Устройство для спектрометрии нейтронов

Изобретение относится к области технической физики. Устройство для спектрометрии нейтронов состоит из водородсодержащих замедлителей быстрых нейтронов цилиндрической формы, регистраторов тепловых и медленных нейтронов, расположенных вдоль центральной оси устройства, борного фильтра и цилиндрических углублений на торцевой поверхности замедлителя, обращенной к источнику излучений, при этом в качестве регистраторов нейтронов используют активационные детекторы в кадмиевом чехле и без чехла, которые размещены в контейнере попарно на расстояниях не более длины диффузии тепловых нейтронов в замедлителе, а цилиндрические углубления заполнены вставками, при этом контейнер и вставки выполнены из материала замедлителя. Технический результат - измерение энергетического спектра направленного потока нейтронов в широком диапазоне энергий при высоких уровнях сопутствующего гамма-излучения. 5 ил.

 

Изобретение относится к области технической физики и может быть использовано для определения энергетического распределения направленных потоков нейтронов в широком диапазоне энергий.

Известен многошаровой спектрометр Боннера [1], называемый также «мультисферный спектрометр» [2], состоящий из набора нескольких сфер различных диаметров, изготовленных из замедляющего быстрые нейтроны вещества (например, полиэтилена). В центре сфер размещены детекторы тепловых и медленных нейтронов (ДТМН). Детекторы, находящиеся в сферах, имеют различную зависимость чувствительности от энергии падающих на них нейтронов, что позволяет оценивать энергетический спектр нейтронного излучения. Недостатками мультисферного спектрометра являются значительный вес и габариты, невозможность одновременного измерения параметров нейтронного излучения в малом объеме, а также отсутствие его направленности по отношению к источнику излучения.

Устройство по авторскому свидетельству [3] содержит многослойную мишень и гамма-спектрометр. Каждый из слоев мишени состоит из комбинации замедляющего и поглощающего нейтроны веществ. Гамма-излучение, возникающее в реакции (n, γ), регистрируется гамма-спектрометром. Однако такой метод регистрации нейтронов не позволяет достичь высокой эффективности регистрации, поскольку гамма-спектрометром может быть зарегистрирована только малая часть гамма-квантов, не более 20%. Кроме того, применение полупроводникового или сцинтилляционного спектрометров предполагает сложную конструкцию и высокую стоимость всей системы.

Устройства для детектирования и спектрометрии направленных потоков нейтронов [4-5] содержат мишень из замедляющих нейтроны плоских слоев, чередующихся с поглощающими слоями ДТМН, в качестве которых использованы гелиевые газоразрядные счетчики нейтронов, расположенные равномерно в каждом слое. Счетчики подключены к соответствующему регистратору, суммирующему импульсы всех ДТМН. Однако в данном устройстве практически невозможно идентифицировать импульсы, генерируемые нейтронами и гамма-квантами по их энергии или форме импульса. В результате возникают неучтенные систематические погрешности, особенно при высоком уровне сопутствующего гамма-излучения.

Наиболее близким аналогом (прототипом) предлагаемого изобретения является устройство, предложенное Мак-Киббеном [6-7], для измерения направленного потока нейтронов. Измерительный блок устройства представляет собой водородсодержащий замедлитель направленного потока нейтронов цилиндрической формы, вдоль оси которого расположен регистратор медленных и тепловых нейтронов на основе газоразрядного счетчика. Торцевая поверхность замедлителя со стороны, обращенной к источнику излучений, имеет 8 цилиндрических углублений, предназначенных для выравнивания чувствительности детектора к нейтронам разных энергий. Для уменьшения влияния на показания детекторов рассеянных (фоновых) нейтронов, падающих на боковую поверхность измерительного блока, он окружен защитными цилиндрическими слоями из замедлителя рассеянных нейтронов и борного фильтра, поглощающего медленные и тепловые нейтроны. Такая конструкция устройства позволяет регистрировать только направленные потоки нейтронов по числу импульсов, интегрируемых со всего объема счетчика, при взаимодействии нейтронов с бором-10 (на стенках счетчика) в реакции B10(n,α)L6 и практически с одинаковой эффективностью. Поэтому устройство получило название «всеволнового». Для измерения энергетического спектра нейтронов устройство не предназначено.

Технический результат предлагаемого изобретения заключается в измерении энергетического спектра направленных потоков нейтронов в широком диапазоне энергий, при высоком уровне сопутствующего гамма-излучения и сохранении за устройством функции измерителя потока нейтронов.

Технический результат достигается тем, что в предлагаемом устройстве, состоящем из водородсодержащих замедлителей нейтронов цилиндрической формы, регистраторов тепловых и медленных нейтронов, расположенных вдоль центральной оси устройства, борного фильтра и цилиндрических углублений на торцевой поверхности замедлителя, обращенной к источнику излучений, в качестве регистраторов используют активационные детекторы в кадмиевом чехле и без чехла, которые размещены в контейнере попарно на расстояниях, не более длины диффузии тепловых нейтронов в замедлителе, а цилиндрические углубления заполнены вставками. При этом контейнер и вставки выполнены из материала замедлителя.

На фиг. 1 приведена схема устройства, предложенного Мак-Киббеном, где 1 - замедлитель направленного потока нейтронов, 2 - регистратор медленных и тепловых нейтронов (газоразрядный счетчик), 3 - цилиндрические углубления, 4 - замедлитель рассеянных нейтронов, 5 - борный фильтр.

На фиг. 2 приведена схема предлагаемого устройства, где дополнительными элементами являются: 6 - активационный детектор с кадмиевым чехлом, 7 - активационный детектор без чехла, 8 - контейнер для размещения детекторов, 9 - вставки.

Фиг. 3 - Схема контейнера для размещения активационных детекторов.

Фиг. 4 - Внешний вид предлагаемого устройства.

Фиг. 5 - Пространственное распределение потока тепловых нейтронов S(l, Е) вдоль центральной оси устройства от направленных потоков моноэнергетических нейтронов (расчетные данные).

Устройство работает следующим образом. Нейтроны, попадая в устройство, замедляются в водородсодержащем материале (1) до тепловых и медленных энергий, затем поглощаются активационными детекторами (6, 7). Для каждой энергии нейтронов существует глубина замедлителя, равная длине замедления нейтронов до тепловых энергий, при которой эффективность регистрации нейтронов детектором максимальна. Детекторы в каждой i - ячейке обладают собственной функцией отклика Si(E) в зависимости от энергии (Е) падающего нейтрона, которая определяется расчетным путем с учетом конструкции предложенного устройства, реальных размеров детекторов и геометрии их размещения в контейнере.

Для определения энергетического спектра нейтронов φ(Е) с помощью предлагаемого устройства необходимо найти решение системы уравнений

Δ N i = E min E max ϕ ( E ) S i ( E ) d ( E ) , i = 1, 2, n ,

где ΔNi=Ni-Nicd - отклик детекторов в i-ячейке за счет взаимодействия с тепловыми нейтронами,

Ni - отклик детектора без кадмиевого чехла в i-ячейке,

Nicd - отклик детектора с кадмиевым чехлом в i-ячейке,

n - количество ячеек в контейнере для размещения детекторов.

Преимущество использования активационных детекторов с большим сечением взаимодействия с тепловыми нейтронами (например, Dy163) заключается, прежде всего, в возможности измерения спектра в широком диапазоне значений потока нейтронов, а также в том, что детекторы не чувствительны к сопутствующему гамма-излучению. Детекторы с кадмиевым чехлом регистрируют все нейтроны, кроме тепловых энергий, без чехла - во всем энергетическом диапазоне, включая тепловые. По разности показаний этих детекторов определяется скорость счета импульсов (ΔNi) за счет тепловых нейтронов. С точки зрения удобства использования детекторов их целесообразно применять в виде пластин толщиной 2-3 мм, изготовленных путем замеса диспрозиевого порошка в полиэтилене по заводской технологии. При такой технологии изготовления материала неравномерность распределения диспрозия в детекторе не превышает 1%. Активность детекторов (скорость счета импульсов) может быть измерена с помощью любого радиометра и пересчетного прибора. Все результаты измерений приводятся ко времени измерения первого детектора, поскольку период полураспада продукта реакции Dyl63(n,γ)Dy164 невелик (2, 3 часа).

Результаты исследований, приведенные на фиг. 5, позволяют определить оптимальную длину контейнера (или количество пар детекторов в контейнере) из условия, что для нейтронов с энергией 14 МэВ отклик детекторов в конце контейнера не должен превышать (25-30)% от максимального отклика.

При выборе расстояния (r) между ячейками (между группами детекторов) в контейнере необходимо учитывать следующие обстоятельства. При r более длины диффузии тепловых нейтронов в водородсодержащем материале (λд) происходит значительная потеря тепловых нейтронов вследствие их поглощения ядрами замедлителя и ухудшается качество восстановления спектра нейтронов. Отсюда следует, что расстояние между группами детекторов не должно превышать λд.

Для уменьшения вклада рассеянных (фоновых) нейтронов на показания детекторов толщина замедлителя (4) должна быть сравнима или превышать длину замедления этих нейтронов, падающих на боковую поверхность замедлителя.

При измерении спектра нейтронов углубления (3) на торцевой поверхности замедлителя (1) искажают реальную картину измеряемого спектра, поэтому они заполняются вставками (9) из материала замедлителя. Углубления в устройстве целесообразно сохранить для использования изобретения по двойному назначению: для измерения спектра нейтронов (с вставками) и потока нейтронов (без вставок).

В результате изготовления контейнера и вставок из материала замедлителя повышается точность определения зависимости Si(Е), поскольку используется меньшее количество разных материалов в расчетной модели.

Таким образом, предлагаемое устройство позволяет измерять энергетический спектр направленных потоков нейтронов в широком диапазоне энергий при высоких уровнях сопутствующего гамма-излучения. Кроме того, устройство может быть использовано по двойному назначению: для измерения спектра нейтронов (с вставками) и потока нейтронов (без вставок).

Литература

1. Bonner T.W., Bramblett R.L. Nucl. Instr. and Methods. 1960, v. 9, p. 1-12.

2. Семенов В.П., Трыков Л.А., Фадеев Ю.В. Мультисферный спектрометр. Приборы и техника эксперимента. 1974, №5, с. 40-43.

3. Устройство для спектрометрии нейтронов. Авт. св. №1392523, МПК G01T 3/00.

4. Устройство для регистрации потоков нейтронов. Патент РФ №2102775. 1998.

5. Устройство для детектирования и спектрометрии нейтронов. Патент РФ №2222818. 2004.

6. Hanson А.О., Мс Kibben I.L. Phyz. Rev. 1947, 72, p. 673.

7. В. Прайс. Регистрация ядерного излучения. М.: Изд. иностранной литературы. 1960, с. 330-331.

Устройство для спектрометрии нейтронов, состоящее из водородсодержащих замедлителей быстрых нейтронов цилиндрической формы, регистраторов тепловых и медленных нейтронов, расположенных вдоль центральной оси устройства, борного фильтра и цилиндрических углублений на торцевой поверхности замедлителя, обращенной к источнику излучений, отличающееся тем, что в качестве регистраторов нейтронов используют активационные детекторы в кадмиевом чехле и без чехла, которые размещены в контейнере попарно на расстояниях не более длины диффузии тепловых нейтронов в замедлителе, а цилиндрические углубления заполнены вставками, при этом контейнер и вставки выполнены из материала замедлителя.



 

Похожие патенты:
Изобретение относится к области ядерной техники. Эмиссионный нейтронный детектор содержит коллектор и эмиттер, отделенные друг от друга изоляционным материалом, при этом эмиттер выполнен из порошка двуокиси гафния, заключенного в металлическую оболочку, при этом оболочка эмиттера выполнена толщиной от 0,14 мм до 0,20 мм, а масса двуокиси гафния на 1 м чувствительной части детектора выбрана в диапазоне от 6,4 г до 7,1 г.

Изобретение относится к полупроводниковым детекторам для регистрации корпускулярных излучений, в частности к алмазным детекторам тепловых нейтронов. Алмазный детектор тепловых нейтронов состоит из алмазной пластины, двух контактных электродов, конвертора тепловых нейтронов и внешних выводов для подачи напряжения смещения и съема выходного сигнала, при этом один из контактных электродов выполнен в виде набора графитовых столбиков, расположенных в объеме алмазной пластины так, чтобы расстояние от торцов графитовых столбиков до второго контактного электрода не превышало 5-10 мкм, при этом основания графитовых столбиков параллельно подсоединены к выводу для подачи напряжения смещения, а конвертор тепловых нейтронов установлен над поверхностью другого контактного электрода.

Изобретение относится к области измерении плотности потока нейтронов с помощью различных типов детекторов, в частности пропорциональных и коронных счетчиков медленных нейтронов, импульсных камер деления.

Устройство может быть использовано для изготовления цилиндрических трубок из пластика или металлопластика для газонаполненных дрейфовых детекторов ионизирующего излучения.

Изобретение относится к области измерительной техники, а именно к метрологии нейтронного излучения, и может быть использовано при калибровке каналов измерения расхода теплоносителя в первом контуре корпусных ядерных реакторов.

Изобретение относится к области ядерной физики. Способ измерения асимметрии распада поляризованных пучков включает в себя пропускание поляризованного пучка частиц через контролируемую зону, регистрацию заряженных частиц, испускаемых асимметрично относительно спина распадающихся частиц, контрольные измерения при изменении направления поляризации пучка на 180°, при этом исходный поляризованный пучок частиц пропускают через зону контроля с близким к нулю магнитным полем, поток частиц исходного поляризованного пучка ступенчато варьируют с помощью прецизионной управляемой диафрагмы, на каждой ступени потока проводят многократные измерения скорости счета и энергетического спектра испускаемых в зоне контроля заряженных частиц с помощью охватывающего пучок секционированного по углу детектора; по совокупности скоростей счета и их погрешностей строят функционал ошибок для оценок чисел частиц в зоне видимости детектора путем приближений этих чисел шкалой (последовательностью) с шагом 1/μ, значение μ подбирают до наилучшего совмещения минимумов функционалов ошибки для времен жизни τ+ и τ- двух спиновых мод распада и их среднего арифметического значения, причем обработка проводится независимо для двух наборов данных, отличающихся значениями потока, а решение по μ и τ определяется пересечением функционалов этих наборов вблизи минимумов, близких к 1, причем коэффициент спиновой корреляции (асимметрия распада) определяется по формуле где - есть средняя спиральность частиц, испускаемых при распаде, определяемая из измеренного спектра частиц или из табличных данных.

Изобретение относится к полупроводниковым детекторам излучений. Детектор быстрых нейтронов содержит конвертор быстрых нейтронов и поверхностно-барьерный GaAs сенсор, регистрирующий протоны отдачи, при этом сенсор выполнен на подложке арсенида галлия n-типа проводимости, на рабочей поверхности которого выращен эпитаксиальный слой GaAs высокой чистоты толщиной от 10 до 80 мкм, причем и где d - толщина эпитаксиального слоя GaAs высокой чистоты, εп - относительная диэлектрическая проницаемость полупроводника, ε0 - электрическая постоянная, φк - контактная разность потенциалов, q - заряд электрона, ND - уровень легирования полупроводника, µе - подвижность электронов, τе - время жизни электронов, со сформированным на нем платиновым барьером Шоттки толщиной 500 Å, на обратной стороне подложки сформирован омический контакт.

Изобретение касается способа определения изотопного отношения делящегося вещества. Способ определения изотопного отношения делящегося вещества, содержащегося в камере деления, причем делящееся вещество имеет основной изотоп X и по меньшей мере один изотоп-примесь Y, при этом изотопы X и Y характеризуются радиоактивным распадом согласно двум следующим уравнениям: X->X′, характеризуется λX, FX, и Y->Y′, характеризуется λY, FY, где X′ и Y′ соответственно являются «дочерними» изотопами изотопов X и Y, при этом распад изотопа X, соответственно Y, характеризуется испусканием гамма-кванта дочерним изотопом X′, соответственно Y′, с энергией E1, соответственно E2, с вероятностью испускания Iγ(E1), соответственно Iγ(Е2), причем величины λX и λY соответственно являются постоянной радиоактивного распада основного изотопа X и постоянной радиоактивного распада изотопа-примеси Y, a FX и FY соответственно являются коэффициентом разветвления распада изотопа, используемым для измерения радиоактивности основного изотопа, и коэффициентом разветвления распада изотопа, используемым для измерения радиоактивности изотопа-примеси, отличающийся тем, что содержит следующие этапы: при помощи спектрометрической установки, установленной в заданной конфигурации измерения, измеряют чистую площадь S(E1) первого пика гамма-излучения делящегося вещества с первой энергией E1 и чистую площадь S(E2) второго пика гамма-излучения делящегося вещества с второй энергией E2, при помощи контрольных точечных источников в заданной конфигурации измерения определяют контрольный коэффициент полного поглощения R O P ( E 1 ) с первой энергией E1 и контрольный коэффициент полного поглощения R 0 P ( E 2 ) со второй энергией E2, при помощи вычислительного устройства для заданной конфигурации измерения вычисляют интегральный переход T(E1) коэффициента для делящегося вещества с первой энергией E1 и интегральный переход T(Е2) коэффициента для делящегося вещества со второй энергией Е2, и при помощи вычислительного устройства вычисляют изотопное отношение R делящегося вещества при помощи уравнения: R = λ X λ Y × S ( E 2 ) S ( E 1 ) × I γ ( E 1 ) I γ ( E 2 ) × R 0 P ( E 1 ) R 0 P ( E 2 ) × T ( E 1 ) T ( E 2 ) × F X F Y . Технический результат - повышение эффективности определения изотопного отношения делящегося вещества.

Изобретение относится к способам определения направленности радиоактивного излучения. Способ определения направленности радиоактивного излучения включает создание объема метастабильной протянутой текучей среды; размещение объема метастабильной протянутой текучей среды в непосредственной близости от источника радиоактивного излучения; определение положения кавитаций, вызванных радиоактивным излучением, в метастабильной протянутой текучей среде; и определение направления источника радиоактивного излучения на основании кавитаций, вызванных радиоактивным излучением, в метастабильной протянутой текучей среде.

Изобретение относится к способам детектирования нейтронного потока в зоне облучения. Способ регистрации нейтронного потока ядерной установки в широком диапазоне измерений, заключающийся в том, что детектируют нейтронный поток ядерной установки посредством регистрации токового режима камеры деления с последующим измерением и обработкой тока камеры деления вне зоны облучения, при этом одновременно с токовым режимом используют режим счета единичных нейтронов, при этом в диапазоне линейной зависимости скорости счета от нейтронного потока осуществляют прямые измерения актов регистрации нейтронов, причем сигнал, обусловленный единичными нейтронами без предварительного усиления, передают по кабельной линии для регистрации и обработки вне зоны облучения, после чего зависимости плотности потока нейтронов от времени, измеренные камерой деления в счетном и токовом режимах, объединяются.

Изобретение относится к области измерения излучений. Устройство для измерения потока нейтронов содержит первичный преобразователь в виде ионизационной двухсекционной трехэлектродной камеры, к общесекционному электроду которой подключен однополярный источник питания, а к разнополярным электродам, к положительному, входящему в состав нейтронной секции, и к отрицательному, входящему в состав компенсационной секции, - блоки измерения тока, которые связаны с блоком обработки выходных сигналов, при этом блоки измерения тока состоят из преобразователя ток-напряжение, выполненного на основе линейного усилителя с переключающимися пределами измерения или на основе логарифмического усилителя, выход которого подключен к входу аналого-цифрового преобразователя, управляемого микроконтроллером, выход которого через интерфейс связи подключен к интерфейсу связи блока обработки выходных сигналов, который имеет возможность подключения к вычислительному устройству более высокого уровня и включает в себя свой микроконтроллер, позволяющий автоматически корректировать с учетом сигнала, полученного от блока измерения тока по гамма-излучению, сигнал, полученный от блока измерения тока по нейтронной составляющей, и производить вычисление потока нейтронов, а однополярный источник питания включает в себя высоковольтный преобразователь напряжения, подключенный к своему микроконтроллеру, позволяющему осуществлять автоматический контроль и коррекцию выходного напряжения и подключенному через интерфейс связи к интерфейсу связи блока обработки выходных сигналов. Технический результат - повышение достоверности и точности результатов измерения и расширение функциональных возможностей устройства. 1 ил.

Автоматизированная система контроля нейтронно-физических параметров исследовательской ядерной установки (ИЯУ) может быть использована для создания систем контроля, управления и измерения в составе систем управления и защиты СУЗ ИЯУ, для обеспечения безопасности работы ИЯУ в импульсном, квазиимпульсном и статическом режимах. Технический результат - повышение точности и надежности мониторинга выходных характеристик ИЯУ при всех режимах работы ИЯУ. Автоматизированная система контроля включает систему измерения физических характеристик, построенную по многоканальному параллельному принципу и содержащую подсистему контроля мощности с токовыми и импульсными ионизационными камерами, подсистему контроля температуры и подсистему накопления и обработки информации, включающую процессоры, работающие по заданным программам, обрабатывающие и преобразующие сигналы датчиков с сохранением данных и передачей их для формирования сигналов аварийной защиты в вычислительное устройство более высокого уровня, кроме этого содержит подсистему контроля параметров импульса ИЯУ и подсистему контроля временных интервалов от момента запускающего сигнала до моментов прихода остальных сигналов. 1 ил.

Изобретение относится к области радиационных технологий, а также к исследованиям, созданию и эксплуатации ядерных установок и ускорителей. Способ измерения профиля нейтронного пучка (пучков) в плоскости, перпендикулярной выделенному его (их) направлению, заключается в том, что пучок (пучки) быстрых нейтронов направляют на детектирующую плоскость профилометра, перпендикулярно расположенную к его (их) направлению (направлениям), поверхность которой представляет собой совокупность параллельно расположенных изолированных стрипов, сигналы с каждого из стрипов, появившиеся в результате взаимодействия нейтрона с веществом стрипа, поступают на блок регистрирующей электроники, производящей прием и анализ зарегистрированных событий с использованием программного обеспечения для определения профиля нейтронного пучка (пучков), при этом в качестве детектирующей плоскости профилометра используют двусторонний стриповый кремниевый детектор, одна сторона которого представляет набор X-стрипов, а вторая - набор Y-стрипов, перпендикулярных к Х-стрипам, при этом регистрируют заряженные частицы, образующиеся в каждом конкретном стрипе в результате протекания реакций с эмиссией протонов и альфа-частиц при захвате нейтронов на ядрах кремния 28Si(n,p)28Al, 28Si(n,α)25Mg, при этом путем снятия электрических сигналов с соответствующих X- и Y-стрипов определяют координаты X и Y точек взаимодействия нейтронов с веществом данного стрипа профилометра, при этом на основании однозначной связи номеров одновременно сработавших X- и Y-стрипов, включенных на совпадения, при этом после набора событий по каждому из X- и Y-стрипов профилометра автоматически производится временной и амплитудный анализ зарегистрированных событий. Технический результат - повышение точности определения направления осей меченых пучков, упрощение процедуры измерения характеристик пучков, а также сокращение времени измерения. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области космического приборостроения и может быть использовано для сбора данных о параметрах движения космических объектов - частиц космического мусора и микрометеороидов. Малый космический аппарат для регистрации частиц космического мусора и микрометеороидов состоит из пленочной структуры металл-диэлектрик-металл, электромагнитов, расположенных по трем взаимно ортогональным осям, приемника ионов, солнечной батареи, при этом на каждой оси расположен один электромагнит, соединенный с блоком управления электромагнитами, который соединен с блоком управления системой, дополнительно введен блок регистрации, который соединен с пленочной структурой металл-диэлектрик-металл зонтичной конструкции и блоком управления системой, введен блок формирования питания, соединенный с солнечной батареей и блоком управления системой, добавлен приемо-передающий модуль, соединенный с командной антенной, телеметрической антенной и блоком управления системой, введен блок развертки пленочного датчика, который соединен с блоком управления системой, к которой подключены шесть солнечных датчиков, расположенных на каждой из граней малого космического аппарата. Технический результат - уменьшение габаритов мишени в нераскрытом состоянии. 1 з.п. ф-лы, 4 ил.

Изобретение относится к борным покрытиям для детектирования нейтронов и особенно относится к нанесению борных покрытий для детектирования нейтронов с помощью электростатического напыления. Детектор нейтронов содержит внешнюю оболочку, ограничивающую внутренний объем, по меньшей мере участок стенки, служащий катодом, центральную конструкцию, расположенную во внутреннем объеме и служащую анодом, борное покрытие на участке стенки, причем борное покрытие нанесено способом электростатического напыления, и электрический соединитель, функционально соединенный с центральной конструкцией для передачи сигнала, собранного центральной конструкцией; при этом борное покрытие включает растворимый остаток, смешанный с бором, в количестве менее 7,00×10-4 г растворимого остатка на 1 г бора. Технический результат – повышение эффективности детектора нейтронов. 3 н. и 16 з.п. ф-лы, 4 ил.

Изобретение относится к ядерной физике и может быть использовано при измерении интенсивных потоков нейтронов. Радиохимический детектор плотности потока быстрых нейтронов включает ампулу с порошкообразным активным веществом, помещаемую в поток быстрых нейтронов, газовую систему, заполненную газом-носителем, и проточный счетчик, подключенный к системе регистрации и обработки информации. Газовая система включает резервуар с газом-носителем, клапаны и систему контроля газового расхода. Ампула с активным веществом подключена к газовой системе, причем вход ампулы подключен к резервуару с газом-носителем, а выход - к входу проточного счетчика. В качестве активного вещества используют микрокристаллический порошок обезвоженного оксалата (соль щавелевой кислоты Н2С2О4⋅2Н2O) щелочного металла или щелочноземельного металла, в результате ядерных реакций нейтронов с ядрами которого образуется радиоактивный инертный газ - радиоактивные изотопы гелия, неона, аргона, криптона или ксенона. При этом ампула выполнена в виде колонки, заполненной порошкообразным активным веществом, разбитым на равные домены длиной Н, разделенные равными промежутками длиной h, в которых размещены пористые вставки одинаковой длины h из инертного материала, при этом длина H домена выбирается из условия ,где S - площадь сечения колонки;N - число атомов активного вещества в единице объема;σ - сечение ядерной реакции нейтронов с ядрами щелочного или щелочноземельного металла Me активного вещества;Fn - плотность потока нейтронов;l - длина колонки;k - число доменов в колонке,а длина h пористой вставки выбирается из условия ,где L - расстояние от колонки до проточного счетчика;D - коэффициент диффузии радиоактивного газа в газе-носителе;G - расход газа-носителя в газовой системе.Технический результат – расширение возможностей и обеспечение повышения эффективности детектора. 3 з.п. ф-лы, 2 ил.

Группа изобретений относится к материалам, используемым в сцинтилляционной технике. Сущность группы изобретений заключается в том, что сцинтилляционный материал для регистрации ионизирующего излучения представляет собой кристаллический твердый раствор с общей эмпирической формулой Li(Y1-x Lux)F4 при х=0,01-0,8, образующийся в бинарной системе LiYF4 - LiLuF4. Также сцинтилляционный материал для регистрации ионизирующего излучения представляет собой кристаллический твердый раствор с общей эмпирической формулой Ba(Y1-x Ybx)2F8 при х=0,01-0,9, образующийся в бинарной системе BaY2F8 - BaYb2F8. Технический результат – получение сцинтилляционных материалов, в том числе крупногабаритных, с возможностью направленного управления чувствительностью данных материалов к ионизирующим излучениям с максимальной чувствительностью к излучению γ-квантов. 2 н. и 9 з.п. ф-лы, 1 ил.

Изобретение относится к устройствам контроля ядерных реакторов, а именно к ионизационным камерам деления (ИКД) с электродами, на поверхности которых нанесен слой материала, делящегося при взаимодействии с нейтронами. Технический результат - обеспечение возможности контроля плотности потока тепловых нейтронов в выходные электрические сигналы во всех режимах работы реакторной установки, включая режимы, при которых ионизационные камеры должны эксплуатироваться при температуре более 500°С. На поверхность делящегося покрытия электрода ИКД нанесен слой материала, например платины, с работой выхода электронов больше работы выхода электронов из материала покрытия, содержащего элементы, делящиеся при взаимодействии с нейтронами, причем толщина этого слоя недостаточна для полного препятствия выхода продуктов реакции (осколков деления) в межэлектродное пространство и достаточна для уменьшения термоэмиссии электронов при температуре выше 500°С. 1 ил., 1 табл.

Изобретение относится к нейтронному детектору, включающему: корпус, ограничивающий внутренний объем; металлическую часть, служащую в качестве катода; центральную конструкцию, расположенную во внутреннем объеме и служащую в качестве анода; покрытие из бора на катодной части и электрический соединитель, функционально соединенный с центральной конструкцией для передачи сигнала, накапливаемого центральной конструкцией. Детектор характеризуется тем, что по меньшей мере часть покрытия из бора включает атомы бора, внедренные термодиффузией из борсодержащего порошка в катодную часть, причем некоторые атомы бора - в металлическую часть, с образованием покрытия из бора, чувствительного к нейтронам. Также изобретение относится к способу термодиффузии бора. Предлагаемый детектор имеет относительно тонкие однородные покрытия из бора по всей длине с минимальными следовыми количествами других элементов и соединений. 2 н. и 12 з.п. ф-лы, 3 пр., 4 ил.

Группа изобретений относится к области обнаружения медленных нейтронов. Конвертер медленных нейтронов содержит подложку, содержащую множество каналов, простирающихся вдоль первого направления, и изолирующие стенки между упомянутым множеством каналов; и слой бора, покрывающий по меньшей мере подвергаемую воздействию поверхность упомянутого множества каналов; причем упомянутое множество каналов представляют собой сквозные каналы, причем слой бора содержит natB, причем слой бора имеет массовую толщину в диапазоне от 0,232 до 0,694 мг/см2. Технический результат – повышение эффективности обнаружения медленных нейтронов. 2 н. и 17 з.п. ф-лы, 5 ил.

Изобретение относится к области технической физики. Устройство для спектрометрии нейтронов состоит из водородсодержащих замедлителей быстрых нейтронов цилиндрической формы, регистраторов тепловых и медленных нейтронов, расположенных вдоль центральной оси устройства, борного фильтра и цилиндрических углублений на торцевой поверхности замедлителя, обращенной к источнику излучений, при этом в качестве регистраторов нейтронов используют активационные детекторы в кадмиевом чехле и без чехла, которые размещены в контейнере попарно на расстояниях не более длины диффузии тепловых нейтронов в замедлителе, а цилиндрические углубления заполнены вставками, при этом контейнер и вставки выполнены из материала замедлителя. Технический результат - измерение энергетического спектра направленного потока нейтронов в широком диапазоне энергий при высоких уровнях сопутствующего гамма-излучения. 5 ил.

Наверх