Устройство для спектрометрии нейтронов



Устройство для спектрометрии нейтронов
Устройство для спектрометрии нейтронов
Устройство для спектрометрии нейтронов

 


Владельцы патента RU 2586383:

Федеральное государственное казенное учреждение "12 Центральный научно-исследовательский институт" Министерства обороны Российской Федерации (RU)

Изобретение относится к области технической физики. Устройство для спектрометрии нейтронов состоит из водородсодержащих замедлителей быстрых нейтронов цилиндрической формы, регистраторов тепловых и медленных нейтронов, расположенных вдоль центральной оси устройства, борного фильтра и цилиндрических углублений на торцевой поверхности замедлителя, обращенной к источнику излучений, при этом в качестве регистраторов нейтронов используют активационные детекторы в кадмиевом чехле и без чехла, которые размещены в контейнере попарно на расстояниях не более длины диффузии тепловых нейтронов в замедлителе, а цилиндрические углубления заполнены вставками, при этом контейнер и вставки выполнены из материала замедлителя. Технический результат - измерение энергетического спектра направленного потока нейтронов в широком диапазоне энергий при высоких уровнях сопутствующего гамма-излучения. 5 ил.

 

Изобретение относится к области технической физики и может быть использовано для определения энергетического распределения направленных потоков нейтронов в широком диапазоне энергий.

Известен многошаровой спектрометр Боннера [1], называемый также «мультисферный спектрометр» [2], состоящий из набора нескольких сфер различных диаметров, изготовленных из замедляющего быстрые нейтроны вещества (например, полиэтилена). В центре сфер размещены детекторы тепловых и медленных нейтронов (ДТМН). Детекторы, находящиеся в сферах, имеют различную зависимость чувствительности от энергии падающих на них нейтронов, что позволяет оценивать энергетический спектр нейтронного излучения. Недостатками мультисферного спектрометра являются значительный вес и габариты, невозможность одновременного измерения параметров нейтронного излучения в малом объеме, а также отсутствие его направленности по отношению к источнику излучения.

Устройство по авторскому свидетельству [3] содержит многослойную мишень и гамма-спектрометр. Каждый из слоев мишени состоит из комбинации замедляющего и поглощающего нейтроны веществ. Гамма-излучение, возникающее в реакции (n, γ), регистрируется гамма-спектрометром. Однако такой метод регистрации нейтронов не позволяет достичь высокой эффективности регистрации, поскольку гамма-спектрометром может быть зарегистрирована только малая часть гамма-квантов, не более 20%. Кроме того, применение полупроводникового или сцинтилляционного спектрометров предполагает сложную конструкцию и высокую стоимость всей системы.

Устройства для детектирования и спектрометрии направленных потоков нейтронов [4-5] содержат мишень из замедляющих нейтроны плоских слоев, чередующихся с поглощающими слоями ДТМН, в качестве которых использованы гелиевые газоразрядные счетчики нейтронов, расположенные равномерно в каждом слое. Счетчики подключены к соответствующему регистратору, суммирующему импульсы всех ДТМН. Однако в данном устройстве практически невозможно идентифицировать импульсы, генерируемые нейтронами и гамма-квантами по их энергии или форме импульса. В результате возникают неучтенные систематические погрешности, особенно при высоком уровне сопутствующего гамма-излучения.

Наиболее близким аналогом (прототипом) предлагаемого изобретения является устройство, предложенное Мак-Киббеном [6-7], для измерения направленного потока нейтронов. Измерительный блок устройства представляет собой водородсодержащий замедлитель направленного потока нейтронов цилиндрической формы, вдоль оси которого расположен регистратор медленных и тепловых нейтронов на основе газоразрядного счетчика. Торцевая поверхность замедлителя со стороны, обращенной к источнику излучений, имеет 8 цилиндрических углублений, предназначенных для выравнивания чувствительности детектора к нейтронам разных энергий. Для уменьшения влияния на показания детекторов рассеянных (фоновых) нейтронов, падающих на боковую поверхность измерительного блока, он окружен защитными цилиндрическими слоями из замедлителя рассеянных нейтронов и борного фильтра, поглощающего медленные и тепловые нейтроны. Такая конструкция устройства позволяет регистрировать только направленные потоки нейтронов по числу импульсов, интегрируемых со всего объема счетчика, при взаимодействии нейтронов с бором-10 (на стенках счетчика) в реакции B10(n,α)L6 и практически с одинаковой эффективностью. Поэтому устройство получило название «всеволнового». Для измерения энергетического спектра нейтронов устройство не предназначено.

Технический результат предлагаемого изобретения заключается в измерении энергетического спектра направленных потоков нейтронов в широком диапазоне энергий, при высоком уровне сопутствующего гамма-излучения и сохранении за устройством функции измерителя потока нейтронов.

Технический результат достигается тем, что в предлагаемом устройстве, состоящем из водородсодержащих замедлителей нейтронов цилиндрической формы, регистраторов тепловых и медленных нейтронов, расположенных вдоль центральной оси устройства, борного фильтра и цилиндрических углублений на торцевой поверхности замедлителя, обращенной к источнику излучений, в качестве регистраторов используют активационные детекторы в кадмиевом чехле и без чехла, которые размещены в контейнере попарно на расстояниях, не более длины диффузии тепловых нейтронов в замедлителе, а цилиндрические углубления заполнены вставками. При этом контейнер и вставки выполнены из материала замедлителя.

На фиг. 1 приведена схема устройства, предложенного Мак-Киббеном, где 1 - замедлитель направленного потока нейтронов, 2 - регистратор медленных и тепловых нейтронов (газоразрядный счетчик), 3 - цилиндрические углубления, 4 - замедлитель рассеянных нейтронов, 5 - борный фильтр.

На фиг. 2 приведена схема предлагаемого устройства, где дополнительными элементами являются: 6 - активационный детектор с кадмиевым чехлом, 7 - активационный детектор без чехла, 8 - контейнер для размещения детекторов, 9 - вставки.

Фиг. 3 - Схема контейнера для размещения активационных детекторов.

Фиг. 4 - Внешний вид предлагаемого устройства.

Фиг. 5 - Пространственное распределение потока тепловых нейтронов S(l, Е) вдоль центральной оси устройства от направленных потоков моноэнергетических нейтронов (расчетные данные).

Устройство работает следующим образом. Нейтроны, попадая в устройство, замедляются в водородсодержащем материале (1) до тепловых и медленных энергий, затем поглощаются активационными детекторами (6, 7). Для каждой энергии нейтронов существует глубина замедлителя, равная длине замедления нейтронов до тепловых энергий, при которой эффективность регистрации нейтронов детектором максимальна. Детекторы в каждой i - ячейке обладают собственной функцией отклика Si(E) в зависимости от энергии (Е) падающего нейтрона, которая определяется расчетным путем с учетом конструкции предложенного устройства, реальных размеров детекторов и геометрии их размещения в контейнере.

Для определения энергетического спектра нейтронов φ(Е) с помощью предлагаемого устройства необходимо найти решение системы уравнений

Δ N i = E min E max ϕ ( E ) S i ( E ) d ( E ) , i = 1, 2, n ,

где ΔNi=Ni-Nicd - отклик детекторов в i-ячейке за счет взаимодействия с тепловыми нейтронами,

Ni - отклик детектора без кадмиевого чехла в i-ячейке,

Nicd - отклик детектора с кадмиевым чехлом в i-ячейке,

n - количество ячеек в контейнере для размещения детекторов.

Преимущество использования активационных детекторов с большим сечением взаимодействия с тепловыми нейтронами (например, Dy163) заключается, прежде всего, в возможности измерения спектра в широком диапазоне значений потока нейтронов, а также в том, что детекторы не чувствительны к сопутствующему гамма-излучению. Детекторы с кадмиевым чехлом регистрируют все нейтроны, кроме тепловых энергий, без чехла - во всем энергетическом диапазоне, включая тепловые. По разности показаний этих детекторов определяется скорость счета импульсов (ΔNi) за счет тепловых нейтронов. С точки зрения удобства использования детекторов их целесообразно применять в виде пластин толщиной 2-3 мм, изготовленных путем замеса диспрозиевого порошка в полиэтилене по заводской технологии. При такой технологии изготовления материала неравномерность распределения диспрозия в детекторе не превышает 1%. Активность детекторов (скорость счета импульсов) может быть измерена с помощью любого радиометра и пересчетного прибора. Все результаты измерений приводятся ко времени измерения первого детектора, поскольку период полураспада продукта реакции Dyl63(n,γ)Dy164 невелик (2, 3 часа).

Результаты исследований, приведенные на фиг. 5, позволяют определить оптимальную длину контейнера (или количество пар детекторов в контейнере) из условия, что для нейтронов с энергией 14 МэВ отклик детекторов в конце контейнера не должен превышать (25-30)% от максимального отклика.

При выборе расстояния (r) между ячейками (между группами детекторов) в контейнере необходимо учитывать следующие обстоятельства. При r более длины диффузии тепловых нейтронов в водородсодержащем материале (λд) происходит значительная потеря тепловых нейтронов вследствие их поглощения ядрами замедлителя и ухудшается качество восстановления спектра нейтронов. Отсюда следует, что расстояние между группами детекторов не должно превышать λд.

Для уменьшения вклада рассеянных (фоновых) нейтронов на показания детекторов толщина замедлителя (4) должна быть сравнима или превышать длину замедления этих нейтронов, падающих на боковую поверхность замедлителя.

При измерении спектра нейтронов углубления (3) на торцевой поверхности замедлителя (1) искажают реальную картину измеряемого спектра, поэтому они заполняются вставками (9) из материала замедлителя. Углубления в устройстве целесообразно сохранить для использования изобретения по двойному назначению: для измерения спектра нейтронов (с вставками) и потока нейтронов (без вставок).

В результате изготовления контейнера и вставок из материала замедлителя повышается точность определения зависимости Si(Е), поскольку используется меньшее количество разных материалов в расчетной модели.

Таким образом, предлагаемое устройство позволяет измерять энергетический спектр направленных потоков нейтронов в широком диапазоне энергий при высоких уровнях сопутствующего гамма-излучения. Кроме того, устройство может быть использовано по двойному назначению: для измерения спектра нейтронов (с вставками) и потока нейтронов (без вставок).

Литература

1. Bonner T.W., Bramblett R.L. Nucl. Instr. and Methods. 1960, v. 9, p. 1-12.

2. Семенов В.П., Трыков Л.А., Фадеев Ю.В. Мультисферный спектрометр. Приборы и техника эксперимента. 1974, №5, с. 40-43.

3. Устройство для спектрометрии нейтронов. Авт. св. №1392523, МПК G01T 3/00.

4. Устройство для регистрации потоков нейтронов. Патент РФ №2102775. 1998.

5. Устройство для детектирования и спектрометрии нейтронов. Патент РФ №2222818. 2004.

6. Hanson А.О., Мс Kibben I.L. Phyz. Rev. 1947, 72, p. 673.

7. В. Прайс. Регистрация ядерного излучения. М.: Изд. иностранной литературы. 1960, с. 330-331.

Устройство для спектрометрии нейтронов, состоящее из водородсодержащих замедлителей быстрых нейтронов цилиндрической формы, регистраторов тепловых и медленных нейтронов, расположенных вдоль центральной оси устройства, борного фильтра и цилиндрических углублений на торцевой поверхности замедлителя, обращенной к источнику излучений, отличающееся тем, что в качестве регистраторов нейтронов используют активационные детекторы в кадмиевом чехле и без чехла, которые размещены в контейнере попарно на расстояниях не более длины диффузии тепловых нейтронов в замедлителе, а цилиндрические углубления заполнены вставками, при этом контейнер и вставки выполнены из материала замедлителя.



 

Похожие патенты:
Изобретение относится к области ядерной техники. Эмиссионный нейтронный детектор содержит коллектор и эмиттер, отделенные друг от друга изоляционным материалом, при этом эмиттер выполнен из порошка двуокиси гафния, заключенного в металлическую оболочку, при этом оболочка эмиттера выполнена толщиной от 0,14 мм до 0,20 мм, а масса двуокиси гафния на 1 м чувствительной части детектора выбрана в диапазоне от 6,4 г до 7,1 г.

Изобретение относится к полупроводниковым детекторам для регистрации корпускулярных излучений, в частности к алмазным детекторам тепловых нейтронов. Алмазный детектор тепловых нейтронов состоит из алмазной пластины, двух контактных электродов, конвертора тепловых нейтронов и внешних выводов для подачи напряжения смещения и съема выходного сигнала, при этом один из контактных электродов выполнен в виде набора графитовых столбиков, расположенных в объеме алмазной пластины так, чтобы расстояние от торцов графитовых столбиков до второго контактного электрода не превышало 5-10 мкм, при этом основания графитовых столбиков параллельно подсоединены к выводу для подачи напряжения смещения, а конвертор тепловых нейтронов установлен над поверхностью другого контактного электрода.

Изобретение относится к области измерении плотности потока нейтронов с помощью различных типов детекторов, в частности пропорциональных и коронных счетчиков медленных нейтронов, импульсных камер деления.

Устройство может быть использовано для изготовления цилиндрических трубок из пластика или металлопластика для газонаполненных дрейфовых детекторов ионизирующего излучения.

Изобретение относится к области измерительной техники, а именно к метрологии нейтронного излучения, и может быть использовано при калибровке каналов измерения расхода теплоносителя в первом контуре корпусных ядерных реакторов.

Изобретение относится к области ядерной физики. Способ измерения асимметрии распада поляризованных пучков включает в себя пропускание поляризованного пучка частиц через контролируемую зону, регистрацию заряженных частиц, испускаемых асимметрично относительно спина распадающихся частиц, контрольные измерения при изменении направления поляризации пучка на 180°, при этом исходный поляризованный пучок частиц пропускают через зону контроля с близким к нулю магнитным полем, поток частиц исходного поляризованного пучка ступенчато варьируют с помощью прецизионной управляемой диафрагмы, на каждой ступени потока проводят многократные измерения скорости счета и энергетического спектра испускаемых в зоне контроля заряженных частиц с помощью охватывающего пучок секционированного по углу детектора; по совокупности скоростей счета и их погрешностей строят функционал ошибок для оценок чисел частиц в зоне видимости детектора путем приближений этих чисел шкалой (последовательностью) с шагом 1/μ, значение μ подбирают до наилучшего совмещения минимумов функционалов ошибки для времен жизни τ+ и τ- двух спиновых мод распада и их среднего арифметического значения, причем обработка проводится независимо для двух наборов данных, отличающихся значениями потока, а решение по μ и τ определяется пересечением функционалов этих наборов вблизи минимумов, близких к 1, причем коэффициент спиновой корреляции (асимметрия распада) определяется по формуле где - есть средняя спиральность частиц, испускаемых при распаде, определяемая из измеренного спектра частиц или из табличных данных.

Изобретение относится к полупроводниковым детекторам излучений. Детектор быстрых нейтронов содержит конвертор быстрых нейтронов и поверхностно-барьерный GaAs сенсор, регистрирующий протоны отдачи, при этом сенсор выполнен на подложке арсенида галлия n-типа проводимости, на рабочей поверхности которого выращен эпитаксиальный слой GaAs высокой чистоты толщиной от 10 до 80 мкм, причем и где d - толщина эпитаксиального слоя GaAs высокой чистоты, εп - относительная диэлектрическая проницаемость полупроводника, ε0 - электрическая постоянная, φк - контактная разность потенциалов, q - заряд электрона, ND - уровень легирования полупроводника, µе - подвижность электронов, τе - время жизни электронов, со сформированным на нем платиновым барьером Шоттки толщиной 500 Å, на обратной стороне подложки сформирован омический контакт.

Изобретение касается способа определения изотопного отношения делящегося вещества. Способ определения изотопного отношения делящегося вещества, содержащегося в камере деления, причем делящееся вещество имеет основной изотоп X и по меньшей мере один изотоп-примесь Y, при этом изотопы X и Y характеризуются радиоактивным распадом согласно двум следующим уравнениям: X->X′, характеризуется λX, FX, и Y->Y′, характеризуется λY, FY, где X′ и Y′ соответственно являются «дочерними» изотопами изотопов X и Y, при этом распад изотопа X, соответственно Y, характеризуется испусканием гамма-кванта дочерним изотопом X′, соответственно Y′, с энергией E1, соответственно E2, с вероятностью испускания Iγ(E1), соответственно Iγ(Е2), причем величины λX и λY соответственно являются постоянной радиоактивного распада основного изотопа X и постоянной радиоактивного распада изотопа-примеси Y, a FX и FY соответственно являются коэффициентом разветвления распада изотопа, используемым для измерения радиоактивности основного изотопа, и коэффициентом разветвления распада изотопа, используемым для измерения радиоактивности изотопа-примеси, отличающийся тем, что содержит следующие этапы: при помощи спектрометрической установки, установленной в заданной конфигурации измерения, измеряют чистую площадь S(E1) первого пика гамма-излучения делящегося вещества с первой энергией E1 и чистую площадь S(E2) второго пика гамма-излучения делящегося вещества с второй энергией E2, при помощи контрольных точечных источников в заданной конфигурации измерения определяют контрольный коэффициент полного поглощения R O P ( E 1 ) с первой энергией E1 и контрольный коэффициент полного поглощения R 0 P ( E 2 ) со второй энергией E2, при помощи вычислительного устройства для заданной конфигурации измерения вычисляют интегральный переход T(E1) коэффициента для делящегося вещества с первой энергией E1 и интегральный переход T(Е2) коэффициента для делящегося вещества со второй энергией Е2, и при помощи вычислительного устройства вычисляют изотопное отношение R делящегося вещества при помощи уравнения: R = λ X λ Y × S ( E 2 ) S ( E 1 ) × I γ ( E 1 ) I γ ( E 2 ) × R 0 P ( E 1 ) R 0 P ( E 2 ) × T ( E 1 ) T ( E 2 ) × F X F Y . Технический результат - повышение эффективности определения изотопного отношения делящегося вещества.

Изобретение относится к способам определения направленности радиоактивного излучения. Способ определения направленности радиоактивного излучения включает создание объема метастабильной протянутой текучей среды; размещение объема метастабильной протянутой текучей среды в непосредственной близости от источника радиоактивного излучения; определение положения кавитаций, вызванных радиоактивным излучением, в метастабильной протянутой текучей среде; и определение направления источника радиоактивного излучения на основании кавитаций, вызванных радиоактивным излучением, в метастабильной протянутой текучей среде.

Изобретение относится к способам детектирования нейтронного потока в зоне облучения. Способ регистрации нейтронного потока ядерной установки в широком диапазоне измерений, заключающийся в том, что детектируют нейтронный поток ядерной установки посредством регистрации токового режима камеры деления с последующим измерением и обработкой тока камеры деления вне зоны облучения, при этом одновременно с токовым режимом используют режим счета единичных нейтронов, при этом в диапазоне линейной зависимости скорости счета от нейтронного потока осуществляют прямые измерения актов регистрации нейтронов, причем сигнал, обусловленный единичными нейтронами без предварительного усиления, передают по кабельной линии для регистрации и обработки вне зоны облучения, после чего зависимости плотности потока нейтронов от времени, измеренные камерой деления в счетном и токовом режимах, объединяются.

Изобретение относится к области измерения излучений. Устройство для измерения потока нейтронов содержит первичный преобразователь в виде ионизационной двухсекционной трехэлектродной камеры, к общесекционному электроду которой подключен однополярный источник питания, а к разнополярным электродам, к положительному, входящему в состав нейтронной секции, и к отрицательному, входящему в состав компенсационной секции, - блоки измерения тока, которые связаны с блоком обработки выходных сигналов, при этом блоки измерения тока состоят из преобразователя ток-напряжение, выполненного на основе линейного усилителя с переключающимися пределами измерения или на основе логарифмического усилителя, выход которого подключен к входу аналого-цифрового преобразователя, управляемого микроконтроллером, выход которого через интерфейс связи подключен к интерфейсу связи блока обработки выходных сигналов, который имеет возможность подключения к вычислительному устройству более высокого уровня и включает в себя свой микроконтроллер, позволяющий автоматически корректировать с учетом сигнала, полученного от блока измерения тока по гамма-излучению, сигнал, полученный от блока измерения тока по нейтронной составляющей, и производить вычисление потока нейтронов, а однополярный источник питания включает в себя высоковольтный преобразователь напряжения, подключенный к своему микроконтроллеру, позволяющему осуществлять автоматический контроль и коррекцию выходного напряжения и подключенному через интерфейс связи к интерфейсу связи блока обработки выходных сигналов. Технический результат - повышение достоверности и точности результатов измерения и расширение функциональных возможностей устройства. 1 ил.
Наверх