Ракетный двигатель староверова - 4 /варианты/


 

F02K99/00 - Реактивные двигательные установки (размещение и крепление реактивных двигательных установок на наземных транспортных средствах или транспортных средствах вообще B60K; размещение и крепление реактивных двигательных установок на судах B63H; управление положением в пространстве, направлением и высотой полета летательного аппарата B64C; размещение и крепление реактивных двигательных установок на летательных аппаратах B64D; установки, в которых энергия рабочего тела распределяется между реактивными движителями и движителями иного типа, например воздушными винтами F02B,F02C; конструктивные элементы реактивных двигателей, общие с газотурбинными установками, воздухозаборники и управление топливоподачей в воздушно-реактивных двигателях F02C)

Владельцы патента RU 2586211:

Староверов Николай Евгеньевич (RU)

Ракетный двигатель содержит камеру сгорания с соплом, в которую под давлением подается газообразный, или жидкий, или расплавленный гидрид и вода или антифриз на основе воды, или водяной пар. В камеру сгорания подается расплавленного гидрида бериллия 37,93±20% и воды 62,07±20%. В другом варианте ракетный двигатель содержит корпус с реактивным соплом. В корпусе находится гидрид или смесь гидридов и вещества или смесь веществ, содержащие воду в связанном состоянии. В качестве веществ, содержащих воду в связанном состоянии, используют квасцы, или силикагель, или буру, или сульфат магния, или хлорид кальция. Группа изобретений позволяет повысить удельный импульс ракетного двигателя. 2 н. и 3 з.п. ф-лы.

 

Изобретение относится к ракетным двигателям жидкого и твердого топлива.

Известны ракетные двигатели, см. например мой «Бескорпусный двигатель с самоподачей», пат.№2431052. Все существующие химические ракетные двигатели используют принцип высокотемпературного нагрева газа или газо-пылевого рабочего тела (пыль - это твердые фракции разложившегося твердого ракетного топлива). Делается это для того, чтобы повысить скорость истечения рабочего тела из реактивного сопла. Эта скорость определяется во-первых, скоростью звука в газе и, во-вторых, степенью расширения газа в расширяющемся сверхзвуковом реактивном сопле и достигает в лучших двигателях 4000 м/сек. Причем детали двигателя работают в очень напряженном тепловом режиме, даже с учетом их охлаждения.

Между тем скорость звука в водороде даже при нормальных температуре и давлении 1330 м/сек. А если еще и немного повысить температуру водорода, то скорость звука в нем и скорость истечения его из сопла резко возрастут. Например, водород с температурой всего 650 градусов С (это ниже температуры его воспламенения) будет иметь скорость звука 2360 м/сек и сможет в реактивном сопле разогнаться сам и разогнать пылевые частицы до скорости около 4300 м/сек. То есть получится «холодный ракетный двигатель», в котором из-за адиабатического расширения газ на выходе из реактивного сопла может иметь приблизительно температуру окружающей среды.

На этом и основана идея данного изобретения. Цель изобретения - повышение скорости реактивной струи и удельного импульса ракетного двигателя. Для этого двигатель должен вырабатывать чистый водород и твердые вещества. Подходящей химической реакцией для этого может быть реакция гидридов с водой.

ВАРИАНТ 1. Жидкостный вариант. Данный двигатель содержит камеру сгорания (будем ее так называть, хотя процесса «сгорания» в ней не происходит) с соплом, в которую под давлением подается газообразный, или жидкий, или расплавленный гидрид и вода или антифриз на основе воды, или водяной пар.

Такими гидридами могут быть бораны, силаны, фосфины, германы, гидриды бериллия, лития, алюминия, двойные гидриды (лития-алюминия) или боргидриды.

Наилучшим экзотермическим эффектом обладает реакция с водой гидрида бериллия:

Пример 1. Работает двигатель так: в горячей камере сгорания компоненты смешиваются, и происходит реакция расплавленного гидрида бериллия с водой (разумеется, как и в обычном ЖРД, компоненты мелко распыляются и смешиваются):

ВеН2+Н2О=ВеО+2Н2+291,5 кДж/моль.

То есть удельный экзотермический эффект реакции 10,05 кДж/г, что выше, чем у большинства твердых ракетных топлив. Гидрид бериллия должен быть в расплавленном состоянии с температурой 220-245 градусов С (при 250 градусах С он разлагается).

Как видно из реакции, стехиометрическое соотношение компонентов должно быть 11,014:18,02, и при этом выделится 4,03 г/м водорода. Что в процентном соотношении составляет 37,93:62,07% и выделится 14,81% водорода от исходной массы реагирующих веществ. Из-за неполноты реакции и по другим причинам (особенно при применении антифриза) возможны отклонения в ту или другую сторону до 20%. В случае применения антифриза расчет следует вести с учетом возможного реагирования и других компонентов антифриза. Оптимальное соотношение подбирается опытным путем.

Примерные расчеты показывают, что температура реакции будет при постоянном давлении 3180 градусов С. Скорость звука в водороде составит 4560 м/сек. Скорость газо-пылевой реактивной струи составит около 8200 м/сек. Однако, слишком малое количество выделившегося водорода внушает сомнения - сможет ли он разогнать всю первоначальную массу до такой скорости. Проверочный расчет (без учета нагрева компонентов) по закону сохранения энергии показал, что максимальная скорость даже при 100% к.п.д. будет 4480 м/сек. Реально - еще меньше.

Но так как к.п.д. 100% не бывает, то из сказанного следует неожиданный вывод - данному двигателю не нужно расширяющееся сверхзвуковое сопло. Достаточно сужающегося. Желательно, с небольшой цилиндрической частью на выходе, чтобы лучше разогнать пылевые частицы. Отсутствие конфузора реактивного сопла значительно снизит вес двигателя и резко снизит его габариты.

Такой двигатель хорошо применим к плановым космическим запускам, так как необходимо аккуратно расплавить гидрид бериллия и поддерживать его в этом состоянии. Желательно также нагреть, а еще лучше - перегреть воду (все это тепло выделится в камере сгорания). Но при этом необходимо охлаждать (например, водяной рубашкой) полезную нагрузку. Воду в такой двигатель, естественно, надо подавать, пропустив предварительно через рубашку охлаждения двигателя, то есть в виде перегретого пара. Чтобы такой двигатель запустился, ему необходим начальный источник тепла. Им может быть установленная на пусковой установке горелка или пиротехническая шашка, которая направлена внутрь камеры сгорания. В течение некоторого времени она прогревает камеру, а затем, после подачи компонентов топлива (будем его так называть, хотя оно не «горит»), инициирует начало их реакции.

Более интересен вариант, в котором шашка быстрогорящего твердого ракетного топлива установлена в самой камере сгорания - по центру и/или на стенках ее. Такая шашка при правильном расчете ее мощности сразу начинает двигать ракету, прогревает камеру сгорания и в конце работы (примерно на 25-10% мощности) инициирует реакцию реагентов топлива. Возможно плавное замещение производительности шашки плавной подачей топлива в камеру сгорания. Время работы такой шашки невелико - секунды или даже доли секунды. Так как желательно прогреть стенки камеры сгорания, то, если шашек две - в центре и по краям камеры сгорания, то центральная шашка должна работать несколько дольше, чтобы прогреть стенки, открывшиеся после полного выгорания боковой шашки.

ВАРИАНТ 2. Твердотопливный вариант. Такой двигатель содержит корпус с реактивным соплом, в котором находится гидрид или смесь гидридов, и вещества или смесь веществ, содержащие воду в связанном состоянии. Например, квасцы, силикагели, бура, сульфат магния, хлорид кальция и т.п.

Желательное требование к таким веществам - как можно меньшая упругость водяных паров, чтобы не происходило постепенного реагирования гидрида с этими парами. Иначе это приведет к постепенной частичной потере энергии заряда, и может привести к самопроизвольному возгоранию. Поэтому срок хранения таких двигателей может оказаться небольшим, что может потребовать приготовления зарядов таких двигателей непосредственно перед употреблением.

Второе желательное требование к таким веществам - наибольший процент связанной воды от исходного веса.

Третье желательное требование к таким веществам - наибольшая мольная энтропия образования (наименьшее отрицательное число), приходящаяся на одну молекулу связанной воды. От этого зависит экзотермический эффект суммарной реакции.

В качестве гидридов могут быть использованы твердые гидриды - гидрид бериллия, боргидрид бериллия, алюмогидрид лития и т.п.

Пример 2. Возьмем в качестве вещества, содержащего связанную воду, сульфат магния, содержащий 7 молекул кристаллизационной воды, а в качестве гидрида - гидрид бериллия. При нагревании сульфат теряет воду, и гидрид бериллия реагирует с водой:

7ВеН2+MgSО4*7H2О=7ВеО+MgSО4+14Н2+1960 кДж.

То есть получим удельное энерговыделение 6,05 кДж/г и выделение водорода 8,7% от исходной массы. Эквивалентный показатель, равный произведению энерговыделения на долю выделившегося водорода, сравнительно низкий - 0,53. Расчетная температура реакции при постоянном объеме 500 градусов С. Скорость звука в таком водороде будет 2150 м/сек, скорость струи - 3880 м/сек. Проверочный расчет по закону сохранения энергии показал, что даже при 100% к.п.д. скорость не превысит 3620 м/сек.

Стехиометрическое соотношение компонентов: гидрида бериллия - 77,21, сульфата магния кристаллогидрата - 246,47. Или 23,85% и 76,15%.

Работает двигатель так: при нагревании до 150 градусов С сульфат магния теряет 6 молекул кристаллизационной воды, а при нагревании до 200 градусов С - всю воду. Вода вступает в экзотермическую реакцию с гидридом бериллия и экзотермически выделяется водород, который истекает из сопла.

ВАРИАНТ 3. Однако для реакции с гидридами можно использовать не только вещества, связывающие воду, но и вещества, выделяющие ее при своем разложении, например любое жидкое или твердое ракетное топливо. При этом, правда, чистого водорода не получится. Получится смесь водорода с азотом, углекислым газом и некоторыми другими примесями. Однако температура этой смеси получится достаточно высокой, и эффективность такого двигателя может оказаться выше, чем предыдущего, или чем традиционного окислительно-восстановительного.

Более того - если будет образовываться азот или его соединения, то его можно полезно использовать, если в качестве гидрида применить бораны, например диборан. В результате произойдет реакция образования нитрида бора, сопровождающаяся хорошим экзотермическим эффектом (мольная энтальпия образования нитрида бора - 252,6 кДж).

Двигатель по варианту 3 содержит камеру сгорания или корпус с соплом, работает на жидком или твердом ракетном топливе и отличается тем, что в камеру сгорания или в корпус твердотопливного ракетного двигателя дополнительно подается боран, или силан, или фосфин, или герман, или расплавленные гидриды, или же твердые гидриды дополнительно входят в состав твердого ракетного топлива.

Инициирующий пиротехнический заряд такого двигателя находится, как обычно у твердотопливных двигателей, внутри корпуса.

В результате горения обычного (окислительно-восстановительного) ракетного топлива и взаимодействия гидридов с образовавшейся водой получается газо-пылевая смесь, в которой скорость звука будет ниже, чем водороде, но выше, чем в обычных ракетных газах. Суммарный импульс такого двигателя может оказаться и выше чисто водородного двигателя, и выше окислительно-восстановительного двигателя (требуется серия экспериментов). Но, даже если импульс окажется примерно одинаковым, такой двигатель продолжает сохранять преимущество низкой температуры процесса, то есть будет иметь пониженную инфракрасную заметность и низкую тепловую напряженность конструкции двигателя, то есть ее малый вес и отсутствие охлаждения.

Стехиометрическое соотношение компонентов зависит от конкретного типа ракетного топлива и определяется экспериментально (при горении топлива количество выделившейся воды может отличаться от теоретического). Оптимальное соотношение может отличаться от стехиометрического.

Если двигатель по любому из вариантов работает не в вакууме, и если водород за соплом будет смешиваться с воздухом и гореть, то имеющиеся в нем пылевые частицы будут светиться, и инфракрасная заметность такого двигателя будет наоборот - несколько выше, чем у классического окислительно-восстановительного.

1. Ракетный двигатель, содержащий камеру сгорания с соплом, в которую под давлением подается газообразный, или жидкий, или расплавленный гидрид и вода или антифриз на основе воды, или водяной пар, отличающийся тем, что в камеру сгорания подается расплавленного гидрида бериллия 37,93±20% и воды 62,07±20%.

2. Двигатель по п.1, отличающийся тем, что в камеру сгорания направлена горелка или пиротехническая шашка, установленная на пусковой установке.

3. Двигатель по п.1, отличающийся тем, что в центре и/или по краям камеры сгорания установлена шашка твердого ракетного топлива.

4. Ракетный двигатель, содержащий корпус с реактивным соплом, а в корпусе находится гидрид или смесь гидридов и вещества или смесь веществ, содержащие воду в связанном состоянии, отличающийся тем, что такими веществами являются квасцы, или силикагели, или бура, или сульфат магния, или хлорид кальция.

5. Двигатель по п.4, отличающийся тем, что содержит гидрида бериллия 23,85% и кристаллогидрата сульфата магния 76,15%.



 

Похожие патенты:
Ракетный двигатель содержит камеру сгорания с соплом. В камеру сгорания подается расплавленного гидрида бериллия 40,81±20% и 59,19±20% кислорода или компоненты в следующем соотношении: диборана 10,10%, гидрида бериллия 24,16%, азотной кислоты 23,0% и метана 42,74%.
Ракетный двигатель содержит камеру сгорания, в которую под давлением подается смесь борана и аммиака, или раствор или эмульсия борана в жидком аммиаке. Компоненты подаются в следующем соотношении: диборан 44,8±10%, аммиак 55,2±10%.
Ракетный двигатель содержит камеру сгорания, в которую под давлением подается смесь борана и гидразина, или раствор или эмульсия борана в жидком гидразине. Компоненты подаются в следующем соотношении: диборан 46,33±10%, гидразин 53,67±10%.

Изобретение относится к области ракетных двигателей, в частности к ракетным двигателям с центральным телом с вихревым процессом горения, и может быть использовано в ракетно-космической технике.

Изобретение относится к реактивным двигателям летательных аппаратов, преимущественно орбитальных и аэрокосмических аппаратов. Технический результат - повышение КПД, удельного импульса и ресурса работы лазерного ракетного двигателя.

Предлагаемое изобретение относится к области электроракетных двигателей, в частности к системам хранения и подачи в них рабочего тела (иода). В системе хранения и подачи иода, содержащей снабженную нагревателем цилиндрическую емкость с иодом, которая сообщена с электроракетным двигателем трубопроводом с клапаном, на днище внутри цилиндрической емкости со стороны трубопровода установлена пористая шайба, контактирующая с кристаллическим иодом, причем цилиндрическая емкость со стороны, противоположной трубопроводу, содержит фланец и подпружиненный относительно него поршень, контактирующий с другой стороны с кристаллическим иодом, при этом нагреватель снабжен электрической изоляцией, контактирующей снаружи с днищем емкости со стороны трубопровода.

Изобретение относится к энергетике. Электровзрывной реактивный пульсирующий двигатель включает полую диэлектрическую камеру, в отверстиях стенки которой и в изоляторах, изготовленных из упругого диэлектрика, расположены два разнополярных электрода Торцы электродов не выступают во внутреннюю полость камеры и расположены напротив друг друга или со смещением относительно друг друга.
Ракетный двигатель содержит камеру сгорания, в которую подают боран, или силан, или фосфин, или герман, или другие гидриды, имеющие положительную энтальпию образования из простых веществ, или их смесь.

Изобретение относится к области ракетно-космической техники. Плазменный двигатель на наночастицах металлов или металлоидов содержит последовательно расположенные камеру сгорания, один вход в которую служит для ввода твердых наночастиц металла или металлоида в качестве топлива, а другой - для ввода окислителя топлива в виде водяного пара или кислорода, при смешении которых в камере возникает горение, хемоионизационные реакции окисления, дающие тепловой эффект, высокие температуры и образование нагретой плазмы, содержащей жидкие оксиды металлов или металлоидов, устройство охлаждения плазмы до температуры ниже температуры плавления полученных оксидов и образования в нагретой плазме твердых пылевых отрицательно заряженных оксидов металлов или металлоидов, электростатическое или электромагнитное разгонное устройство, которое разгоняет электростатическим или электромагнитным полем истекающую из устройства охлаждения нагретую плазму и создает высокоскоростной поток нагретой пылевой плазмы с высокоскростными отрицательно заряженными оксидами металлов или металлоидов, который истекает в окружающую среду и создает реактивную тягу двигателя.

Конический ракетный двигатель бессоплового бескорпусного типа содержит шашку твердого топлива с одним или несколькими каналами на всю длину шашки, заполненными более быстро горящим топливом, чем основное топливо, или же шашка имеет несколько параллельных каналов, причем часть из них обрываются от поверхности шашки на расстоянии, равном или большем половине расстояния между соседними каналами.

Изобретение относится к космической технике и может быть использовано в двигателях космических объектов (КО). Капиллярная система хранения и отбора жидкости в ракетный двигатель КО содержит топливный бак с крышкой и нижним днищем, радиальные перфорированные перегородки, кронштейны, трубопровод с теплообменником, хомуты, коническую обечайку, гайку, стрежень с резьбой и площадкой, заборное устройство с корпусом в виде расположенных друг над другом и соединённых ребрами верхнего плоского кольца с внутренней кромкой, выполненной в виде утолщения с лабиринтными кольцевыми выступами, и нижнего кольца с центральными отверстиями или корпусом с большим конусом, переходящим в малый конус с расходным фланцем, накопителем капиллярного типа с капиллярной сеткой, теплообменником, тарелью в виде плоского кольца, конической обечайкой, дозирующим устройством, капиллярной сеткой, крепежными элементами, расходным клапаном, несущим диском с периферийными и центральным отверстиями и радиальными окнами, полой осью с верхней чашей с прорезами и нижней чашей с прорезями и площадкой.

Изобретение относится к области двигателестроения и может быть использовано в космической технике или авиации. Двигатель содержит систему агрегатов формирования и подачи рабочего тела в сопло, при этом сопло имеет входную часть, выполненную в виде полого цилиндра с тангенциальными подводами рабочего тела, расположенными равномерно в поперечной плоскости.

Изобретение относится к ракетным двигателям. Многоступенчатая камера сгорания жидкостного ракетного двигателя состоит из последовательности элементарных камер сгорания, каждая из которых оснащена своими форсунками подачи рабочего тела и своими воспламенителями подаваемого рабочего тела.

Изобретение относится к области ракетного двигателестроения и может быть использовано в системах дренажа жидкостных ракетных двигателей (ЖРД) для удаления утечек топливных компонентов, паров и других отходов, выделяемых при функционировании агрегатов.
Ракетный двигатель содержит камеру сгорания с соплом. В камеру сгорания подается расплавленного гидрида бериллия 40,81±20% и 59,19±20% кислорода или компоненты в следующем соотношении: диборана 10,10%, гидрида бериллия 24,16%, азотной кислоты 23,0% и метана 42,74%.
Ракетный двигатель содержит камеру сгорания, в которую под давлением подается смесь борана и аммиака, или раствор или эмульсия борана в жидком аммиаке. Компоненты подаются в следующем соотношении: диборан 44,8±10%, аммиак 55,2±10%.
Ракетный двигатель содержит камеру сгорания, в которую под давлением подается смесь борана и гидразина, или раствор или эмульсия борана в жидком гидразине. Компоненты подаются в следующем соотношении: диборан 46,33±10%, гидразин 53,67±10%.

Изобретение относится к ракетной технике и может быть использовано при изготовлении жидкостных ракетных двигателей (ЖРД). ЖРД содержит четыре камеры, турбонасосный агрегат (ТНА), газогенератор, бустерные турбонасосные агрегаты окислителя (БТНАО) и горючего (БТНАГ), газоводы, магистрали окислителя и горючего, системы продувки и управления, агрегаты регулирования и управления, сильфоны в газоводах, при этом в его магистралях перед входом окислителя в БТНАО и входом окислителя на его гидротурбину, в автомат осевой разгрузки ТНА перед входом окислителя в газогенератор неподвижно установлены фильтры с сеткой тонкостью фильтрации 0,03-0,05 мм и отверстиями диаметром 0,13-0,2 мм, предотвращающими прохождение частиц засорений диаметром, большим ячеек фильтров, и общей площадью поверхности фильтрации, превышающей внутренний диаметр магистрали или трубопровода в 1,5-2 раза.

Изобретение относится к области ракетостроения, в частности к жидкостным ракетным двигательным установкам (ЖРДУ) с дожиганием генераторного газа. ЖРДУ включает баки окислителя и горючего, несколько модульных ЖРД, общую силовую раму и рулевые гидроприводы, при этом каждый модульный двигатель содержит камеру сгорания и сопло, турбонасосный агрегат, состоящий из турбины, насосов горючего и окислителя, газогенератор, агрегаты автоматики, трубопроводы подачи горючего и окислителя в газогенератор и камеру сгорания и карданный подвес с рулевыми гидроприводами для изменения положения ракеты в пространстве, при этом в качестве модульных двигателей применены жидкостные ракетные двигатели (ЖРД), выполненные по схеме с дожиганием генераторного газа, причем камера двигателя закреплена относительно силовой рамы в карданном подвесе, имеющем сильфонный узел, который через газовод соединен с выходом из турбины, а другой стороной соосно соединен с головкой камеры сгорания, при этом силовая рама представляет собой цельносварную ферменную конструкцию, состоящую из четырех равнозначных секций, выполненных из силовых стержней, и квадратной секции, в углах которой закреплены опорные площадки, а соединение силовой рамы с кольцом шпангоута ракеты осуществлено четырьмя силовыми стержнями, одни концы которых закреплены на каждой опорной площадке, а другие концы - пяты - прикреплены к кольцу шпангоута ракеты, причем указанные силовые стержни равномерно расположены по кольцу шпангоута, при этом соединение силовой рамы с двигателями выполнено с помощью опорных цилиндров, размещенных между опорными площадками и опорными кольцами сильфонного узла в месте крепления газовода, при этом ось опорных цилиндров совпадает с осью камер двигателей.

Изобретение относится к ракетно-космической технике. Способ повышения эффективности ракет космического назначения (РКН) с маршевыми жидкостными ракетными двигателями (ЖРД) основан на использовании невыработанных жидких остатков компонентов ракетного топлива (КРТ) в баках отделяющихся частей (ОЧ) ступеней РКН с помощью системы извлечения и реализации энергетических ресурсов (СИРЭР).
Изобретение описывает топливо для гиперзвукового прямоточного воздушно-реактивного двигателя на основе смеси углеводородного горючего Т-10 и 1,7-диметилдикарба-клозо-октокарборана, при этом в смесь дополнительно введен промотор горения изопропилнитрат, при следующем соотношении (% масс.): 1,7-диметилдикарба-клозо-октокарборан - 70; горючее Т-10 - 29-29,5; изопропилнитрат - 0,5-1.
Наверх