Высокопрочная коррозионно-стойкая свариваемая сталь

Изобретение относится к области металлургии, а именно к составам высокопрочных коррозионно-стойких сталей, используемых для изготовления высоконагруженных деталей и конструкций в машиностроении, судостроении, авиации и железнодорожном транспорте. Сталь содержит, мас.%: углерод 0,01-0,04, кремний 0,10-0,80, марганец 0,50-1,50, хром 14,0-16,0, никель 3,0-5,0, азот 0,1-0,2, медь от более 0,5 до 2,5, ванадий 0,02-0,20, кальций от более 0,005 до 0,030, железо и примеси - остальное. Отношение содержания углерода к содержанию азота составляет 0,2 или менее. Сталь обладает высокими пределом текучести и пределом прочности при сохранении высокой пластичности и ударной вязкости. 2 табл.

 

Изобретение относится к области металлургии, в частности к области легированных высокопрочных коррозионно-стойких сталей, используемых для высоконагруженных конструкций в машиностроении, судостроении, авиации и железнодорожном транспорте.

Известна коррозионно-стойкая хромоникелевая сталь 14Х17Н2 (ГОСТ 5632-72), содержащая 0,11-0,17% углерода, 16-18% хрома, 1,5-2,5% никеля, не более 0,2 титана, неизбежные примеси и железо.

Основными недостатками этой стали являются: трудная свариваемость, низкая прочность и склонность к отпускной хрупкости.

Известна коррозионно-стойкая хромоникелевая сталь 25X13H2, содержащая 0,2-0,3% углерода, 12-14% хрома, 1,5-2,0% никеля, не более 0,2 титана, неизбежные примеси и железо (См. А.А. Бабков, М.В. Приданцев. Коррозионно-стойкие стали и сплавы. М., Металлургия, 1971 г., с. 114-118).

Главным недостатком этой стали является низкая пластичность (δ=3-7 %).

Наиболее близкой по химическому составу к предлагаемому техническому решению является коррозионно-стойкая свариваемая сталь 07X16H6 (ГОСТ 5632-72), содержащая 0,05-0,09% углерода, 15,5-17,5% хрома, 5,0-8,0% никеля, до 0,8 кремния, до 0,8% марганца, неизбежные примеси и железо.

Однако эта сталь обладает прочностью, недостаточной для высоконагруженных деталей, плохо обрабатывается резанием. Структура металла в крупногабаритных поковках и горячекатаных трубах, изготовленных из этой стали, крупнозернистая. Кроме того, высокое содержание никеля обуславливает ее высокую стоимость.

Задача, на решение которой направлено настоящее изобретение, заключается в создании способа легирования и обработки, позволяющего получать высокопрочную экономно-легированную коррозионно-стойкую свариваемую сталь, обладающую более высоким пределом текучести, и пределом прочности при сохранении повышенной пластичности и ударной вязкости.

Техническим результатом изобретения является повышение прочности и пластичности коррозионно-стойкой свариваемой стали.

Технический результат достигается тем, что в коррозионно-стойкую свариваемую сталь, содержащую углерод, кремний, марганец, хром, никель, железо и примеси, дополнительно введены азот, медь, ванадий и кальций при следующем соотношении компонентов мас.%:

углерод 0,01-0,04
кремний 0,10-0,80
марганец 0,50-1,50
хром 14,0-16,0
никель 3,0-5,0
азот 0,1-0,2
медь от более 0,5 до 2,5
ванадий 0,02-0,20
кальций от более 0,005 до 0,030
железо и примеси остальное

При этом отношение содержания углерода к содержанию азота составляет 0,2 или менее.

Дополнительное введение азота в состав стали в количестве более 0,1% приводит к повышению прочности. Увеличение показателей прочности обусловлено наличием азота в γ-твердом растворе и дополнительным упрочнением частицами нитридов хрома, выделяющимися в процессе нагрева при температуре 400°С. Удовлетворительные показатели пластичности и ударной вязкости связаны с наличием в структуре небольшого количества остаточного аустенита, расположенного между кристаллами мартенсита. При концентрации азота более 0,20% трудно получить качественный металл без пористости из-за ограниченной его растворимости (предел растворимости азота в сталях такого состава на уровне 0,19-0,22%, а композиционное содержание азота еще меньше).

При содержании углерода менее 0,01% уровень прочностных свойств не достигает требуемых значений, а при увеличении его количества выше 0,04% по границам зерен выделяются крупные частицы карбидов хрома типа Cr23C6, приводящие к снижению пластичности. При отношении содержаний углерода и азота меньше или равному 0,2%, такие карбиды не образуются.

Добавки ванадия не менее 0,02% обеспечивают получение мелкозернистой структуры. А увеличение его количества более 0,2% приводит к снижению прочности, вследствие образования нитридов ванадия и обеднения γ-твердого раствора азотом. Дополнительное введение кальция в количестве, превышающем 0,005%, обеспечивает хорошую раскисленность металла, улучшает обрабатываемость стали резанием. Но при увеличении его содержания более 0,03% наблюдается снижение пластичности.

При содержании хрома менее 14,0% в стали после горячей пластической деформации и термической обработки не достигается требуемый уровень коррозионной стойкости. При увеличении количества хрома более 16,0% и уменьшении количества никеля менее 3,0% снижаются пластические свойства и вязкость стали. Увеличение же концентрации никеля более 5,0% приводит к снижению растворимости азота, и значительному возрастанию стоимости металла (каждый дополнительный процент никеля при современном уровне цен повышает стоимость одной тонны стали на ~5%).

Марганец повышает растворимость азота в стали, раскисляет сталь, но при содержании его выше 1,5% возрастает доля аустенита в структуре металла, что приводит к снижению прочности.

Медь в количестве 0,5-2,5% позволяет исключить в микроструктуре стали дельта-феррит, а также повысить коррозионную стойкость и прочность при старении, за счет выделения дисперсных частиц фазы, богатой медью.

Сталь выплавляли в открытой индукционной печи с последующим электрошлаковым переплавом. Составы стали опытных плавок приведены в табл. 1.

Термическую обработку проводили по режимам, состоящим из закалки от 1000°С с охлаждением в воде и последующего отпуска при 400°С в течение 2 часов. Результаты механических испытаний металла и отношение количества γ/α фаз (γ-аустенит, α-мартенсит) приведены в табл. 2.

Таким образом, по результатам испытаний видно, что предлагаемая сталь, в отличие от прототипа, обладает более высоким пределом текучести, и пределом прочности при сохранении повышенной пластичности и ударной вязкости, что приводит к увеличению долговечности и надежности изделий и конструкций из этой стали. Как показали испытания, предлагаемая сталь хорошо сваривается всеми видами сварки. Сталь экономична, обладает высокой стойкостью к атмосферной коррозии (скорость коррозии в 3-процентном растворе NaCl составила менее 0,0005 г/м2 ч).

Высокопрочная коррозионно-стойкая свариваемая сталь, содержащая углерод, кремний, марганец, хром, никель, железо и примеси, отличающаяся тем, что она дополнительно содержит азот, медь, ванадий и кальций при следующем соотношении компонентов, мас.%:

углерод 0,01-0,04
кремний 0,10-0,80
марганец 0,50-1,50
хром 14,0-16,0
никель 3,0-5,0
азот 0,1-0,2
медь от более 0,5 до 2,5
ванадий 0,02-0,20
кальций от более 0,005 до 0,030
железо и примеси остальное

при этом отношение содержания углерода к содержанию азота составляет 0,2 или менее.



 

Похожие патенты:

Изобретение относится к области металлургии, а именно к составу конструкционной стали повышенной прочности и трещиностойкости, используемой для изготовления высоконагруженных бандажей колес тягового подвижного состава железных дорог.

Изобретение относится к области металлургии, а именно к высокопрочным коррозионностойким сталям переходного класса, используемым для изготовления высоконагруженных деталей и конструкций в машиностроении и судостроении, работающих в условиях воздействия коррозионной среды.

Изобретение относится к области металлургии, а именно к изготовлению труб для добычи нефти и газа, которые могут эксплуатироваться как в обычных условиях, так и в условиях коррозионного воздействия со стороны добываемого флюида в присутствии сероводорода (H2S) и углекислого газа (CO2).

Изобретение относится к области металлургии и может быть использовано при производстве толстолистового проката из стали высокой прочности, хладостойкости и улучшенной свариваемости для применения в судостроении, топливно-энергетическом комплексе, транспортном и тяжелом машиностроении, мостостроении.

Изобретение относится к области черной металлургии, а именно к горячедеформированным насосно-компрессорным трубам и муфтам к ним, изготавливаемым из конструкционных сталей.

Изобретение относится к области металлургии, а именно к двухслойному листовому прокату толщиной 10-50 мм, состоящему из слоя износостойкой стали и слоя свариваемой стали, для изготовления сварных конструкций, подвергающихся ударно-абразивному износу и работающих при температуре до -40°C.
Сталь // 2532662
Изобретение относится к области металлургии, а именно к высококачественным легированным конструкционным сталям, применяемым для изготовления силовых деталей, шестерен и валов, поверхности которых упрочняют азотированием.

Высокопрочный с высоким отношением предела текучести к пределу прочности стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности холоднокатаный стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности оцинкованный стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности оцинкованный погружением стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности отожженный оцинкованный погружением стальной лист, способ изготовления высокопрочного с высоким отношением предела текучести к пределу прочности холоднокатаного стального листа, способ изготовления высокопрочного с высоким отношением предела текучести к пределу прочности оцинкованного погружением стального листа и способ изготовления высокопрочного с высоким отношением предела текучести к пределу прочности отожженного оцинкованного погружением стального листа // 2531216
Изобретение относится к области металлургии, а именно к высокопрочному стальному листу, имеющему отношение предела текучести к пределу прочности 0,6 или более. Лист выполнен из стали следующего состава, в мас.%: 0,03-0,20% С, 1,0% или менее Si, от более 1,5 до 3,0% Mn, 0,10% или меньше Р, 0,05% или менее S, 0,10% или менее Аl, 0,010% или менее N, один или несколько видов элементов, выбранных из Ti, Nb и V, общее содержание которых составляет 0,010-1,000%, 0,001-0,01 Ta, остальное Fe и неизбежные примеси.

Изобретение относится к области металлургии, а именно к конструкционным комплекснолегированным высокопрочным сталям, закаливающимся на воздухе, и может быть использовано при производстве осесимметричных деталей, работающих под давлением.
Изобретение относится к области металлургии, а именно к высокопрочным конструкционным сталям, закаливающимся преимущественно на воздухе, используемым для изготовления осесимметричных корпусных деталей.

Изобретение относится к области металлургии, а именно к коррозионно-стойким сталям, используемым для производства бесшовных горячекатаных насосно-компрессорных и обсадных труб, работающих в условиях высокой концентрации углекислого газа и сероводорода в составе перекачиваемой углеводородной среды на месторождениях, расположенных в арктических районах. Сталь содержит компоненты в следующем соотношении, мас.%: углерод 0,14-0,23, кремний 0,17-0,4, марганец 0,4-0,7, хром от более 1,0 до 5,1, молибден 0,15-0,5, ванадий 0,04-0,06, никель 0,1-0,7, медь 0,15-0,5, алюминий 0,02-0,05, сера не более 0,007, фосфор не более 0,015, азот не более 0,014, железо - остальное. Коэффициент эксплуатационной надежности стали, определяемый по выражению R=0,8×[Cr]+3,5×[Mo]+2,5×[Cu], составляет 2,0÷5,5, а содержание серы должно составлять не более Smax=0,01-0,01×[Cu], мас.%. Обеспечивается повышенная эксплуатационная надежность труб за счет увеличения стойкости к углекислотной коррозии при сохранении стойкости к сульфидной коррозии, высокая хладостойкость и предотвращение явления красноломкости при горячем прокате труб. 2 н. и 1 з.п. ф-лы, 4 табл.

Изобретение относится к области металлургии, а именно к составам высокопрочных конструкционных сталей, используемых в оборудовании для холодной обработки давлением, в конструкциях летательных аппаратов, в транспортном, горнодобывающем и дорожно-строительном машиностроении, в деталях и механизмах, длительно сопротивляющимся постоянным и знакопеременным нагрузкам в широком диапазоне температур. Сталь содержит, мас.%: углерод от более 0,50 до 0,70, марганец 0,42-0,82, кремний 0,80-1,80, хром 0,80-2,00, никель 1,50-3,00, молибден 0,30-0,60, алюминий 0,02-0,15, ванадий 0,02-0,12, церий 0,005-0,02, медь 0,03-2,00, кальций от более 0,005 до 0,015, железо и неизбежные примеси – остальное. Обеспечивается сочетание высокой прочности и пластичности стали, а именно: временное сопротивление разрыву (σB) 2200-2500 МПа, относительное удлинение (δ) 12-14,5%, относительное сужение (Ψ) 30-40%, ударная вязкость (KCU) более 50 Дж/м2 и твердость (HRC) 56-60. 1 з.п. ф-лы, 3 табл.
Изобретение относится к области металлургии, а именно к стали для изготовления стальных колёс для рельсового транспорта. Сталь содержит следующие компоненты, мас.%: углерод от 0,45 до 0,60, кремний от 0,38 до 0,50, марганец от 0,80 до 1,00, ванадий не более 0,15, хром от 0,80 до 1,00, фосфор не более 0,02, сера не более 0,015, медь не более 0,3, никель не более 0,25, алюминий не более 0,04, железо – остальное. Достигается повышение механических и эксплуатационных свойств стали, предназначенной для изготовления железнодорожных колёс методами обработки металлов давлением и литья.

Изобретение относится к области металлургии, а именно к металлу сварного шва, применяемому в сварных конструкциях. Металл сварного шва, содержащий в мас. %: С от 0,02 до 0,10, Si от 0,10 до 0,60, Mn от 0,90 до 2,5, Ni от 0,20 до 2,00, Cr от 0,05 до 1,0, Мо от 0,10 до 1,50, Ti от 0,040 до 0,15, В от 0,0010 до 0,0050, О от 0,030 до 0,100, и N 0,015 или менее, железо и неизбежные примеси – остальное. Средний диаметр эквивалентной окружности карбидов, имеющих диаметр эквивалентной окружности 0,40 мкм или более, среди присутствующих на границах зерен металла сварного шва карбидов, составляет 0,75 мкм или менее. Металл сварного шва имеет высокие значения низкотемпературной ударной вязкости при более низких температурах, прочности после SR-отжига, а также при применении дуговой сварки в защитном газе с использованием проволоки с флюсовой сердцевиной. 2 н. и 3 з.п. ф-лы, 4 ил., 6 табл., 1 пр.

Изобретение относится к области металлургии, а именно к атмосферостойкой стали, используемой для изготовления высокопрочных болтов, гаек и шайб. Сталь содержит углерод, марганец, фосфор, серу, кремний, хром, никель, медь, молибден, ванадий, титан и железо при следующем соотношении, мас.%: углерод от более 0,3 до 0,42, марганец 0,4-1,4, фосфор не более 0,02, сера не более 0,02, кремний 0,15-0,37, хром 0,3-1,0, никель 0,2-0,8, медь 0,2-0,6, молибден 0,15-0,25, ванадий 0,1-0,18, титан не более 0,05, железо остальное. Повышается стойкость к замедленному хрупкому разрушению и к коррозионному растрескиванию. 1 табл.

Изобретение относится к области черной металлургии, в частности к литым штамповым сталям. Может использоваться для изготовления инструмента горячего деформирования. Литая штамповая сталь содержит, мас. %: углерод 0,2-0,3; кремний 0,5-1,0; марганец 0,8-1,2; хром 6,5-7,0; никель 2,0-2,5; молибден 0,35-0,45; ванадий 0,8-1,2; барий 0,002-0,004; сурьма 0,002-0,004; серебро 0,02-0,04; медь 1,0-1,6; алюминий 0,2-0,25; железо - остальное. Сталь обладает высокой теплостойкостью. 1 табл.
Наверх