Способ определения величины и времени термического воздействия от тока короткого замыкания



Способ определения величины и времени термического воздействия от тока короткого замыкания
Способ определения величины и времени термического воздействия от тока короткого замыкания
Способ определения величины и времени термического воздействия от тока короткого замыкания
G01D1/06 - Измерения, специально не предназначенные для измерения особых переменных величин; устройства или приборы для измерения двух или более переменных величин, не отнесенные к другим подклассам; тарифные счетчики; измерения или испытания, не отнесенные к другим подклассам (регистрирующие устройства, конструктивно связанные с разрядными устройствами, имеющими отношение к молнии или сверхнапряжению, для регистрации их действия G01R; способы и устройства выдачи информации вообще G09F; запись способами, требующими воспроизведения с помощью преобразователей G11B)

Владельцы патента RU 2585966:

федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский национальный исследовательский технический университет" (ФГБОУ ВО "ИРНИТУ") (RU)

Изобретение относится к электротехнике, в частности к электрооборудованию, установленному на электрических станциях и подстанциях в системах производства, передачи и потребления электроэнергии, и может быть использовано во всех электроустановках, использующих цифровую обработку данных. Технический результат: возможность быстро и точно определить величину и время термического воздействия на проводники и электрические аппараты от тока короткого замыкания путем фиксации мгновенных значений и вычисления по математическим выражениям, приведенным в формуле изобретения. Сущность: измеряют, фиксируют и оцифровывают N раз в течение периода T и в каждый текущий момент времени tj текущее мгновенное значение тока короткого замыкания xкз(ti) в каждой фазе. Осуществляют определение величины термического воздействия Втер в каждой фазе по выражению: где Вmер - величина термического воздействия от тока короткого замыкания в одной из фаз, А2с;

Δt=T/N - шаг дискретизации сигнала по времени, с,

суммирование ведется по j от j=1, что соответствует моменту t1 - времени возникновения тока короткого замыкания, до момента времени tanв - времени завершения автоматического повторного включения, когда j=f(tanв+1)N; хкз(ti) - мгновенное значение тока короткого замыкания в данной фазе в текущий момент времени tj, А; xкз(ti+1) - мгновенное значение тока короткого замыкания в данной фазе в последующий момент времени tj+1, А; f - промышленная частота, Гц; N - количество интервалов дискретизации. Время термического воздействия tкз при каждом j-м измерении нарастающим итогом монотонно увеличивается со значения tкз=0 на величину шага дискретизации сигнала по времени Δt, при условии что xкз(tj) - текущее мгновенное значение тока короткого замыкания в данной фазе не равно нулю и определяется в соответствии со следующим выражением:

 

Изобретение относится к электротехнике, в частности к технологиям с использованием электрооборудования, установленного на электрических станциях и подстанциях в системах производства, передачи и потребления электроэнергии, и может быть использовано во всех электроустановках, использующих цифровую обработку данных.

Изобретение относится к области электротехники, в частности к способам обработки мгновенных значений результатов измерения переменных электрических сигналов, например токов низкой частоты до 1000 Гц, полученных с помощью цифровых приборов.

Заявляемое изобретение относится к приоритетному направлению развития науки и технологий «Технологии создания энергосберегающих систем транспортировки, распределения и потребления тепла и электроэнергии» [Алфавитно-предметный указатель к Международной патентной классификации по приоритетным направлениям развития науки и технологий / Ю.Г. Смирнов, Е.В. Скиданова, С.А. Краснов. - М.: ПАТЕНТ, 2008. - с. 97], так как может использоваться на всех электроустановках, оборудованных цифровыми амперметрами для получения оцифрованных мгновенных значений тока, и позволяет определить величину термического воздействие на проводники и электрические аппараты от тока короткого замыкания, которая необходима как для определения степени конкретного термического воздействия, так и определения их текущей и остаточной термической стойкости при будущих коротких замыканиях.

Определение величины и времени термического воздействия на проводники и электрические аппараты от тока короткого замыкания, приведенное в обширной технической литературе, базируется на «ГОСТ 30323-95 Короткие замыкания в электроустановках. Методы расчета электродинамического и термического действия тока короткого замыкания. Переиздание. Август 2004 г. пп.3.1.1-3.1.8». Поэтому он выбран в качестве аналога. Признаком аналога, совпадающим с существенными признаками вариантов заявляемого способа, является только назначение.

Недостатком аналога, с точки зрения технического результата, является, во-первых, низкая точность, так как для расчета величины и времени термического воздействия приходится использовать не конкретные точные значения тока короткого замыкания и время его протекания, а некоторые вычисленные оценочные значения тока короткого замыкания в соответствии с указаниями на использование различных «исходных расчетных схем» и «расчетной продолжительности короткого замыкания в электроустановке».

Во-вторых, недостатком аналога является низкое быстродействие. Учитывая, что короткое замыкание практически может произойти в любой точке электрической цепи, имеющей конфигурацию любой сложности, то подобрать подходящую исходную расчетную схему для определения тока короткого замыкания, то есть схему, обеспечивающую наибольшую точность, можно только при наличии бесконечного банка исходных расчетных схем, что потребует бесконечное время расчета. Но даже и при имеющейся в наличии исходной расчетной схеме математические выражения с номерами от (35) до (49), приведенные в ГОСТ 30323-95, требуют большого числа неизвестных (и поэтому оценочных) параметров для определения периодической и апериодической составляющих тока короткого замыкания по непростым выражениям. Все эти расчеты требуют затрат времени.

В-третьих, недостатком аналога является высокая сложность вычислений, как это видно из математических выражений (35-49), приведенных в ГОСТ 30323-95.

В-четвертых, ГОСТ 30323-95 не учитывает постоянную составляющую тока короткого замыкания, которая, как и периодическая, и апериодическая составляющие, присутствуют в электрическом сигнале при аварийных режимах.

Наконец, в п. 1.1.5. читаем: «Расчетную продолжительность короткого замыкания при проверке проводников и электрических аппаратов на термическую стойкость следует определять путем сложения времени действия основной релейной защиты, в зону которой входят проверяемые проводники и электрические аппараты, и полного времени отключения соответствующего выключателя, а при проверке кабелей на невозгораемость - путем сложения времени действия резервной релейной защиты и полного времени отключения ближайшего к месту короткого замыкания выключателя. Согласно «ГОСТ Р 52565-2006 Выключатели переменного тока на напряжения от 3 до 750 кВ. Общие технические условия» полное время отключения - время с момента подачи команды на отключение до момента погасания дуги во всех фазах. Однако известно, например, «Чунихин А.А. Электрические аппараты: Общий курс. Учебник для вузов. - 3-е изд., перераб. и доп. - М: Энергоатомиздат, 1988, с. 137-143.», что после погасания дуга может снова загореться. И это может повторяться несколько раз в зависимости от характера цепи. Таким образом, расчетная продолжительность короткого замыкания может не соответствовать точному действительному времени короткого замыкания, которое легко может быть полученное по результатам цифровых измерений.

Не представляется возможность выбрать прототип для заявляемого способа, так как среди существующих способов определения величины и времени термического воздействия от тока короткого замыкания не удалось найти способа, использующего оцифрованные мгновенное значение тока x(tj) в момент времени tj=t1, t2, …, tN, где N - количество измерений в течение периода T, причем tj+1=tj+Δt, где Δt=T/N - шаг дискретизации сигнала по времени.

Задачей изобретения является разработка простого, быстродействующего и точного способа определения величины и времени термического воздействия от тока короткого замыкания на основе измерения как мгновенных значений этого тока, так времени его действия. Способ ориентирован на получение данных от обычных цифровых измерительных приборов текущего значения тока и/или цифровых регистраторов аварийных процессов, без использования дополнительного энергозатратного и дорогостоящего оборудования. Это позволяет в эксплуатации получить следующие результаты:

- сократить временные затраты на определения величины и времени термического воздействия от тока короткого замыкания в эксплуатации;

- использовать точные значения величины термического воздействия от тока короткого замыкания и точного времени его действия для текущего контроля и прогноза состояния изоляции;

- использовать точные значения величины термического воздействия от тока короткого замыкания и точного времени его действия для оценки состояния контактов электрических коммутационных аппаратов;

- увеличить точность расчетов текущего значения величины и времени термического воздействия от тока короткого замыкания.

Достигаемый технический результат заявляемого изобретения, при определении величины и времени термического воздействия от тока короткого замыкания, в следующем:

- возможность постоянного мониторинга величины термического воздействия от тока короткого замыкания и точного времени его действия для всех электрических аппаратов с целью контроля их термической стойкости;

- увеличение быстродействия, так как все необходимые и точные данные для расчетов величины термического воздействия от тока короткого замыкания и точного времени его действия уже имеются в цифровом виде, а математические выражения для вычисления этих параметров согласно формуле предлагаемого изобретения содержат только операции сложения и умножения результатов измерения;

- повышение точности определения величины и времени термического воздействия от тока короткого замыкания и, как следствие, повышение качества управления электроэнергетическим объектом;

- отсутствие необходимости вычисления постоянной, периодической и апериодической составляющих тока короткого замыкания, так как все они уже присутствуют в оцифрованном мгновенном значении тока.

Технический результат достигается тем, что в формуле изобретения раскрыта техническая сущность способа определения величины и времени термического воздействия от тока короткого замыкания, возникшего в момент t1, включающий измерение, фиксацию и оцифровку N раз в течение периода T и в каждый текущий момент времени tj, j=1, 2, …, N, причем

где tj+1 - последующий момент времени, с;

tj - текущий момент времени, с;

Δt=T/N - шаг дискретизации сигнала по времени, с,

текущего мгновенного значения тока короткого замыкания xкз(ti) в каждой фазе, осуществляют определение величины термического воздействия Bmер в каждой фазе по следующему математическому выражению:

где Bmер - величина термического воздействия от тока короткого замыкания в одной из фаз, А2 с;

Δt=T/N - шаг дискретизации сигнала по времени, с,

суммирование ведется по j от j=1, что соответствует моменту t1 - времени возникновения тока короткого замыкания, до момента времени tапв - времени завершения автоматического повторного включения, когда j=f(tапв+1)N;

xкз(ti) - мгновенное значение тока короткого замыкания в данной фазе в текущий момент времени tj, A;

xкз(ti+1) - мгновенное значение тока короткого замыкания в данной фазе в последующий момент времени tj+1, A;

f - промышленная частота, Гц;

N - количество интервалов дискретизации,

а время термического воздействия tкз при каждом j-м измерении нарастающим итогом монотонно увеличивается со значения tкз=0, при j=1, на величину шага дискретизации сигнала по времени Δt, при условии что xкз(tj) - текущее мгновенное значение тока короткого замыкания в данной фазе не равно нулю, и время термического воздействия tкз остается неизменным, если xкз(tj) - текущее мгновенное значение тока короткого замыкания в данной фазе равно нулю, таким образом, время термического воздействия tкз для каждой из фаз определяется по следующему математическому выражению:

для всех j=1, 2, 3, …, f(tапв+1)N,

где tкз - время термического воздействия, с;

xкз(ti) - мгновенное значение тока короткого замыкания в данной фазе в текущий момент времени tj, A;

Δt - шаг дискретизации сигнала по времени, с;

f - промышленная частота, Гц;

N - количество интервалов дискретизации.

Предлагаемый способ определения величины Bтер и времени tкз термического воздействия от тока короткого замыкания основан на измерении оцифрованных мгновенных значений тока tкз(tj) в моменты времени tj, где j=1, 2, …, N, N - число разбиений на периоде Т, Δt=T/N - шаг дискретизации сигнала по времени.

Степень термического воздействия тока короткого замыкания на проводники и электрические аппараты согласно «ГОСТ 30323-95. Короткие замыкания в электроустановках. Методы расчета электродинамического и термического действия тока короткого замыкания. Переиздание. Август 2004 г. пп. 3.1.1» определяется значением интеграла Джоуля (Bmер) в амперах в квадрате на секунду, то есть следующим математическим выражением

где x к з 2 ( t ) - квадрат мгновенного значения тока короткого замыкания в произвольный момент времени t в течение диапазона интегрирования, А;

интегрирование ведется от момента t1 - времени возникновения тока короткого замыкания, до tоткл - момента времени отключения, то есть до расчетной продолжительности КЗ в электроустановке, с.

В общем случае, текущее мгновенное значение тока короткого замыкания xкз(ti) в момент времени ti аналитически может быть представлен одним из следующих шести математических выражений:

- в стационарном режиме при симметричной пофазной нагрузке описывается известным равенством

- при наличии XП - постоянной составляющей, гармонический электрический сигнал перемещается параллельно оси абсцисс вверх или вниз в зависимости от знака и величины XП, и выражение для этого сигнала имеет вид

- при наличии быстро протекающего переходного процесса, обусловленного коммутацией или критическими режимами (короткие замыкания, обрывы фаз) появляется либо аддитивная апериодическая составляющая, которая может быть или убывающей

- или возрастающей

либо мультипликативная апериодическая составляющая, которая также может быть или убывающей

- или возрастающей

где для всех шести формул, описывающих математический вид результатов измерения оцифрованных мгновенных значений тока короткого замыкания при цифровой обработке данных, приняты следующие обозначения:

xкз(tj) - результат измерения оцифрованных мгновенных значений тока в момент времени ti, A,

Xm - амплитудное значение тока, А,

ω=2πf, - круговая частота, рад/с,

f - частота сигнала, Гц,

XП - постоянная составляющая тока, А,

Aa↓· - начальное значение убывающей аддитивной апериодической составляющий тока, А,

τa↓ - постоянная времени затухания убывающей аддитивной апериодической составляющий тока, с-1,

Aa↑· - начальное значение возрастающей аддитивной апериодической составляющий тока, А,

τa↑ - постоянная времени затухания возрастающей аддитивной апериодической составляющий тока, с-1,

AМ↓· - начальное значение убывающей мультипликативной апериодической составляющий тока, А,

τМ↓ - постоянная времени затухания убывающей мультипликативной апериодической составляющий тока, с-1,

AМ↑· - начальное значение возрастающей мультипликативной апериодической составляющий тока, А,

τМ↑ - постоянная времени затухания возрастающей мультипликативной апериодической составляющий тока, с-1,

ti=t1, t2, …, tN - моменты времени, в которых осуществляются измерения сигнала, ti+1=ti+Δt, c,

Δt=T/N - шаг дискретизации сигнала x(ti) по времени, то есть в секундах, значение шага дискретизации в радианах равно 2π/N,

T - длительность периода, с,

N - число измерений тока в течение периода.

Таким образом, текущее мгновенное значение тока xкз(ti) в момент времени ti по своей природе содержит все составляющие (постоянную, периодическую, апериодическую), если они имеют место в данной цепи. Это свойство мгновенного значения тока и не нужно специально определять эти составляющие.

Подставив текущие мгновенные значение тока xкз(ti) в выражение (1), записанное для вычисления интеграла при дискретных измерениях с шагом Δt (формула трапеций для вычисления интеграла, которая обеспечивает достаточную точность вычислений при относительной простоте окончательных выражений), получим математическое выражение, приведенное в формуле предлагаемого изобретения для определения величины термического воздействия тока

где Bmер - величина термического воздействия от тока короткого замыкания в одной из фаз, А2 с;

Δt=T/N - шаг дискретизации сигнала по времени, с,

суммирование ведется по j от j=1, то есть от момента t1 - времени возникновения тока короткого замыкания, до момента времени tапв - времени завершения автоматического повторного включения, то есть до j=f(tапв+1)N;

xкз(ti) - мгновенное значение тока короткого замыкания в данной фазе в текущий момент времени tj, A;

xкз(ti+1) - мгновенное значение тока короткого замыкания в данной фазе в последующий момент времени tj+1, А;

f - промышленная частота, Гц;

N - количество интервалов дискретизации.

Сложность представляет определение реального времени tкз термического воздействия от тока короткого замыкания, так как согласно исследованиям «Чунихин А.А. Электрические аппараты: Общий курс. Учебник для вузов. - 3-е изд., перераб. и доп. - М.: Энергоатомиздат, 1988, с. 137-143.» при коммутации дуга может гаснуть и загораться несколько раз в зависимости от характера цепи. В то время, когда дуга не горит и ток короткого замыкания не протекает, нет ни какого термического воздействия на проводники и электрические аппараты от тока короткого замыкания. Поэтому это время не нужно учитывать, и оно не учитывается в формуле предлагаемого изобретения.

При этом нужно учесть еще одно требование ГОСТ 30323-95, п. 1.1.5, которое звучит так: «При наличии устройств автоматического повторного включения цепи следует учитывать суммарное термическое действие тока короткого замыкания». Время в течение которого может произойти автоматическое повторное включения цепи, зависит от характера цепи и устанавливается релейными службами. Поэтому для вычисления степени термического воздействия тока короткого замыкания на проводники и электрические аппараты время вычисления требуется увеличить на одну секунду, для завершения всех переходных процессов, то есть сделать равным tапв+1. Для перевода этого времени из секунд в число измерений оцифрованных мгновенных значений тока необходимо время умножить на промышленную частоту f, тем самым получим число периодов, а затем умножить на число измерений в периоде N - количество интервалов дискретизации. Таким образом, число измерений мгновенных значений тока составит f(tапв+1)N.

Алгоритм вычисления времени термического воздействия tкз можно описать следующим образом:

время термического воздействия tкз при каждом j-м измерении нарастающим итогом монотонно увеличивается со значения tкз=0, при j=1, на величину шага дискретизации сигнала по времени Δt, при условии что xкз(tj) - текущее мгновенное значение тока короткого замыкания в данной фазе не равно нулю, и время термического воздействия tкз остается неизменным, если xкз(tj) - текущее мгновенное значение тока короткого замыкания в данной фазе равно нулю, таким образом, время термического воздействия tкз для каждой из фаз определяется по следующему математическому выражению:

для всех j=1, 2, 3, …, f(tапв+1)N,

где tкз - время термического воздействия, с;

xкз(ti) - мгновенное значение тока короткого замыкания в данной фазе в текущий момент времени tj А;

Δt - шаг дискретизации сигнала по времени, с;

f - промышленная частота, Гц;

N - количество интервалов дискретизации.

Способ определения величины и времени термического воздействия от тока короткого замыкания, возникшего в момент t1, включающий измерение, фиксацию и оцифровку N раз в течение периода T и в каждый текущий момент времени tj, j=1, 2,…, N, причем
tj+1=tj+Δt,
где tj+1 - последующий момент времени, с;
tj - текущий момент времени, с;
Δt=T/N - шаг дискретизации сигнала по времени, с, текущего мгновенного значения тока короткого замыкания xкз(ti) в каждой фазе, осуществляют определение величины термического воздействия Вmер в каждой фазе по следующему математическому выражению:

где Вmер - величина термического воздействия от тока короткого замыкания в одной из фаз, А2с;
Δt=T/N - шаг дискретизации сигнала по времени, с,
суммирование ведется по j от j=1, что соответствует моменту t1 - времени возникновения тока короткого замыкания, до момента времени tanв - времени завершения автоматического повторного включения, когда j=f(tanв+1)N;
хкз(ti) - мгновенное значение тока короткого замыкания в данной фазе в текущий момент времени tj, А;
xкз(ti+1) - мгновенное значение тока короткого замыкания в данной фазе в последующий момент времени tj+1, А;
f - промышленная частота, Гц;
N - количество интервалов дискретизации,
а время термического воздействия tкз при каждом j-м измерении нарастающим итогом монотонно увеличивается со значения tкз=0 на величину шага дискретизации сигнала по времени Δt, при условии что xкз(tj) - текущее мгновенное значение тока короткого замыкания в данной фазе не равно нулю, и время термического воздействия tкз остается неизменным, если xкз(tj) - текущее мгновенное значение тока короткого замыкания в данной фазе равно нулю, таким образом, время термического воздействия для каждой из фаз определяется по следующему математическому выражению:

где tкз - время термического воздействия, с;
xкз(ti) - мгновенное значение тока короткого замыкания в данной фазе в текущий момент времени tj, А;
Δt - шаг дискретизации сигнала по времени, с;
f - промышленная частота, Гц;
N - количество интервалов дискретизации.



 

Похожие патенты:

Изобретение относится к области волоконной оптики и может быть использовано в волоконно-оптических фазовых датчиках интерферометрического типа. При измерении сигнала датчика в ступенчатый пилообразный модулирующий сигнал добавляют один скачок напряжения за его период, амплитуда скачка равна амплитуде модулирующего сигнала, а длительность составляет половину длительности одной его ступени, причем скачок напряжения осуществляют в момент времени, соответствующий линейному участку выходного интерферометрического сигнала, полученного за предыдущий период модулирующего сигнала.

Группа изобретений относится к средствам увеличения функциональности измерительного устройства. Технический результат заключается в обеспечении конфигурирования измерительного устройства для конкретных измерительных операций.

Изобретение относится к области судовождения, в частности к системам автоматического управления движением судна. .

Изобретение относится к области предотвращения несанкционированного применения воздушных судов (ВС), в том числе предотвращения террористических атак. .

Изобретение относится к оптическому волокну, содержащему по всей своей длине датчики давления и температуры. .

Изобретение относится к электротехнике и электроэнергетике, а именно к релейной защите и автоматике. .

Изобретение относится к управлению движением разгонного блока (РБ) при выведении его на опорную орбиту. .

Изобретение относится к устройствам для измерения расхода и может быть использовано, в частности, для измерения расхода жидкости или газа. .

Изобретение относится к устройствам для измерения расхода и может быть использовано, в частности, для измерения расхода жидкости или газа. .

Изобретение относится к области измерительной техники и может быть применено в устройствах для измерения переменных скалярных величин, распределенных в пространстве.

Заявляемое изобретение относится к области электроэнергетики, а именно к глобальным автоматизированным системам, позволяющим контролировать работу разнородных объектов электроэнергетики подстанционного уровня, входящих в энергосистему и удалённых на значительное расстояние друг от друга и от оператора энергосистемы. Техническим результатом является обеспечение автоматизированной централизованной обработки информации об аварийных процессах, зафиксированных на всех контролируемых объектах электроэнергетики, входящих в энергосистему, на верхнем иерархическом уровне энергосистемы. Система содержит несколько разнородных контролируемых объектов электроэнергетики подстанционного уровня, входящих в энергосистему, при этом каждая подстанция может иметь различный набор устройств, которые потенциально могут быть источниками аварийной осциллографической информации. 1 з.п. ф-лы, 15 ил.

Изобретение относится к средствам определения взаимного положения или взаимного состояния движения по меньшей мере двух конструктивных элементов передвижной рабочей установки. Предложенный детекторный узел содержит конструктивные элементы, выполненные с возможностью поворота относительно друг друга по меньшей мере в одном направлении вращения, детекторы, выполненные с возможностью расположения в каждом указанном конструктивном элементе и выполненные с возможностью определения по меньшей мере в одном направлении измерения по меньшей мере двух различных измеряемых параметров, первого и второго измеряемых параметров, для каждого направления измерения, при этом имеется возможность получения, посредством измеряемых параметров, по меньшей мере информации о положении или состоянии движения конкретного конструктивного элемента, для данного конструктивного элемента, относительно по меньшей мере одного заданного углового опорного сигнала, средства обработки данных для приема первого и второго сигналов измерения, описывающих первый и второй измеряемые параметры и передаваемых детекторами, и для получения каждого фрагмента информации о положении или состоянии движения конкретного конструктивного элемента на основе первого и второго сигналов измерения, а также для определения по меньшей мере взаимного положения и/или взаимного состояния движения конструктивных элементов на основе указанной информации о положении или состоянии движения конкретного конструктивного элемента, причем средства обработки данных выполнены с возможностью получения по меньшей мере уточненной информации о положении или состоянии движения конкретного конструктивного элемента в отношении двух конструктивных элементов таким образом, что есть возможность получения информации о положении или состоянии движения для конструктивного элемента отдельно на основе первого измеряемого параметра и второго измеряемого параметра и корректировки погрешности измерения информации о положении или состоянии движения, получаемой на основе первого измеряемого параметра с использованием соответствующей информации о положении или состоянии движения, получаемой на основе второго измеряемого параметра, в качестве эталонной информации. С использованием указанного детекторного узла реализуется соответствующая передвижная установка и способ определения взаимного положения или взаимного состояния движения ее конструктивных элементов. Указанные средства обеспечивают более высокую точность определения указанного взаимного положения. 3 н. и 11 з.п. ф-лы, 4 ил.

Изобретение относится к промышленной электронике. Технический результат направлен на уменьшение погрешности интегрирования. Аналоговый интегратор, содержащий два операционных усилителя, два конденсатора и четыре резистора, а также дополнительный операционный усилитель, дополнительный конденсатор, два дополнительных резистора и измененное соединение элементов, инвертирующий вход дополнительного операционного усилителя соединён с общим выводом имеющегося первого резистора, инвертирующих входов имеющихся двух операционных усилителей и имеющегося первого конденсатора, выход дополнительного операционного усилителя образует выход относительно «земли» аналогового интегратора, с этим выходом соединён второй свободный вывод имеющегося первого конденсатора, между инвертирующим входом дополнительного операционного усилителя и выходом имеющегося второго операционного усилителя включены параллельно соединённые дополнительный конденсатор и дополнительный первый резистор, второй дополнительный резистор включен между «землей» и общим выводом дополнительного конденсатора, дополнительного первого резистора и неинвертирующего входа дополнительного операционного усилителя. 1 ил.
Наверх