Устройство для измерения давления

Изобретение относится к измерительной технике. Устройство для измерения давления содержит СВЧ чувствительный элемент в виде металлической полости, часть стенки которой выполнена упругой, соединенный с помощью элемента возбуждения и элемента съема электромагнитных колебаний с электронным блоком, металлическая полость выполнена в виде волновода с упругой одной торцевой стенкой, при этом электронный блок содержит генератор электромагнитных колебаний фиксированной частоты и подключенный к индикатору детектор, подсоединенные с помощью, соответственно, элемента возбуждения и элемента съема электромагнитных колебаний к волноводу у его другой торцевой стенки, а волновод выполнен в виде предельного волновода, для которого частота возбуждаемых в нем электромагнитных волн выбрана ниже минимальной частоты возбуждения в волноводе распространяющихся электромагнитных волн. Технический результат - упрощение конструкции. 1 ил.

 

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения статического и динамического давления.

Известно устройство для измерения давления (US 4604898 А, 12.08.1986), которое содержит датчик в виде отрезка коаксиальной длинной линии с торцевым чувствительным элементом. Он представляет собой конденсатор, образованный совокупностью плоской металлической пластины, подсоединенной к внутреннему проводнику коаксиальной линии и установленной перпендикулярно ее продольной оси, и параллельной пластине деформируемой торцевой стенки (мембраны), воспринимающей внешнее давление. Резонансная частота колебаний, возбуждаемых в устройстве, зависит от величины прогиба деформируемой торцевой стенки резонатора. Известно также устройство для измерения давления, содержащее коаксиальный резонатор, на торце которого расположены два плоских диска, выполняющих функцию конденсатора. Один из этих дисков прикреплен с помощью штока к центру мембраны, воспринимающей измеряемое давление, а другой диск закреплен на торце внутреннего проводника коаксиальной линии параллельно первому диску (RU 2221228 C2, 10.01.2004).

Известно также устройство (US 3927369, 31.01.1973), которое по технической сущности наиболее близко к предлагаемому устройству и принято в качестве прототипа. Устройство-прототип содержит сверхвысокочастотный (СВЧ) чувствительный элемент в виде объемного СВЧ-резонатора, который имеет упругую торцевую стенку (мембрану, диафрагму и т.п.), а также соединенный с резонатором блок для генерации резонансной (собственной) частоты электромагнитных колебаний резонатора и блок измерения резонансной частоты данного резонатора. Выходной сигнал этого блока соответствует измеряемому давлению. Эта частота имеет обычно величину порядка нескольких гигагерц и зависит от размеров резонатора, выбранного "рабочего" типа электромагнитных колебаний. При этом изменение давления приводит к смещению гибкой стенки резонатора (это его торцевая стенка), изменяя продольный размер полости резонатора и, как следствие, его резонансную частоту.

Недостатком устройства-прототипа является достаточно высокая сложность его реализации, обусловленная применением объемного СВЧ-резонатора в качестве СВЧ чувствительного элемента. При этом необходимо наличия в конструкции устройства функциональных элементов для требуемого измерения с высокой точностью значения резонансной частоты электромагнитных колебаний резонатора.

Техническим результатом настоящего изобретения является упрощение конструкции устройства.

Технический результат достигается тем, что в предлагаемом устройстве для измерения давления, содержащем СВЧ чувствительный элемент в виде металлической полости, часть стенки которой выполнена упругой, соединенный с помощью элемента возбуждения и элемента съема электромагнитных колебаний с электронным блоком, металлическая полость выполнена в виде волновода с упругой одной торцевой стенкой, электронный блок содержит генератор электромагнитных колебаний фиксированной частоты и подключенный к индикатору детектор, подсоединенные с помощью, соответственно, элемента возбуждения и элемента съема электромагнитных колебаний к волноводу у его другой торцевой стенки, а волновод выполнен в виде предельного волновода, для которого частота возбуждаемых в нем электромагнитных волн выбрана ниже минимальной частоты возбуждения в волноводе распространяющихся электромагнитных волн.

Предлагаемое устройство поясняется фиг. 1, где приведена его структурная схема.

На фиг. 1 показаны волновод 1, упругая торцевая стенка 2, элементы связи 3 и 4, генератор электромагнитных колебаний 5, детектор 6, индикатор 7.

Устройство работает следующим образом.

В данном устройстве СВЧ чувствительный элемент в виде волновода 1 имеет на одном из его торцов упругую торцевую стенку 2, в частности мембрану. При воздействии извне какой-либо физической величины (на фиг. 1 такое воздействие показано стрелкой) или при изменении этого воздействия относительно его некоторого исходного значения имеет место прогиб упругой торцевой стенки 2 волновода 1, обеспечивается восприятие значения соответствующего давления P (за счет измерения величины прогиба). Информативным параметром в данном устройстве является амплитуда E(l) ослабеваемых электромагнитных волн в волноводе, где l - величина прогиба мембраны, точнее ее центральной части, относительно ее исходного положения, соответствующего отсутствию воздействия извне физической величины (или изменения этого воздействия относительно его некоторого исходного значения). Волновод 1 является при этом предельным волноводом.

Упругая стенка может быть изготовлена, например, из нержавеющей стали. Толщина диафрагмы может составлять 0,1÷0,2 мм, а диаметр ~10÷40 мм (в зависимости от диаметра трубопровода).

В предлагаемом устройстве осуществляют возбуждение электромагнитных волн в волноводе на частоте, которая ниже минимальной частоты возбуждения в волноводе распространяющихся электромагнитных волн, то есть ниже критической частоты fкр для волны низшего типа. Но при этом вдоль волновода существует только реактивное электромагнитное поле, убывающее при удалении от возбуждающего волны элемента связи у одного из торцов волновода.

Условием распространения электромагнитных волн по любому волноводу является выполнение неравенства: f>fкр, которому должны удовлетворять рабочая частота f и критическая частота fкр для волны низшего типа, в частности, в круглом волноводе - для волны типа Н11. Для волн типа Н11 будем иметь fкр=2c/3,41D где D - диаметр волновода (Лебедев И.В. Техника и приборы СВЧ. Т. 1. М.: Высшая школа. 1970. С. 78-94). При f<fкр имеет место предельный режим, при котором распространение электромагнитных волн по волноводу не происходит, а существует только ослабевающее реактивное электромагнитное поле, убывающее при удалении от элемента возбуждения электромагнитных волн. В предельном волноводе 1 поле изменяется вдоль координаты z (оси волновода) по закону:

а постоянная ослабления α есть

В этих формулах Em и Hm - амплитуды напряженности соответственно электрического и магнитного полей при z=0; и ω=2πf; ∈ и µ - соответственно диэлектрическая и магнитная проницаемость вещества в волноводе, с - скорость света.

Выбирая соотношение между f и fкр, можно управлять величиной ослабления α в предельном волноводе.

Отметим, что при f≤fкр распространение электромагнитных волн вдоль волновода отсутствует. Имеет место запредельный режим распространения волн, а волновод является при этом запредельным волноводом. В данном же устройстве имеет место именно предельный режим, указанный выше и характеризуемый наличием ослабеваемого вдоль волновода реактивного электромагнитного поля, а не запредельный режим распространения электромагнитных волн.

В волноводе 1 с гибкой металлической мембраной 2 возбуждают через элемент связи 3 с помощью генератора электромагнитных колебаний 5 электромагнитные волны на фиксированной частоте f, которая выбрана ниже минимальной частоты возбуждения в волноводе распространяющихся электромагнитных волн - меньшей критической частоты fкр для этого волновода (фиг. 1). Волновод 1 является при этом предельным волноводом.

Напряженность электрического поля Е и магнитного поля Н при удалении от элемента связи спадает в соответствии с соотношением (1). При этом значение E (и Н) зависит от величины прогиба l торцевой мембраны волновода 1. У того же торца волновода 1 (фиг. 1) принимаемые сигналы поступают через элемент связи 4 на детектор 6. Затем продетектированный сигнал поступает на индикатор 7 для определения амплитуды Е(l) сигнала, служащего информативным параметром.

Выражение для E(z) должно учитывать распространение электромагнитных волн вдоль предельного волновода 1, а также и их отражение от его торца - гибкой торцевой мембраны 2 у волновода 1.

Для схемы устройства на фиг. 1 амплитуда напряженности результирующего электромагнитного поля E(z) в некотором сечении с координатой z предельного волновода в данном случае есть

где Em - амплитуда напряженности зондирующего электромагнитного поля при z=0, то есть у элемента связи 3, где z=0; l - расстояние, отсчитываемое от элемента связи 3. Величина коэффициента α определяется соотношением (2).

Величина l определяется степенью прогиба гибкой мембраны 2 в месте ее расположения и, следовательно, зависит от давления Р:l=l0+l(Р), где l0 - значение l при нулевом прогибе мембраны, т.е. при Р=0; l(P) - величина прогиба мембраны.

Следовательно, как следует из (3), амплитуда результирующего значения напряженности электромагнитного поля в сечении с координатой z=0 есть

Величина Е(Р) является монотонной функцией Р, позволяя однозначно определять искомое значение давления.

Величина прогиба деформируемой торцевой стенки (мембраны) выражается следующей формулой (US 3927369, 31.01.1973):

где ΔP - разность давлений с внешней и внутренней сторон мембраны, a - радиус цилиндрической мембраны, d - ее толщина, Е - модуль упругости конкретного материала, из которого изготовлена мембрана. Формула (5) выражает максимальную величину деформации в центре мембраны.

Конструкция волновода может быть изготовлена из меди, латуни и других металлов с небольшим удельным сопротивлением. Упругая торцевая стенка (мембрана) может быть изготовлена из различных металлов, например элинвара (RU 2221228 C2, 10.01.2004). В качестве материала для мембраны допустимо выбрать нержавеющую сталь. Толщина мембраны может составлять 0,1÷0,2 мм, а ее диаметр 10÷40 мм.

Данное устройство характеризуется простотой его конструкции и реализации. Оно не требует наличия объемных резонаторов и специальных прецизионных схемных элементов для высокоточного измерения их резонансных частот. Здесь требуется наличие лишь генератора электромагнитных колебаний фиксированной частоты, волновода с торцевой гибкой металлической стенкой, детектора и регистратора. При этом точность измерения может быть достаточно высокой: амплитуда принимаемых колебаний соответствует ослабеваемому реактивному электромагнитному полю в предельном волноводе и не связана с омическими потерями электромагнитной энергии в нем.

Выбором фиксированной частоты f генератора, подсоединенного к предельному волноводу, поперечных и продольного размеров этого волновода можно оптимизировать чувствительность устройства в рабочем диапазоне изменения давления или другой измеряемой физической величины, изменение которой приводит к прогибу упругой торцевой стенки предельного волновода.

Таким образом, в предлагаемом устройстве для измерения давления за счет проведения в волноводе измерений на фиксированной частоте, меньшей минимальной частоты возбуждения в нем распространяющихся электромагнитных волн, достигается поставленная цель - упрощение конструкции. Такое устройство может иметь применение для измерения давления и других физических величин.

Устройство для измерения давления, содержащее СВЧ чувствительный элемент в виде металлической полости, часть стенки которой выполнена упругой, соединенный с помощью элемента возбуждения и элемента съема электромагнитных колебаний с электронным блоком, металлическая полость выполнена в виде волновода с упругой одной торцевой стенкой, отличающееся тем, что электронный блок содержит генератор электромагнитных колебаний фиксированной частоты и подключенный к индикатору детектор, подсоединенные с помощью, соответственно, элемента возбуждения и элемента съема электромагнитных колебаний к волноводу у его другой торцевой стенки, а волновод выполнен в виде предельного волновода, для которого частота возбуждаемых в нем электромагнитных волн выбрана ниже минимальной частоты возбуждения в волноводе распространяющихся электромагнитных волн.



 

Похожие патенты:

Изобретения относятся к измерительной технике, в частности к средствам и методам для измерения давления. В устройстве используются пленочные емкостные датчики, позволяющие измерять пульсации давления, возникающие от нагрузки вибрации, также устройство содержит державку, демпфер, снижающий нагрузки от вибраций, который размещен на наружной поверхности объекта измерений, а пленочные датчики размещены снаружи и внутри объекта на разных участках.

Изобретение относится, в общем, к устройству измерения давления и, в частности, к узлу кварцевого измерительного преобразователя давления и температуры, характеризующегося улучшенной коррекцией ошибок при воздействии градиентов давления и температуры.

Предлагаемое изобретение относится к измерительной технике, в частности к средствам измерения давления, и может быть использовано при измерении динамического давления совместно с пьезоэлектрическими датчиками динамического давления.

Изобретение относится к области «физика материального взаимодействия». Способ определения механических параметров нарушенной материальной среды в условиях фиксированного внешнего воздействия заключается в том, что фиксируют определяющий для исследуемой среды физический параметр внешнего воздействия - температуру Т(°С), плотность ρ (кг/см3), ускорение гравитационного притяжения (g, м/с2) и движения материального тела (α, м/с2), световое излучение, радиоактивность, электрическое и магнитное воздействие, устанавливают требуемый механический параметр материальной среды с учетом влияния физических определяющих параметров внешнего воздействия, определяют угол внутреннего трения и удельное сцепление cстр (кГ/см2) структурированной (природной) среды.

Изобретение относится к измерительной технике, в частности к преобразователям давления, и может быть использовано в различных областях науки и техники, связанных с измерением перепада давления среды.

Изобретение относится к измерительной технике, в частности к преобразователям давления, и может быть использовано в различных областях науки техники, связанных с измерением перепада давления среды.

Заявленная группа изобретений относится к датчикам, которые используются в устройствах для детектирования давления текучих сред (жидкостей и газообразных сред) в различных областях, например в автомобильной промышленности, в бытовых электрических приборах, в области сохранения окружающей среды и общего контроля в гидротермальной санитарии или в области медицины.

Изобретение относится к бесшкальным манометрам. Техническим результатом изобретения является повышение точности измерений.

Изобретение относится к измерительной технике и предназначено для использования в приборах измерения давления жидкостей и газов. Техническим результатом изобретения является упрощение конструкции и технологии изготовления датчика давления.

Изобретение относится к измерительной технике и может быть использовано для измерения давления жидких и газообразных средств. Датчик содержит корпус, установленную в нем нано- и микроэлектромеханическую систему (НиМЭМС), состоящую из упругого элемента - мембраны с жестким центром, с периферийным основанием в виде оболочки вращения, образованной на ней гетерогенной структуры из тонких пленок материалов, в которой сформированы контактные площадки, первые радиальные тензорезисторы из одинаковых тензоэлементов, расположенных по одной окружности мембраны, и вторые радиальные тензорезисторы из одинаковых тензоэлементов, расположенных по другой окружности на мембране, соединенные перемычками, включенные в измерительный мост.

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем (НиМЭМС) с мостовой измерительной цепью, предназначенных для использования в системах управления, контроля и диагностики объектов длительного функционирования. Технический результат: повышение временной и температурной стабильности, ресурса, срока службы, а также уменьшение времени готовности и погрешности в условиях воздействия нестационарных температур и повышенных виброускорений, а также возможность использования диагонали питания в качестве датчика температуры тензорезисторов интеллектуальных датчиков давления на основе НиМЭМС. Способ изготовления тензорезисторного датчика давления с высокой временной и температурной стабильностью на основе тонкопленочной нано- и микроэлектромеханической системы (НиМЭМС) включает формирование тензорезисторов путем последовательности технологических операций, воздействие тестовых факторов, определение сопротивлений тензорезисторов при тестовых воздействиях, вычисление по ним критериев стабильности и сравнение их с тестовыми значениями. При этом после присоединения выводных проводников к контактным площадкам тензорезисторы НиМЭМС подвергают воздействию ряда тестовых напряжений, полярность которых совпадает с рабочей полярностью, и ряда тестовых напряжений, полярность которых противоположна рабочей полярности, а величины напряжений при обеих полярностях последовательно равны N-1Uм, 2N-1Uм, 3N-1Uм, … NN-1Uм, где N-количество интервалов разбиения величины максимально допустимого напряжения питания Uм тензорезисторов, и измеряют токи, протекающие через тензорезисторы при каждом тестовом значении напряжения. Критерии стабильности определяют по соотношениям , , , где Ij+ - ток, измеренный при тестовых напряжениях Uj+, полярность которых совпадает с рабочей полярностью; Ij- - ток, измеренный при тестовых напряжениях Uj-, полярность которых противоположна рабочей полярности, и, если , , , где Ψ1(R)max, Ψ2(R)max - соответственно предельно допустимое значение первого и второго критерия стабильности, которые определяются экспериментальным путем по статистическим данным для конкретного типоразмера датчика, то данную сборку передают на последующие операции. Дополнительно тензорезисторы, контактные площадки и выводные проводники соединяют в мостовую измерительную цепь и аналогично подвергают ее воздействию ряда тестовых напряжений, определяя по соответствующим соотношениям значения третьего и четвертого критерия стабильности. Если эти значения не выходят за пределы допустимых значений, то данную сборку передают на последующие операции. 1 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем (НиМЭМС) с мостовой измерительной цепью, предназначенных для использования в системах управления, контроля и диагностики объектов длительного функционирования. Технический результат: повышение временной и температурной стабильности, ресурса, срока службы, а также уменьшение времени готовности и погрешности в условиях воздействия нестационарных температур и повышенных виброускорений, а также возможность использования диагонали питания в качестве датчика температуры тензорезисторов интеллектуальных датчиков давления на основе НиМЭМС. Способ изготовления высокостабильного тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы (НиМЭМС) заключается в полировании поверхности мембраны, формировании на ней диэлектрической пленки и тензоэлементов с низкоомными перемычками и контактными площадками между ними с использованием шаблона тензочувствительного слоя. При этом производятся измерения сопротивлений тензорезисторов при воздействующих тестовых температурах, определяются температурные коэффициенты сопротивлений тензорезисторов в диапазоне воздействующих температур. Далее производится вычисление по ним критерия стабильности и сравнение его с тестовыми значениями. Определяют соответственно первый и вторые критерии стабильности по соотношениям ψτ01j=|(α2j+α4j)-(α1j+α3j)|, ψij02(α)=αij, где α1j, α2j, α3j, α4j, - температурный коэффициент сопротивления 1, 2, 3, 4-ого тензорезистора НиМЭМС в j-ом температурном диапазоне; αij - температурный коэффициент сопротивления i-ого тензорезистора НиМЭМС в j-ом температурном диапазоне. Кроме того, тензоэлементы, перемычки, контактные площадки и выводные проводники соединяют в мостовую измерительную цепь и определяют третьи критерии стабильности по соотношениям ψkj03(α)=αkj, где αkj - температурный коэффициент сопротивления k-ой диагонали мостовой измерительной цепи НиМЭМС в j-ом температурном диапазоне. В случае если значения первого, второго, а также третьего критерия находятся в заданных диапазонах, которые определяются экспериментальным путем по статистическим данным для конкретного типоразмера датчика, то данную сборку передают на последующие операции. 1 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике и может быть использовано для одновременного измерения давления, температуры и теплового потока с компенсацией влияния температуры на результаты измерения давления. Чувствительным элементом (ЧЭ) для измерения давления выбран «кремний на сапфире», состоящий из искусственного сапфира и металлической пленки титана. Дополнительно к сапфировой подложке введены нижняя обкладка, а верхняя обкладка - титановая пленка конденсатора. На сапфире сформирован четырехплечный тензометрический мост (ТМ). Емкостной ЧЭ образован путем расположения между нижней и верхней обкладками конденсатора диэлектрического кольца и защищен от внешних электромагнитных помех экраном. ЧЭ температуры и теплового потока сформирован соосно и симметрично на верхней и нижней поверхностях другой диэлектрической пленки. Пакет конструкции датчика, состоящей из двух частей, собирают в вакууме, располагают внутри корпуса и защищают сеткой. Для электрических соединений предусмотрена клеммная колодка с разъемами и монтажная плата, на которой смонтирована высокоомная защитная схема и усилитель заряда. Полость датчика за мембраной поддерживает связь с атмосферой трубкой с крышками, проходящей сквозь первую часть конструкции датчика. На второй части конструкции датчика выполнены сквозные опорные отверстия не менее 10 штук. Между первой и второй частями конструкции датчика образуется воздушная прослойка. Связь с атмосферой между первой и второй частями конструкции датчика осуществляется опорными трубками и отверстиями. Корпус датчика соединен с общей массой устройства и первой частью конструкции датчика и залит мягким герметиком. Технический результат заключается в возможности одновременно в заданном участке измерять звуковое давление (пульсации, взрывное, ударное, ветровое), давление звука (полное давление), статическое давление (абсолютное, избыточное, дифференциальное), температуру и тепловой поток. 2 ил.

Группа изобретений относится к измерительной технике и может использоваться для измерения перепада давления в условиях работы с возможным воздействием большого перегрузочного давления до 1000 бар. Главной отличительной особенностью заявленной группы изобретений является размещение в корпусе датчика относительно сенсора цилиндрической пластины, в конструкции которой установлены одна либо две (в зависимости от варианта исполнения датчика) компенсационные мембраны, связанные через узкие отверстия, выполненные в корпусе и в самой пластине, с двумя мягкими разделительными мембранами, размещенными по краям обеих частей цилиндрического корпуса, а также одновременно связанных с плюсовой и минусовой полостями чувствительного элемента сенсора, при этом все полости заполнены разделительной жидкостью. Технический результат заключается в повышении надежности работы датчика перепада давления, за счет введения в его конструкцию различных указанных средств защиты от перегрузочного давления. 4 н.п. ф-лы, 4 ил.

Изобретение относится к измерительной технике и может быть использовано для определения величин давления (в том числе высоких и сверхвысоких) и интервалов давлений в камерах синтеза материалов, а также при проведении исследований конденсированных фаз в условиях высоких давлений. Для осуществления способа используется материал с существенными барическими зависимостями электрических параметров. Способ определения статического давления в некалиброванной камере высокого давления включает воздействие электрического поля на материал, измерение значений электрических параметров материала при начальных величинах нагрузки, поэтапное прикладывание к материалу постепенно возрастающей нагрузки и измерение на каждом этапе электрических параметров. По снятым значениям строятся зависимости электрических параметров от прикладываемой нагрузки. Далее нагрузке, при которой наблюдают ярко выраженные особенности поведения электрических свойств материала, сопоставляются величины давления, которое вызывает такие особенности и известное заранее. Данный способ отличается от известных тем, что на материал воздействуют переменным электрическим полем, в качестве электрических параметров применяют вещественную и мнимую части импеданса, а также электропроводность и тангенс угла потерь, принимающий внутри исследуемого интервала давлений единичное значение, с экспоненциальными барическими зависимостями. При увеличении прикладываемой нагрузки определяют такое ее значение, при котором производная вещественной части импеданса по давлению обращается в ноль и одновременно производная мнимой части импеданса по давлению принимает максимальное значение, и сопоставляют нагрузке величину давления Pmax, известную для калибровочного материала заранее, при которой производная вещественной части импеданса по давлению обращается в ноль и одновременно производная мнимой части импеданса по давлению принимает максимальное значение. Техническим результатом является обеспечение возможности определения границ интервала давлений, за счет линейной зависимости давления Pmax от частоты переменного электрического поля, и величин давления из данного интервала, основываясь на свойствах одного калибровочного материала. 7 ил.

Изобретение относится к измерительной технике и может быть использовано для определения выходных характеристик электродвигателя. При реализации способа измеряют давление на подающем трубопроводе, измеряют мгновенные величины токов и напряжений статора асинхронного двигателя, преобразуют трехфазные значения токов и напряжений в двухфазные составляющие токов и напряжений, определяют оцененные составляющие тока статора. Затем вычисляют разницу между оцененными значениями составляющих тока статора и текущими значениями составляющих тока статора, определяют оцененные значения составляющих потокосцеплений ротора. По оцененным значениям составляющих тока статора и потокосцепления ротора определяют электромагнитный момент асинхронного двигателя. С помощью оцененных значений составляющих потокосцепления ротора и разницы между оцененными значениями составляющих тока статора и текущими значениями составляющих тока статора определяют момент нагрузки центробежного насоса. С помощью значений электромагнитного момента асинхронного двигателя и момента нагрузки центробежного насоса определяют текущую угловую скорость вращения рабочего колеса центробежного насоса. Определяют гидравлическую мощность насоса. По значениям гидравлической мощности и скорости вращения ротора определяют действительный расход насосной установки. По значениям действительного расхода насосной установки и давлению на подающем трубопроводе определяют развиваемое насосной установкой давление. Технический результат заключается в повышении точности определения давления жидкости центробежного насоса с асинхронным электроприводом.

Изобретение относится к датчику давления из полупроводникового материала, содержащему корпус (1), образующий камеру (2) под вторичным вакуумом, по меньшей мере один резонатор (3), расположенный в камере и подвешенный при помощи гибких перекладин (4) по меньшей мере к одной упругодеформирующейся диафрагме (3), закрывающей камеру, которая содержит также средства (7, 12) возбуждения резонатора, заставляющие вибрировать резонатор, и средства отслеживания частоты вибрации резонатора. Средства отслеживания содержат по меньшей мере один первый подвешенный пьезорезистивный тензометр (9), один конец которого закреплен на одной из перекладин и один конец которого закреплен на диафрагме. Резонатор и первый тензометр образуют легированные зоны, по существу идентичные по своей природе и по концентрации. Технический результат – повышение чувствительности датчика. 20 з.п. ф-лы, 3 ил.

Использование: измерение давления газа в области низкого и среднего вакуума в диапазоне 0,001-1000 Торр, для измерения адсорбции и конденсации компонентов газа на твердой поверхности вне зависимости от изменения давления и плотности газа.Сущность: в предлагаемом устройстве используются два термочувствительных кварцевых резонатора камертонного типа и полупроводниковый термодатчик. Проводятся измерения импеданса резонаторов в зависимости от давления газа, измерения частоты резонаторов в зависимости от изменения температуры и измерения температуры датчиком температуры. Прибор содержит электронные блоки измерения импеданса и частоты резонаторов, блоков компенсации температурной и адсорбционной погрешностей сигналов изменения импеданса резонаторов и адсорбционной погрешности изменения частоты резонатора, блока преобразования сигналов изменения импеданса резонаторов в сигналы, зависимые от давления газа и от изменения присоединенной массы, адсорбционной массы резонатора. Отображение значений давления газа и относительного изменения присоединенной массы на резонаторе осуществляется с помощью цифровых индикаторов.Техническим результатом заявленного изобретения выступает расширение диапазона измерения вакуумметра, уменьшение погрешности измерения сигнала изменения импеданса резонаторов в зависимости от давления газа, а также расширение функциональных возможностей. 2 ил.

Изобретение относится к герметизации чипа датчика. Осуществляют металлизацию чипа датчика по тороидальному шаблону. При этом тороидальный шаблон соответствует диаметру и толщине стенок коваровой трубки. Совмещают центр чипа датчика с центральной осью торца коваровой трубки. Осуществляют припайку чипа датчика к торцу коваровой трубки для образования узла чипа датчика. Производят металлизацию волокна. Осуществляют сборку металлической втулки с металлизированным волокном путем впайки металлизированного волокна внутрь металлической втулки. Вводят металлическую втулку внутрь коваровой трубки узла чипа датчика. Совмещают торец металлизированного волокна с чипом датчика узла чипа датчика. Производят припайку наружной поверхности металлической втулки к внутренней поверхности коваровой трубки узла чипа датчика. В результате обеспечивается возможность работы при неблагоприятных условиях окружающей среды. 4 н. и 30 з.п. ф-лы, 5 ил.

Изобретение относится к измерительной технике и может быть использовано при мониторинге коррозии. Предложена система (130) измерения скорости коррозии, которая включает первую мембрану (160) из первого материала, выполненную подверженной воздействию коррозионно-активного материала и отклоняющейся в ответ на коррозию. Вторая мембрана (162) выполнена подверженной воздействию коррозионно-активного материала и отклоняющейся в ответ на коррозию. Датчик (134) давления функционально связан с по меньшей мере одной из первой и второй мембран (160, 162) и выполнен с возможностью измерения отклонения по меньшей мере одной из первой и второй мембран (160, 162) как функции давления и степени коррозии по меньшей мере одной из первой и второй мембран (160, 162). Технический результат – повышение точности и достоверности получаемых данных. 21 з.п. ф-лы, 11 ил.

Изобретение относится к измерительной технике. Устройство для измерения давления содержит СВЧ чувствительный элемент в виде металлической полости, часть стенки которой выполнена упругой, соединенный с помощью элемента возбуждения и элемента съема электромагнитных колебаний с электронным блоком, металлическая полость выполнена в виде волновода с упругой одной торцевой стенкой, при этом электронный блок содержит генератор электромагнитных колебаний фиксированной частоты и подключенный к индикатору детектор, подсоединенные с помощью, соответственно, элемента возбуждения и элемента съема электромагнитных колебаний к волноводу у его другой торцевой стенки, а волновод выполнен в виде предельного волновода, для которого частота возбуждаемых в нем электромагнитных волн выбрана ниже минимальной частоты возбуждения в волноводе распространяющихся электромагнитных волн. Технический результат - упрощение конструкции. 1 ил.

Наверх