Способ и устройство управления охлаждением резца



Способ и устройство управления охлаждением резца
Способ и устройство управления охлаждением резца
Способ и устройство управления охлаждением резца
Способ и устройство управления охлаждением резца
Способ и устройство управления охлаждением резца
Способ и устройство управления охлаждением резца
Способ и устройство управления охлаждением резца
Способ и устройство управления охлаждением резца
Способ и устройство управления охлаждением резца
Способ и устройство управления охлаждением резца
Способ и устройство управления охлаждением резца

 


Владельцы патента RU 2586189:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) (RU)

Изобретение относится к области высокоскоростной обработки деталей на станках с ЧПУ. Устройство, реализующее предложенный способ управления, содержит последовательно соединенные термопару, установленную с возможностью измерения температуры в режущей части резца, нечеткий контроллер и управляемый генератор постоянного тока, соединенный с термоэлементом, выполненным в виде элемента Пельтье, блок активного контроля, состоящий из датчика скорости резания, датчика подачи резца и датчика силы тока, подаваемого на упомянутый термоэлемент, при этом второй вход нечеткого контроллера соединен с выходом блока активного контроля. Устройство позволяет в режиме реального времени осуществлять управление скоростью охлаждения режущей части лезвийного инструмента посредством использования соответствующих нечетких правил управления силой тока, подаваемого на элемент Пельтье. Использование изобретения позволяет повысить точность механической обработки изделий с увеличением при этом скорости обработки. 2 н.п. ф-лы, 6 ил.

 

Изобретение относится к области высокоскоростной обработки деталей на оборудовании с ЧПУ, в частности к системам повышения точности при механической обработке изделий за счет управляемого охлаждения режущего инструмента.

Наиболее близким к изобретению по технической сущности является устройство охлаждения режущего инструмента [Патент РФ №2470757, кл. B23Q 11/10, 2006 (аналог)].

Недостатком данного устройства является отсутствие режима управления скоростью охлаждения режущего инструмента.

Известно устройство охлаждения режущего инструмента для повышения точности при обработке деталей на оборудовании с ЧПУ [Патент РФ №2486992, кл. B23Q 11/14, 2006 (прототип)].

Недостатком данного устройство является отсутствие возможности управления силой тока для более эффективного управления скоростью охлаждения режущего инструмента.

Известен способ охлаждения режущей части инструмента [Патент РФ №1255384, кл. B23Q 11/10, 2006 (аналог)].

Недостатком данного способа является применение инструмента сложной конструкции с внутренними полостями для смазочно-охлаждающей жидкости.

Известен способ охлаждения режущего инструмента для повышения точности при обработке деталей на оборудовании с ЧПУ [Патент РФ №2486992, кл. B23Q 11/14, 2006 (прототип)].

Недостатком данного способа является то, что в нем не предусмотрен режим регулирования силой тока.

Технической задачей изобретения является повышение точности при механической обработке изделий на станках с ЧПУ за счет управления скоростью охлаждения резца и увеличение скорости резания при обеспечении заданной точности.

Поставленная задача решается тем, что в известное устройство, включающее компьютер, резец с термоэлементом, генератор постоянного тока, нечеткий контроллер, введена система активного контроля, включающая в себя датчики скорости, подачи и тока.

Сущность изобретения поясняется чертежами, где на Фиг. 1 приведена схема устройства управления охлаждением резца, на Фиг. 2 представлен график для входной величины - температура режущей части резца, на Фиг. 3 представлен график для входной величины - подачи режущего инструмента, на Фиг. 4 представлен график для входной величины - скорость резания, на Фиг. 5 представлен график для выходной величины - сила тока, на Фиг. 6 представлен результат преобразования вектора функции принадлежности i″ в единственное четкое значение.

Устройство управления охлаждением резца содержит деталь 1, переднюю бабку 2, заднюю бабку 3, резец с термоэлементом 4, резцедержатель 5, исполнительные механизмы оборудования с ЧПУ 6, управляемый генератор тока 7, компьютер 8, токопровод 9, нечеткий контроллер 10, систему активного контроля 11, включающую датчик скорости резания 12, датчик подачи 13 и датчик тока 14, термопару 15.

Связи в устройстве управления охлаждением резца расположены следующим образом: первый выход компьютера 8 соединен первым входом с передней бабкой 2, второй выход компьютера 8 соединен с задней бабкой 3, третий выход компьютера 8 соединен с управляемым генератором тока 7, четвертый выход компьютера 8 соединен с исполнительными механизмами оборудования с ЧПУ 6, которые подключены к резцедержателю 5 с закрепленным в нем резцом с термоэлементом 4, который с помощью токопроводов 9 соединен с выходом управляемого генератора тока 7. Деталь 1 закреплена в передней бабке 2 и задней бабке 3. Первый вход нечеткого контроллера 10 соединен с выходом блока системы активного контроля 11, состоящей из датчика скорости резания 12, датчика подачи 13, датчика сила тока 14, второй вход нечеткого контроллера 10 соединен с термопарой 15, третий выход нечеткого контроллера 10 соединен со вторым входом управляемого генератора тока 7.

Устройство управления охлаждением резца работает следующим образом. При вращении детали 1, установленной в передней бабке 2 и задней бабке 3, и прохождении по ее поверхности резца 4 в зоне резания происходит нагрев режущей части резца 4 и поверхности детали 1, вследствие чего возникают температурные деформации, которые приводят к ухудшению качества обрабатываемой поверхности детали 1.

Для уменьшения температурной деформации и обеспечения управления скоростью охлаждения резца 4 нечеткий контроллер 10 в реальном времени получает данные о температуре режущей части резца от термопары 15, данные о текущем значении скорости резания и подачи от датчиков 12 и 13, затем, исходя из нечетких правил управления, регулирует выходные значения сила тока с генератора постоянного тока 7. При этом если температура резца 4 увеличивается, то необходимо усилить охлаждение резца с помощью увеличения тока, подаваемого на термоэлемент резца с термоэлементом 4 от управляемого генератора постоянного тока 7. В противном случае необходимо ослабить охлаждение резца с помощью уменьшения подачи тока на термоэлемент резца 4 от управляемого генератора постоянного тока 7. Таким образом, осуществляется управляемое охлаждение резца 4, что позволяет увеличить скорость обработки детали при обеспечении заданной точности, без использования смазочно-охлаждающей жидкости.

Способ управления охлаждением резца заключается в следующем.

Первым шагом способа является формирование функций принадлежностей термов входных переменных: температуры в зоне резания T (фиг. 2), подачи режущего инструмента S (фиг. 3) и скорости резания V (фиг. 4). Выходным параметром является величина силы тока I (фиг. 5), подаваемого на элемент Пельтье:

где t - численные значения температуры режущей части резца 4 с термоэлементом; μ(t)→[0, 1] - соответствующие величинам температуры значения функции принадлежности (из интервала от 0 до 1); s - численные значения подачи режущего инструмента; μ(s)→[0, 1] - соответствующие величинам подачи режущего инструмента значения функции принадлежности (из интервала от 0 до 1); ν - численные значения скорости резания; μ(ν)→[0, 1] - соответствующие величинам скорости резания значения функции принадлежности (из интервала от 0 до 1); i - численные значения сила тока; μ(i)→[0, 1] - соответствующие величинам сила тока значения функции принадлежности (из интервала от 0 до 1).

Функции принадлежностей входных переменных T, S и V состоят из трех термов. Для температуры T=[Т1]+[Т2]+[Т3] (фиг. 2), для подачи S=[S1]+[S2]+[S3] (фиг. 3), для скорости резания V=[V1]+[V2]+[V3] (фиг. 4). Функция принадлежности для выходной переменной I состоит из 11 термов - сила тока I=[I1]+[I2]+[I3]+[I4]+[I5]+[I6]+[I7]+[I8]+[I10]+[I11] (фиг. 5).

Вторым шагом способа является фазификация, при которой в зависимости от текущего значения температуры t, полученного от термопары 15, значения скорости резания v, и значения подачи s, полученного от датчиков 12 и 13, формируется фаззифицированный вектор значений для каждого терма функции принадлежности t′, s′ и ν′, где текущее значение температуры t является аргументом μ(t), а текущее значение подача s является аргументом μ(s), а текущее значение скорости резания ν является аргументом μ(ν), позволяя найти количественное значение из интервала [0, 1] для t′=μ(t), s′=μ(s) и ν′=μ(ν). Этап фазификации считается законченным, когда будут найдены значения t′, s′ и ν′ для трех термов функций принадлежностей входных величин T, S и V:

Третьим шагом способа является агрегация, при которой с помощью операции нечеткой логики «И» выбирается минимальное значение из термов входных переменных:

где

При этом вектор значений B={b1, b2, … b27) ставит в соответствие каждому элементу своего множества bi, где i=1…27 одно из двадцати семи нечетких правил управления:

НПУ 1: Если «t=t1» И «s=s1» И «ν=ν1» То «i=i11»;

НПУ 2: Если «t=t1» И «s=s1» И «ν=ν2» То «i=i10»;

НПУ 3: Если «t=t1» И «s=s1» И «ν=ν3» То «i=i9»;

НПУ 4: Если «t=t1» И «s=s2» И «ν=ν1» То «i=i10»;

НПУ 5: Если «t=t1» И «s=s2» И «ν=ν2» То «i=i9»;

НПУ 6: Если «t=t1» И «s=s2» И «ν=ν3» То «i=i8»;

НПУ 7: Если «t=t1» И «s=s3» И «ν=ν1» То «i=i9»;

НПУ 8: Если «t=t1» И «s=s3» И «ν=ν2» То «i=i8»;

НПУ 9: Если «t=t1» И «s=s3» И «ν=ν3» То «i=i7»;

НПУ 10: Если «t=t2» И «s=s1» И «ν=ν1» То «i=i8»;

НПУ 11: Если «t=t2» И «s=s1» И «ν=ν2» То «i=i7»;

НПУ 12: Если «t=t2» И «s=s1» И «ν=ν3» То «i=i6»;

НПУ 13: Если «t=t2» И «s=s2» И «ν=ν1» То «i=i7»;

НПУ 14: Если «t=t2» И «s=s2» И «ν=ν2» То «i=i6»;

НПУ 15: Если «t=t2» И «s=s2» И «ν=ν3» То «i=i5»;

НПУ 16: Если «t=t2» И «s=s3» И «ν=ν1» То «i=i6»;

НПУ 17: Если «t=t2» И «s=s3» И «ν=ν2» То «i=i5»;

НПУ 18: Если «t=t2» И «s=s3» И «ν=ν3» То «i=i4»;

НПУ 19: Если «t=t3» И «s=s1» И «ν=ν1» То «i=i5»;

НПУ 20: Если «t=t3» И «s=s1» И «ν=ν2» То «i=i4»;

НПУ 21: Если «t=t3» И «s=s1» И «ν=ν3» То «i=i3»;

НПУ 22: Если «t=t3» И «s=s2» И «ν=ν1» То «i=i4»;

НПУ 23: Если «t=t3» И «s=s2» И «ν=ν2» То «i=i3»;

НПУ 24: Если «t=t3» И «s=s2» И «ν=ν3» То «i=i2»;

НПУ 25: Если «t=t3» И «s=s3» И «ν=ν1» То «i=i3»;

НПУ 26: Если «t=t3» И «s=s3» И «ν=ν2» То «i=i2»;

НПУ 27: Если «t=t3» И «s=s3» И «ν=ν3» То «i=i1».

Так, например, пятый элемент b 5 = min [ t 1 ' ; s 2 ' ; ν 2 ' ] вектора B, определяется с помощью пятого нечеткого правила управления НПУ 5: Если «t=t1» И «s=s2» И «ν=ν2» То «i=i9».

На четвертом шаге способа осуществляется композиция нечетких правил. На пятом шаге способа методом аккумуляции происходит объединение новых термов и формирование выходного нечеткого вектора функций принадлежности силы тока. На шестом шаге способа с помощью метода центра тяжести рассчитывается четкое выходное значение выходной переменной силы тока

i " = j = 1 n i 1..11 μ ' ( i ) 1 11 j = 1 n μ ' ( i ) 1 11 ( 4 )

где i1…11 - численные значения выходного сила тока (от минимального до максимального значения); μ'(i)1…11 - новые значения выходной величины сила тока в виде новых термов функций принадлежности.

В качестве примера разберем управление величиной силы тока, позволяющее контролировать интенсивность охлаждения резца с термоэлементом за счет увеличения силы тока, подаваемого на термоэлемент резца 4 от управляемого генератора постоянного силы тока 7.

Шаг 1. Строим по формуле (1) функции принадлежности для входных и выходной величин. На фиг. 2 представлен график для входной величины - температуры режущей части резца с термоэлементом 4 - T=(t1, t2, t3), на фиг. 3 представлен график для входной величины - подачи режущего инструмента - S=(s1, s2, s3). На фиг. 4 в представлен график для входной величины - скорость резания - V=(ν1, ν2, ν3), на фиг. 5 представлен график для выходной переменной: величины сила тока - I={i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11).

Функция принадлежности для входной переменной температуры T

Для подачи S функция принадлежности запишется в виде

Для скорости резания V функция принадлежности запишется в виде

|

Для выходной переменной величины силы тока I функция принадлежности примет вид

Шаг 2. При поступлении данных в нечеткий контроллер 10 о текущем значении температуры режущей части резца от термопары 15, данных о текущем значении скорости резания и подачи от датчиков 12 и 13 в нем производится перерасчет согласно нечетким правилам управления. Например, если t=574°C, s=0,22 мм/об и ν=163 м/мин, то вектор фаззификации значений для каждого терма входной функции принадлежности t′, s′ и ν′ (фиг. 2, 3 и 4), рассчитанный по формуле 2, выглядит так:

t ' = ( t 1 ' , t 2 ' , t 3 ' ) = ( 0 ; 0,28 ; 0,72 ) ,

s ' = ( s 1 ' , s 2 ' , s 3 ' ) = ( 0,8 ; 0,2 ; 0 ) ,

ν ' = ( ν 1 ' , ν 2 ' , ν 3 ' ) = ( 0 ; 0,93 ; 0,07 ) .

Термы, имеющие нулевой результат, в дальнейших расчетах использоваться не будут.

Шаг 3. На этапе агрегации находится вектор B по формуле 3.

b1=0, b2=0, b3=0, b4=0, b5=0, b6=0, b7=0, b8=0, b9=0, b10=0, b11=0.28, b12=0.07, b13=0, b14=0.2, b15=0.07, b16=0, b17=0, b18=0, b19=0, b20=0.72, b21=0.07, b22=0, b23=0.2. b24=0.07, b25=0, b26=0, b27=0.

Шаг 4. На этапе композиции отбираются нечеткие правила, которые имеют пересечение. Это нечеткие правила с номерами 11, 12, 14, 15, 20, 21, 23 и 24.

НПУ 11: Если «t=t2» И «s=s1» И «ν=ν2» То «i=i7»;

НПУ 12: Если «t=t2» И «s=s1» И «ν=ν3» То «i=i6»;

НПУ 14: Если «t=t2» И «s=s2» И «ν=ν2» То «i=i6»;

НПУ 15: Если «t=t2» И «s=s2» И «ν=ν3» То «i=i5»;

НПУ 20: Если «t=t3» И «s=s1» И «ν=ν2» То «i=i4»;

НПУ 21: Если «t=t3» И «s=s1» И «ν=ν3» То «i=i3»;

НПУ 23: Если «t=t3» И «s=s2» И «ν=ν2» То «i=i3»;

НПУ 24: Если «t=t3» И «s=s2» И «ν=ν3» То «i=i2»;

Затем методом нечеткой композиции определяются степени функции принадлежности, которые характеризуются новыми значениями выходной величины сила тока в виде новых термов функций

μ′(i)1=0, μ′(i)2=min{0,07; μ(i)2},

μ′(i)3=min{0.2; μ(i′)3}, μ′(i′)4=min{0,72; μ(i)4},

μ′(i)5=0, μ′(i)6=min{0,2; μ(i)6},

μ′(i)7=min{0,28; μ(i)7}, μ′(i)8=0,

μ′(i)9=0, μ′(i)10=0, μ′(i)11=0.

Шаг 5. На этапе аккумуляции происходит объединение всех новых термов и формируется нечеткий вектор функций принадлежности I′. Графический результат показан на фиг. 6.

Шаг 6. На этапе дефазификации по методу центра тяжести (формула 4) вектор функции принадлежности I преобразуется в единственное четкое значение (фиг. 6).

С помощью предложенного способа осуществляется расчет нового значения силы тока для управления скоростью охлаждения резца с термоэлементом 4.

Таким образом, предлагаемый способ и реализующее его устройство позволят в режиме реального времени осуществлять управление скоростью охлаждения резца с термоэлементом путем перерасчета силы тока в случае изменения параметров режима резания.

1. Способ управления охлаждением резца с установленным в нем термоэлементом, включающий измерение температуры режущей части резца посредством термопары и, при несовпадении значений упомянутой температуры с заданным значением, изменение силы тока, протекающего через термоэлемент, выполненный в виде элемента Пельтье, посредством генератора постоянного тока, управляемого с помощью нечетких правил управления, отличающийся тем, что измеряют величины подачи резца и скорости резания, а упомянутым генератором постоянного тока управляют с использованием следующих нечетких правил управления
НПУ 1: Если «t=t1» И «s=s1» И «v=v1» То «i=i11»;
НПУ 2: Если «t=t1» И «s=s1» И «v=v2» То «i=i10»;
НПУ 3: Если «t=t1» И «s=s1» И «v=v3» То «i=i9»;
НПУ 4: Если «t=t1» И «s=s2» И «v=v1» То «i=i10»;
НПУ 5: Если «t=t1» И «s=s2» И «v=v2» То «i=i9»;
НПУ 6: Если «t=t1» И «s=s2» И «v=v3» То «i=i8»;
НПУ 7: Если «t=t1» И «s=s3» И «v=v1» То «i=i9»;
НПУ 8: Если «t=t1» И «s=s3» И «v=v2» То «i=i8»;
НПУ 9: Если «t=t1» И «s=s3» И «v=v3» То «i=i7»;
НПУ 10: Если «t=t2» И «s=s1» И «v=v1» То «i=i8»;
НПУ 11: Если «t=t2» И «s=s1» И «v=v2» То «i=i7»;
НПУ 12: Если «t=t2» И «s=s1» И «v=v3» То «i=i6»;
НПУ 13: Если «t=t2» И «s=s2» И «v=v1» То «i=i7»;
НПУ 14: Если «t=t2» И «s=s2» И «v=v2» То «i=i6»;
НПУ 15: Если «t=t2» И «s=s2» И «v=v3» То «i=i5»;
НПУ 16: Если «t=t2» И «s=s3» И «v=v1» То «i=i6»;
НПУ 17: Если «t=t2» И «s=s3» И «v=v2» То «i=i5»;
НПУ 18: Если «t=t2» И «s=s3» И «v=v3» То «i=i4»;
НПУ 19: Если «t=t3» И «s=s1» И «v=v1» То «i=i5»;
НПУ 20: Если «t=t3» И «s=s1» И «v=v2» То «i=i4;
НПУ 21: Если «t=t3» И «s=s1» И «v=v3» То «i=i3»;
НПУ 22: Если «t=t3» И «s=s2» И «v=v1» То «i=i4»;
НПУ 23: Если «t=t3» И «s=s2» И «v=v2» То «i=i3»;
НПУ 24: Если «t=t3» И «s=s2» И «v=v3» То «i=i2»;
НПУ 25: Если «t=t3» И «s=s3» И «v=v1» То «i=i3»;
НПУ 26: Если «t=t3» И «s=s3» И «v=v2» То «i=i2»;
НПУ 27: Если «t=t3» И «s=s3» И «v=v3» То «i=i1»,
где t1…3 - численные значения температуры режущей части резца,
s1…3 - численные значения подачи резца,
v1…3 - численные значения скорости резания,
i1…11 - численные значения силы тока от минимального до максимального значения,
при этом осуществляют перерасчет упомянутой силы тока по формуле

где μ'(i)1…11 - новые значения величины силы тока в виде новых термов функций принадлежности.

2. Устройство для управления охлаждением резца с установленным в нем термоэлементом способом по п. 1, содержащее последовательно соединенные термопару, установленную с возможностью измерения температуры в режущей части резца, нечеткий контроллер и управляемый генератор постоянного тока, соединенный с термоэлементом, выполненным в виде элемента Пельтье, блок активного контроля, состоящий из датчика скорости резания, датчика подачи резца и датчика силы тока, подаваемого на упомянутый термоэлемент, при этом второй вход нечеткого контроллера соединен с выходом блока активного контроля.



 

Похожие патенты:

Изобретение относится к области высокоскоростной обработки деталей на оборудовании с ЧПУ, в частности к системам повышения точности при механической обработке изделий за счет охлаждения режущего инструмента без использования смазочно-охлаждающей жидкости с целью компенсации температурных деформаций, возникающих в зоне резания.

Изобретение относится к станкостроению и может быть использовано в быстроходных шпиндельных узлах металлорежущих станков. .

Изобретение относится к станкостроению и может найти применение.в быстроходных шпиндельных узлах метал лорежущих станков. .

Изобретение относится к станкостроению и позволяет - осуществлять дорегулировочные работы по сборке барабанов, токарных многошпиндельных станков. .

Изобретение относится к не содержащему фольги ламинированному материалу (10) мешка для упаковки жидких продуктов или напитков, содержащему первый слой (11) бумаги или другого материала на основе целлюлозы, расположенный с внутренней стороны не содержащего фольги ламинированного материала мешка, второй слой (12) бумаги или другого материала на основе целлюлозы, расположенный с внешней стороны не содержащего фольги ламинированного материала мешка, причем указанные первый и второй слои ламинированы друг к другу посредством по меньшей мере одного промежуточного связующего слоя (13), выбранного из термопластических полимеров, газобарьерный покрывающий слой (14, 14'), нанесенный на одну или обе стороны первого слоя бумаги или другого материала на основе целлюлозы, барьерный слой металлического покрытия (15), осажденного из паровой фазы, расположенный на внутренней стороне указанного первого слоя, самый внутренний слой непроницаемого для жидкости термосвариваемого термопластического полимерного материала (16), выбранного из полиолефинов, нанесенный на внутреннюю сторону барьерного слоя металлического покрытия (15), осажденного из паровой фазы и самый внешний слой непроницаемого для жидкости термосвариваемого термопластического полимерного материала (17), выбранного из полиолефинов на противоположной стороне не содержащего фольги ламинированного материала мешка, нанесенный на внешнюю сторону второго слоя бумаги или другого материала на основе целлюлозы, причем газобарьерный покрывающий слой (14, 14') получен жидкопленочным нанесением жидкой композиции на указанный первый слой и последующей сушкой жидкой композиции, содержащей полимерный связующий материал, диспергированный или растворенный в водной среде или в другом растворителе.

Режущий инструмент содержит режущий элемент в виде вставной режущей пластины, охлаждаемой косвенно с помощью теплообменника с микроканалами, который установлен у задней поверхности вставной режущей пластины.

Режущий инструмент включает в себя режущую пластину, содержащую верхнюю поверхность, нижнюю поверхность, прижимную поверхность для упора прихвата, режущую кромку, отверстие, проходящее сквозь пластину от нижней поверхности до прижимной поверхности, и канал, проходящий от прижимной поверхности до ближней режущей кромки, и держатель инструмента, содержащий корпус держателя инструмента, имеющий карман для приема вставки, прихват для контакта с прижимной поверхностью и прижатия пластины в кармане, и проход держателя инструмента в корпусе в сообщении по потоку с отверстием в пластине.

Устройство содержит режущий инструмент и систему подачи смазочно-охлаждающей технологической среды в зону резания на переднюю поверхность режущего инструмента. Для снижения необходимых усилий резания и повышения динамической жесткости режущего инструмента, а также повышения чистоты обрабатываемой поверхности детали при высоких скоростях резания за счет изменения схемы процесса резания оно снабжено вибратором, выполненным с возможностью создания колебания в диапазоне частот от 1 кГц до 40 кГц в направлении нормали к передней поверхности режущего инструмента, штоком и дополнительной вибрирующей пластиной, поверхность которой выполнена в виде продолжения передней поверхности режущего инструмента, соединенной с вибратором.

Режущий инструмент содержит режущую пластину, соединенную с охлаждающей пластиной, выполненной с отверстием для прохода хладагента. Для повышения стойкости режущей пластины передняя поверхность режущей кромки режущей пластины выполнена с выступами и пазами между ними, а охлаждающая пластина выполнена с лицевыми поверхностями, пазами и массивами лицевой поверхности ниже плоскости передней поверхности режущей кромки режущей пластины для соответственного соединения с выступами и пазами режущей пластины.

Режущий инструмент содержит хвостовик, головку, содержащую гнездо, режущую пластину, съемно удерживаемую в гнезде, и элемент для подачи охлаждающего средства, расположенный рядом с головкой и содержащий корпус, выполненный с возможностью приема и подачи охлаждающей текучей среды через образованный в нем канал, и сопло, зацепленное с корпусом и выполненное с возможностью перемещения относительно корпуса элемента между первым положением, в котором сопло проходит наружу и вперед от корпуса элемента для по меньшей мере частичного прохождения над зажимным элементом, который закрепляет режущую пластину на месте, и вторым положением, в котором сопло втянуто в канал для текучей среды, так что по меньшей мере часть сопла, которая проходит наружу из корпуса элемента в первом положении, размещается в канале для текучей среды во втором положении и не проходит над зажимным элементом, причем сопло устойчиво в первом положении за счет непрерывного потока охлаждающей текучей среды, выталкивающего сопло наружу и вперед от корпуса элемента.

Резец // 2443511
Изобретение относится к металлообработке, а именно к сборному режущему инструменту для автоматизированного оборудования. .
Изобретение относится к области машиностроения и может быть использовано для повышения надежности и стойкости режущего инструмента. .

Изобретение относится к порошковой металлургии, в частности к способам изготовления режущих инструментов из карбидных порошков, имеющих внутренние каналы для охлаждающей жидкости.

Изобретение относится к области высокоскоростной обработки деталей на оборудовании с ЧПУ, в частности к системам охлаждения резцов. Техническим результатом является снижение энергопотребления при охлаждении режущей части резца. Оборудование для обработки деталей содержит переднюю бабку, заднюю бабку, исполнительные механизмы, режущий инструмент, в резце которого установлена пластина с термоэлементом, устройство охлаждения режущего элемента и токопроводы. При этом устройство охлаждения режущего инструмента выполнено в виде тепловых труб, термоэлектрических секций, работающих на основе эффекта Томсона, и аккумулятора. Причем термоэлектрические секции расположены между тепловыми трубами, размещенными над зоной резания, выход термоэлектрических секций соединен токопроводом с входом аккумулятора, выход которого посредством токопровода соединен с пластиной с термоэлементом режущего инструмента.1 ил.
Наверх