выливают ее в литьевые формы, например, в виде дисков и оставляют остывать. После охлаждения полученные диски вынимают и ставят на предварительный обжиг, равномерно нагревая до температуры 250±5°C с выдержкой 3 часа для вывода связки. После вывода связки проводят окончательный обжиг при температуре 1650±5°C с выдержкой 1 час.

Пример конкретного выполнения.

Берут 55 г порошка диоксида циркония, стабилизированного 5 мас.% MgO, активируют механической обработкой в полиэтиленовом барабане в течение 10 часов с мелющими шарами, взятыми по массе 1:5. Добавляют 12 г порошка карбоната магния гранулометрического состава 160-250 мкм и 10 г порошка гидроксида алюминия гранулометрического состава 0-160 мкм, затем перемешивают смесь взятых порошков в полиэтиленовом барабане 40 минут с добавлением шаров к массе порошков 1:1.

На водяной бане в эмалированной емкости нагревают парафин в количестве 20 г до температуры 90°C и добавляют воск в количестве 3 г. При перемешивании нагретого пластификатора вводят подготовленную смесь порошков. Перемешивание с нагревом термопластичной порошковой смеси продолжают в течение 2-3 часов, затем выливают ее в литьевую форму, например в виде дисков и оставляют остывать. После охлаждения полученные диски вынимают и ставят на предварительный обжиг, равномерно нагревая до температуры 250±5°C с выдержкой 3 часа для вывода связки. После вывода связки проводят окончательный обжиг при температуре 1650±5°C с выдержкой 1 час.

В таблице 1 приведены составы 1-4 термопластичной порошковой смеси, из которых получены образцы пористого керамического биоматериала по предложенному способу.

Исследования механических характеристик образцов пористого керамического биоматериала, полученных предлагаемым способом из составов 1-4 термопластичной порошковой смеси, представлены в таблице 2.

1. Способ получения пористого керамического биоматериала на основе диоксида циркония, включающий приготовление термопластичной смеси из дисперсного порошка диоксида циркония (стабилизированного MgO) и компонентов, выполняющих функции порообразователя и пластификатора, формование из нее изделия требуемой конфигурации и последующую термообработку, отличающийся тем, что
перед приготовлением термопластичной смеси порошок диоксида циркония (стабилизированный MgO) активируют;
в качестве порообразователя используют порошки карбоната магния, гидроксида алюминия;
в качестве пластификатора используют парафин, воск при следующем соотношении компонентов, мас.%:

порошок карбоната магния 10-12
порошок гидроксида алюминия 5-10
парафин 10-20
воск 1-3
порошок диоксида циркония (стабилизированный MgO) остальное.

2. Способ по п. 1, отличающийся тем, что используют дисперсный порошок диоксида циркония состава ZrO2 - 5 мас.% MgO, с содержанием фазы ZrO2 с тетрагональной кристаллической решеткой не менее 75%.

3. Способ по п. 1, отличающийся тем, что порошок диоксида циркония (стабилизированный MgO) активируют механической обработкой мелющими шарами, взятыми по массе в соотношении 1:5, в полиэтиленовом барабане в течение 10 часов.

4. Способ по любому пп. 1-3, отличающийся тем, что порошок диоксида циркония (стабилизированный MgO) имеет средний размер частиц не более 0,5 мкм, максимальный размер частиц не превышает 1,0 мкм.

5. Способ по п. 1, отличающийся тем, что используют порошок карбоната магния с гранулометрическим составом 160-250 мкм, а порошок гидроксида алюминия с гранулометрическим составом не более 160 мкм.

6. Способ по п. 1, отличающийся тем, что термообработка изделия включает предварительный обжиг при температуре 250±5°C в течение 3 часов и окончательный обжиг при температуре 1650±5°C в течение 1 часа.



 

Похожие патенты:
Изобретение относится к производству пористых заполнителей для бетонов. Шихта для производства пористого заполнителя содержит, мас.%: глину монтмориллонитовую 91,5-92,5, размолотый и просеянный через сетку № 2,5 уголь 1,0-1,5, кварцевый песок 5,0-7,0, сульфатное мыло, размешанное в теплой воде с температурой 40 - 45оС, 0,5-1,0.
Изобретение относится к области химической технологии керамических высокопористых ячеистых материалов-носителей катализаторов, сорбентов и других массообменных устройств и предназначено для использования в технологических процессах химической, нефтехимической, атомной отраслей, металлургии, энергетики и транспорта, а также при решении экологических проблем по очистке газовых и жидких сред от вредных веществ.

Изобретение относится к составам сырьевых смесей, которые могут быть использованы для изготовления керамзита. Сырьевая смесь для изготовления керамзита включает, мас.%: кирпичную глину 91,0-94,0, кварцевый песок 5,0-7,0, каолин 0,2-0,3, сухой торф 0,5-1,5, соляровое масло 0,2-0,3.
Предлагаемое изобретение относится к области обращения с радиоактивными отходами и облученным ядерным топливом и предназначено для улавливания радиоактивного йода и его соединений из газовой фазы в системах вентиляции и в системах йодной очистки атомных электростанций.
Изобретение относится к области химической технологии керамических высокопористых ячеистых материалов. Технический результат изобретения заключается в повышении удельной поверхности активного слоя.
Изобретение относится к области химической технологии керамических высокопористых ячеистых материалов и предназначено для использования в процессах улавливания паров цезия при остекловывании высокоактивных отходов, высокотемпературной переработке облученного ядерного топлива, в производстве цезиевых источников ионизирующего излучения.

Изобретение относится к производству заполнителей для бетонов. Шихта для производства заполнителя содержит, мас.%: глину монтмориллонитовую 96,5-98,7, сухой торф 1,0-3,0, каолин 0,3-0,5.

Изобретение относится к производству пористых заполнителей для бетонов. Шихта для производства пористого заполнителя содержит, мас.%: глину монтмориллонитовую 98,0-99,9, выгорающую добавку - измельченные на частицы площадью 0,5-1 см2, использованные проездные билеты в виде бумажной оболочки с заключенной в нее микросхемой 0,1-2,0.

Изобретение относится к производству пористых заполнителей для бетонов. Шихта для производства пористого заполнителя содержит, мас.%: глину монтмориллонитовую 75,2-75,8, дробленый до полного прохождения через сетку с размером отверстий 2,5 мм шунгит 1,0-1,5, золу-унос 9,0-13,0, карбоксиметилцеллюлозу 0,2-0,3, глинистые отходы обогащения циркон-ильменитовой руды 10,0-14,0.

Изобретение относится к производству заполнителей для бетонов. Шихта для производства заполнителя содержит размолотые до прохождения через сетку №063 компоненты, мас.%: глину монтмориллонитовую 87,0-89,5, уголь 0,5-1,0, фосфорит 5,0-6,0, кварцевый песок 5,0-6,0.

Изобретение относится к области получения высокоплотной керамики на основе тетрагонального диоксида циркония. Разработанные материалы могут быть использованы для получения износостойких изделий, режущего инструмента, керамических подшипников, медицинских нерезорбируемых имплантатов.

Изобретение относится к области получения высокоплотной керамики на основе кубического диоксида циркония и может быть использовано в качестве износостойких изделий, а также в качестве твёрдого электролита.

Настоящее изобретение относится к монолитному керамическому телу с периферийной областью из смешанного оксида и металлической поверхностью и может быть использовано в качестве имплантата или защитного средства для людей, транспортных средств, зданий или космических аппаратов.

Изобретение относится к способам изготовления керамических изделий из нанопорошков диоксида циркония и может быть использовано в машиностроении, химической промышленности и медицине для получения конструкционных и функциональных материалов.

Способ получения керамики на основе диоксида циркония может быть использован в реставрационной стоматологии. Из исходных реагентов в виде водных растворов оксинитрата циркония (ZrO(NO3)2·2H2O), нитратов иттрия (Y(NO3)3·6H2O), алюминия (Al(NO3)3·9H2O) и водного раствора аммиака обеспечивают совместное осаждение гидроксидов циркония, иттрия и алюминия, гелеобразные осадки которых фильтруют и замораживают при температуре минус 20-25°С с образованием ксерогелей, которые подвергают процессу кристаллизации при температуре от 400°С до 500°С.
Изобретение относится к области технической керамики на основе диоксида циркония с трансформируемой тетрагональной (t') кристаллической фазой и может быть использовано для изготовления износостойких деталей в соединительных изделиях для волоконно-оптических линий связи, пар трения в насосах для перекачки абразивосодержащих и агрессивных жидкостей, деталей в условиях повышенных механических нагрузок.

Изобретение относится к порошковой металлургии и может быть использовано в производстве высокопрочных конструктивных и инструментальных материалов и изделий, например, волочильных инструментов.
Изобретение относится к изготовлению керамических изделий из материала на основе частично стабилизированного диоксида циркония: сверхострых и износостойких высокопрочных режущих инструментов для хирургии, травматологии, ортопедии и протезирования, безызносных пар трения для подшипников, мелющих тел, поршней тормозных дисков, фильер, вальцов, сопел, пружин и др.
Изобретение относится к химической промышленности, в частности к способам получения тонкодисперсных порошков на основе оксида циркония, который может быть использован для производства плотной износостойкой керамики, материалов для имплантологии, твердых электролитов.

Изобретение относится к области получения материалов на основе диоксида циркония, стабилизированного оксидом иттрия, и может быть использовано для изготовления композиционных керамических изделий, применяемых в электротехнике, машиностроении, химической, металлургической и других отраслях промышленности.

Группа изобретений относится к медицине. Описан композитный материал, подходящий для имплантации в тело человека, содержащий полимерный гель и множество поверхностно обработанных добавок, причем указанные добавки подвергнуты поверхностной обработке молекулой, выбранной из группы, состоящей из жирной кислоты с длинной цепью, полистиролов, органофункциональных силанов, цирконатов и титанатов, где указанные поверхностно обработанные добавки содержат поверхность, характеризуемую реактивной сшивающей группой для сшивания с указанным гелем, так что указанные поверхностно обработанные добавки поперечно связываются с указанным гелем; где указанный полимерный гель содержит по меньшей мере две реактивные сшивающие группы на полимерную молекулу указанного полимерного геля для сшивания с указанными добавками и указанным гелем.

Изобретение относится к технологии получения пористого керамического материала и предназначено для получения искусственных эндопротезов костной ткани. Предложен способ получения пористого керамического биоматериала на основе диоксида циркония, включающий приготовление термопластичной смеси из дисперсного порошка диоксида циркония, стабилизированного 5 мас. MgO, порообразователя и пластификатора с последующим формованием изделий и термообработкой. Термообработка включает предварительный обжиг с равномерным нагревом до температуры 250±5°C и выдержкой в течение 3 часов и окончательный обжиг с равномерным нагревом до температуры 1650±5°C и выдержкой в течение 1 часа. В качестве порообразователя используют порошки карбоната магния, гидроксида алюминия, в качестве пластификатора - парафин, воск при следующем соотношении компонентов, мас.: MgCO3 10-12, Al3 5-10, парафин 10-20, воск 1-3, порошок ZrO2 - остальное. Используемый порошок ZrO2 содержит фазу с тетрагональной кристаллической решеткой не менее 75. Перед приготовлением термопластичной смеси стабилизированный порошок диоксида циркония активируют, получая порошок со средним размером частиц не более 0,5 мкм; максимальным размером частиц не более 1,0 мкм и формой, близкой к сферической. Техническим результатом является получение керамического биоматериала с улучшенными эксплуатационными характеристиками: пористостью не менее 40, предел прочности при сжатии не менее 500 МПа и бимодальным распределением пористости, аналогичным природной кости. 5 з.п. ф-лы, 1 пр., 2 табл.

Наверх