Способ преобразования изображения

Изобретение относится к способам преобразования многозональной или гиперспектральной видеоинформации, преимущественно для целей дистанционного зондирования. Предложено формировать изображение на основе пофрагментного просмотра получаемой многозональной или гиперспектральной видеоинформации и сравнения матриц межканальных корреляций для каждого фрагмента с матрицей межканальных корреляций для эталона, выбираемого на снимках или из априорных данных. Сравнение может выполняться путем определения их корреляции. Технический результат - снижение размерности исходной видеоинформации и устойчивость к изменениям условий наблюдения. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к способам преобразования многозональной или гиперспектральной видеоинформации, преимущественно для целей дистанционного зондирования. Способ основан на использовании в качестве признаков объектов особенностей в структуре матрицы корреляций видеоинформации, получаемой в разных зонах спектра.

Состояние области

Широко используются различные способы преобразования многозональных изображений, заключающиеся в том, что выполняют съемку одновременно в разных зонах электромагнитного спектра, выбирают наиболее информативные для решаемой задачи зоны спектра, полученные результаты преобразуют в цветокодированное изображение, в котором по цвету определяют ареалы распространения анализируемых объектов (Союз-22 исследует Землю. Наука. М., 1980 г.).

Недостатком многозонального способа является то, что ограниченное число выделенных широких зон спектра не всегда обеспечивает решение поставленной задачи.

Более продвинутыми являются гиперспектральные способы получения и преобразования изображений. Они заключаются в том, что сканируют наблюдаемую область, принимают отраженное от наблюдаемых объектов излучение, раскладывают его в спектр и накапливают (запоминают) видеоинформацию о спектральных характеристиках каждой просматриваемой точки в наблюдаемой области сканирования. При этом формируется видеоинформационный куб, который содержит многоспектральные слои изображений, полученных в результате сканирования. Характерное число таких многоспектральных слоев может быть 200 и более. Например, 242 у ИСЗ «Hyperion» (Imaging Spectrometry: Basic Princip lesand Prospective Applications, Ed. F.D. vander Meerand S.M. deJong, Kluwer Academic Publishers, New York, Boston, Dordrecht, London, Moscow, 2002, 403 pp).

Предложены способы распознавания природных объектов и их состояния по гиперспектральным данным (см. патент RU №2422858, кл. G01V 9/00, опубл. 27.06.2011 г.).

Недостатком гиперспектрального способа преобразования изображений является резкое усложнение выделения необходимой информационной составляющей о наличии и характере анализируемых объектов. Увеличение числа съемочных зон вместе с увеличением объема получаемой информации соответственно увеличивает также и сложность выбора информативной составляющей для решаемых задач. Анализ этой видеоинформации требует выполнения ее целевого преобразования с целью минимизации анализируемого объема данных и оптимизации ее представления.

Эффективным способом сокращения избыточности при использовании многоканальных данных является преобразование полученной видеоинформации методом выделения главных компонент (преобразование Карунена-Лоэва). (Hyvdrinen A, Karhunen J., and Oja Ε., Independent Component Analysis, John Wiley & Sons, Inc., 2001, XVI+481 pp). В основе этого преобразования лежит использование корреляционной зависимости информации в разных зонах спектра. Оно приводит к резкому сокращению объема данных и получению существенно меньшего числа значимых изображений со статистически ортогональной оценкой (см. статью Чабан Л.Н. «Автоматизированная обработка аэрокосмической информации при картографировании геопространственных данных», учебное пособие, М., МИИГАиК, 2013 г.).

Недостатком полученных таким путем изображений является их статистическая оптимальность, не связанная с выделением конкретного объекта. Хотя в целом эти изображения сохраняют объем информации, в частном случае для некого произвольного, но интересующего нас объекта, условия распознавания могут даже ухудшиться.

Известно использование корреляции между изображениями стереопары для выявления их соответствия по характеру пространственной структуры изображения. Широкое применение оно нашло в стереофотограмметрии для получения информации о рельефе наблюдаемой местности (см. статью Лобанов А.Н. «Фотограмметрия», М.: Недра, 1984).

Упоминалось также о наличии характерных физиономичных особенностей корреляционных данных различных классов объектов, получаемых при анализе результатов многозональной или гиперспектральной съемки и потенциальной возможности использования их при интерпретации (см. статью Котцов В.А., Фивенский Ю.И. «Многозональная аэрокосмическая съемка и ее использование при изучении природных ресурсов», ред. Ю.Ф. Книжников, М., изд-во Московского университета, 1976 г.).

Недостатки корреляционных методов проявляются в наличии яркостных вариаций текущего изображения по отношению к эталонному. Особенно влияют на степень корреляционных оценок изменение условий освещения и ракурса наблюдения. В связи с этим корреляционные алгоритмы считают недостаточно устойчивыми к возможным искажениям.

Выявлено, что корреляционная структура спектра оптического сигнала, восходящего от природных образований, имеет характерные особенности, связанные со свойствами наблюдаемых объектов. Отмечено, что эта структура, базирующаяся на корреляции оценок в разных зонах спектра, устойчива к статистической неоднородности массива данных (см. статью Попа Α., Балтер Б.М., Ганзориг М., Егоров В.В., Качински Р. «Особенности корреляционной структуры спектра оптического сигнала, восходящего от зондируемых объектов (на примере морской поверхности)», журнал «Исследование Земли из космоса», №3, 1988, с. 23).

Однако эффективных способов, которые используют для целевого использования особенности структуры корреляционной матрицы между зонами спектра, до настоящего времени предложено не было.

Прототип

В качестве прототипа к предлагаемому техническому решению принят способ преобразования изображений (см. патент RU №2267232, кл. G06K 9/36, G06T 5/00, Η04Ν 1/40, 9/67, опубл. 27.12.2005 г.). Он заключается в том, что производят (многозональную) гиперспектральную съемку. Выбирают эталонный объект по материалам съемки и формируют для него n-мерный вектор признаков. При этом в качестве признаков используют яркости пикселей исходных изображений для этого объекта. Затем поэлементно просматривают результаты съемки в разных зонах спектра, анализируют их яркостное содержание в тех же зонах спектра, а синтез итогового изображения осуществляют так, что каждому текущему элементу синтезируемого изображения присваивают значение, равное расстоянию в n-мерном векторном пространстве признаков между вектором, соответствующим эталону, и вектором, соответствующим элементу просматриваемой исходной видеоинформации.

Недостатком прототипа является недостаточная эффективность сравнения яркостных характеристик, получаемых в разных зонах спектра, при сравнении объектов в произвольных меняющихся условиях наблюдения с эталонными данными.

Предлагаемое техническое решение

Целью предлагаемого технического решения является повышение надежности выявления на многозональном или гиперспектральном изображении областей наибольшего сходства с областью изображения, выбранной за эталон, а также повышение эффективности определения области распространения его на изображении.

Сущность предлагаемого технического решения заключается в том, что производят многозональную или гиперспектральную съемку. По априорным данным в библиотеке спектрометрических данных эталонных объектов, содержащей информацию о естественной изменчивости этих объектов в виде набора вариантов спектра, или по результатам самой съемки по эталонному участку предварительно вычисляют матрицу межканальных корреляций яркости для интересующего объекта (эталона) в этих зонах спектра. Сокращают (уменьшают) число используемых зон спектра, используя набор спектральных каналов, физиономичных для рассматриваемого эталона (эталонов), и отбрасывая каналы с незначимой межканальной корреляцией. Затем пофрагментно просматривают результаты съемки и для каждого из последовательно просматриваемых фрагментов вычисляют матрицу корреляций яркости в тех же выбранных зонах спектра. При этом последовательно сравнивают матрицу корреляций яркости, полученную для каждого из этих фрагментов, с корреляционной матрицей интересующего объекта (эталона), а по результатам этого сравнения формируют синтезированное изображение.

Наиболее эффективно такое сравнение выполняют вычислением величины корреляции между матрицами корреляций яркости, полученных для каждого из последовательности фрагментов исходного изображения, и априорной корреляционной матрицей интересующего объекта (эталона). Получаемую при этом оценку (вторичная или «двойная корреляция») представляют изображением, в соответствии с произведенным пофрагментным просмотром. Оно отражает степень сходства всей совокупности характеристик пространственно-спектральной изменчивости различных участков территории с соответствующими характеристиками эталонного объекта (или различных объектов, если формируется несколько результирующих изображений).

Сравнение выполняют вычислением величины корреляции по набору связных подмножеств спектральных каналов корреляционных матриц фрагментов исходного изображения и интересующего объекта (эталона), причем спектральные каналы этих подмножеств должны находиться во взаимно-однозначном соответствии для обеих сравниваемых корреляционных матриц. Выбор сравниваемых подмножеств производится экспертным путем, в зависимости от того, пространственно-спектральную изменчивость каких характеристик объекта предполагается отразить на результирующем изображении. Уменьшение используемого подмножества каналов приводит к ускорению счета.

Для повышения эффективности визуального восприятия получаемая оценка величины корреляции при сравнении с эталоном может кодироваться цветом. В этом случае ареал распространения интересующего объекта на изображении легко прослеживается по цвету.

В некоторых случаях цветовое кодирование может использоваться для одновременного сравнения распространения разных объектов - факторов. Наиболее эффективно использовать результаты анализа для трех объектов (эталонов). Для этого их поэлементно совмещают в одно изображение, предварительно окрашивая их в основные цвета (красный, зеленый и синий для позитивного или пурпурный, желтый и голубой для негативного отображения).

В случае пространственного разделения разных объектов - факторов их можно пофрагментно совместить в формируемое изображение в соответствии с величиной полученной оценки и окрасить для представления в разные цвета.

Пример реализации

Предложенное техническое решение легко осуществляется существующими техническими средствами обработки видеоинформации. В качестве примера реализации предлагаемого способа использованы материалы съемки гиперспектрометром AVIRIS, выполненные с самолета в районе лесного пожара. На фиг. 1 представлено изображение района лесного пожара, выполненное в нормальном цветном отображении.

В качестве объектов (эталонов) на этой территории были выбраны участки возгорания с разными характерными особенностями. Затем для этих участков по результатам гиперспектральной съемки было выполнено описанное преобразование. На фиг. 2 (а, б и в) показаны полученные результаты анализа распространения лесного пожара. Белый цвет на снимке: величина корреляции 0, черный: корреляция 1. Они были получены путем пофрагментной оценки и корреляционного сравнения наблюдаемой области лесного пожара с 3 образцами корреляционных характеристик, полученных на эталонных участках, отмеченных квадратами: на снимке а, показанном слева, выделен главный очаг пожара, на снимке 6, показанном в центре, выделен фронт горения, а на правом снимке выделена область множества мелких возгораний. Видно, что пространственная структура области высоких корреляций с эталоном (темное на изображении) принципиально различается в зависимости от того, что принято за эталон. Эта особенность корреляционной структуры в каждом случае позволяет выявить в исходной видеоинформации разную в смысловом отношении видеоинформацию - области очагов, фронтов и мелких возгораний по всей территории, охваченной снимком.

Положительный эффект

Предлагаемый способ достаточно ясный по смыслу и простой в реализации и позволяет быстро получать легко интерпретируемый результат. Он достаточно просто адаптируется к любому спектрально характерному объекту и приводит к резкому сокращению объема представляемой для последующего анализа видеоинформации. Следует заметить, что, так же, как и при традиционном цветокодировании результатов многозонального анализа, эффективность способа зависит от выбора спектрального диапазона, числа и ширины используемых зон спектра и спектральных особенностей фона, на котором производится поиск объекта.

Выбор в качестве критерия величины корреляции существенно снижает зависимость получаемого результата от изменения условий наблюдения вследствие того, что это нормированный параметр. Предлагаемый способ является устойчивым к изменению освещенности и положения объекта в поле зрения съемочной системы. Вместе с тем, поскольку этот параметр носит комплексный характер, связанный с набором зон спектра, то он будет избирателен к индивидуальным особенностям объекта, а получаемый результат максимально снижает размерность признаков после преобразования. Как видно из примера реализации, результат целевого анализа может быть представлен одним черно-белым изображением.

Применение цветового кодирования получаемой видеоинформации позволит увеличить эффективность прослеживания степени подобия и областей распространения анализируемых объектов, подобных эталону.

Предлагаемый способ может быть использован в наземных и бортовых комплексах обработки многозональной и гиперспектральной видеоинформации дистанционного зондирования для получения целевой информации о распространении объектов с заданными характеристиками, а также для резкого сокращения объема передаваемой целевой видеоинформации.

1. Способ преобразования изображения, заключающийся в том, что производят многозональную или гиперспектральную съемку, выбирают объект (эталон) и формируют для него признак, а затем пофрагментно просматривают результаты съемки и по сравнению признаков преобразуют полученные значения яркости в разных зонах спектра к синтезированному изображению, отличающийся тем, что в качестве признака предварительно вычисляют матрицу межканальных корреляций яркости между зонами спектра для интересующего объекта (эталона) по априорным спектрометрическим данным или выбранному известному участку в результатах съемки, при этом после вычисления матриц межканальных корреляций яркости сокращают число используемых зон спектра, используя только набор спектральных каналов, значимых (физиономичных) корреляций для рассматриваемого объекта (эталона), и отбрасывают каналы с незначимой межканальной корреляцией, а затем для каждого из последовательно просматриваемых фрагментов исходной видеоинформации вычисляют матрицу межканальных корреляций яркости в тех же зонах спектра, и сравнивают эту матрицу межканальных корреляций с корреляционной матрицей выбранного интересующего объекта (эталона), при этом определяют коэффициент корреляции между этими матрицами, а по результатам этого определения пофрагментно формируют синтезированное изображение.

2. Способ по п. 1, отличающийся тем, что повторяют те же операции для другого интересующего объекта (эталона), при этом выбирают набор спектральных каналов со значимыми (физиономичными) корреляциями только для этого нового объекта (эталона), а затем в формируемом изображении совмещают результаты оценок, полученных для разных объектов (эталонов), окрашивая их разным цветом.



 

Похожие патенты:

Использование: для обработки одного или более восстановленных изображений. Сущность изобретения заключается в том, что способ для обработки одного или более восстановленных изображений включает в себя прием первого восстановленного изображения, имеющего первое разрешение изображения, и прием второго восстановленного изображения, имеющего второе разрешение изображения.

Изобретение относится к области получения цифровых изображений с увеличенным динамическим диапазоном. Технический результат - обеспечение повышения быстродействия и оперативности работы видеоинформационных устройств.

Изобретение относится к системам проецирования изображений. Техническим результатом является повышение качества отображения проецируемого изображения при проецировании с двойным наложением.

Изобретение относится к технологиям обработки видеоизображений. Техническим результатом является сокращение памяти, необходимой для хранения видеоизображений, за счет того, что каждое из видеоизображений запоминается с разрешением, пропорциональным весовому коэффициенту.

Изобретение относится к области обработки изображений. Техническим результатом является повышение качества исходных фрагментов изображений за счет осуществления фильтрации.

Изобретение относится к средствам проецирования изображений. Техническим результатом является повышение качества отображения проецируемого изображения при проецировании с двойным наложением.

Изобретение относится к обработке видео для временного полуавтоматического дополнения видео, такого как назначение информации глубины для преобразования монокулярной видеопоследовательности в стерео или назначение цветовой информации для преобразования полутонового видео в цветное.

Изобретение относится к области генерирования изображений. Технический результат - упрощение способа сравнения объектов в том случае, когда требуется одновременно сравнить макроскопическую форму объектов и их микроскопические признаки.

Изобретение относится к системам визуализации медицинских данных. Техническим результатом является повышение точности реконструкции изображения всего визуализируемого объекта, за счет осуществления реконструкции изображения объекта, полученного посредством сбора данных визуализации от детектора, смещенного от центра вращения.

Изобретение относится к средствам обработки цифровых изображений. Техническим результатом является получение резкого изображения объемного объекта с неограниченной глубиной резкости.

Группа изобретений относится к медицинской технике, а именно к средствам обработки изображений и видеоданных изображения глаз собеседников во время проведения видеочатов, видеоконференций. Способ машинного обучения предиктора для коррекции ориентации взгляда на изображении состоит в том, что получают множество пар изображений, содержащих внутри каждой пары изображения одного и того же человека, определяют положения глаз на каждой паре изображений, обучают предиктор, выдающий корректирующий вектор смещения, так чтобы для каждой пары изображений при замене цветовых компонент каждого пикселя первого изображения из пары на цветовые компоненты другого пикселя первого изображения из пары, смещенного согласно предсказанию предиктора, получилось изображение, максимально похожее на второе изображение пары и сохраняют предиктор. Способ коррекции изображения глаз характеризуется тем, что загружают предиктор, получают, по крайней мере, один кадр лица человека, определяют положения глаз человека на изображении и формируют две прямоугольные области, близко описанные вокруг глаз, заменяют цветовые компоненты каждого пикселя в области глаз на цветовые компоненты пикселя, смещенного согласно предсказанию предиктора машинного обучения. Техническим результатом изобретений является повышение точности коррекции изображения глаз при уменьшении ресурсоемкости процесса обработки видеоизображения. 2 н. и 11 з.п. ф-лы, 4 ил.

Изобретения относятся к медицинской технике, а именно к средствам для формирования изображений. Устройство для формирования изображений объекта, обеспечивающее осуществление способа формирования изображений, содержит представляющий изображение блок для предоставления первого изображения объекта и второго изображения объекта, причем первое изображение имеет более низкий уровень шума, чем второе изображение, предоставляющий окно дисплея блок для предоставления окна дисплея, причем окно дисплея отражает диапазон значений изображения, представляемого на дисплее, и объединяющий блок для формирования объединенного изображения посредством объединения первого изображения и второго изображения в зависимости от ширины окна предоставляемого окна дисплея. Носитель данных, на котором хранится компьютерная программа для формирования изображения объекта, причем компьютерная программа побуждает устройство для формирования изображений осуществлять этапы способа формирования изображений. Изобретения позволяют формировать изображения с меньшим уровнем шума. 3 н. и 12 з.п. ф-лы, 2 ил.

Изобретение относится к технологиям обработки электронных документов. Техническим результатом является обеспечение классификации изображений документов на основе функции классификации. Предложен способ для классификации изображений документов. Способ содержит этап, на котором получают изображение документа с помощью устройства обработки. Далее, согласно способу, представляют цветовую карту изображения. А также, осуществляют извлечение одного или более цветовых слоев из представления цветовой карты изображения. Далее, вычисляют значения одного или более параметров изображения документа, на основании информации из цветовых слоев изображения документа. 3 н. и 17 з.п. ф-лы, 5 ил.

Группа изобретений относится к технологиям обработки изображений. Техническим результатом является улучшение четкости отображения комбинации целевого приложения и фонового изображения. Предложен способ обработки изображения. Способ включает в себя этап определения изображения целевого приложения и реальной среды, где целевое приложение должно находиться в соответствии с запуском события предварительного просмотра. Далее, согласно способу, получают фоновое изображение экрана в соответствии с реальной средой, где должно находиться целевое приложение. А также осуществляют выполнение обработки изображения для по меньшей мере одного изображения из изображения целевого приложения и фонового изображения экрана так, что значимость изображения целевого приложения выше, чем фонового изображения экрана. Осуществляют вывод комбинации изображения целевого приложения и фонового изображения экрана в среде предварительного просмотра. 2 н. и 6 з.п. ф-лы, 12 ил.

Изобретение относится к технологиям анализа градуировок изображения. Техническим результатом является обеспечение адаптации кодирования изображаемых сцен, обеспечивающей высококачественную визуализацию изображений. Предложен способ анализа разницы, по меньшей мере, двух градуировок изображения. Способ содержит этап, на котором получают первый градуированный кадр LDR с первым динамическим диапазоном яркости. Далее согласно способу получают данные, кодирующие градуировку второго градуированного кадра HDR со вторым динамическим диапазоном яркости. Причем первый и второй динамические диапазоны яркости являются низким и высоким динамическими диапазонами яркости. Далее согласно способу определяют структуру данных разницы градуировки, содержащей характеристику, по меньшей мере, одной области, в которой присутствует разница в градуировке между первым и вторым градуированным кадром. 2 н. и 6 з.п. ф-лы, 8 ил.

Способ генерации изображения образца включает захват первого двухмерного изображения подложки области поверхности образца с использованием первой модальности захвата изображения; захват второго двухмерного изображения подложки области поверхности с использованием второй модальности захвата изображения, которая отличается от первой модальности захвата изображения; пространственное выравнивание первого двухмерного изображения подложки, основываясь на втором двухмерном изображении подложки; генерацию первого скорректированного двухмерного изображения подложки на основе местоположений по меньшей мере одного материала на втором двухмерном изображении подложки. Вторая модальность захвата изображения обеспечивает более высокую точность в отношении местоположений по меньшей мере одного материала на области поверхности, чем первая модальность захвата изображения. Технический результат – получение изображений с более высокой точностью и согласованностью. 6 н. и 23 з.п. ф-лы, 38 ил.

Изобретение относится к способам обработки изображений при ангиографическом методе исследования кровеносных сосудов, а именно к способам формирования составного параметрического изображения из серии ангиографических цифровых субтракционных кадров. В серии ангиографических цифровых субтракционных кадров выделяют наборы диагностически значимых субтракционных кадров. Для каждого набора диагностически значимых субтракционных кадров формируют параметрическое изображение с учетом цветной или полутоновой шкалы, синхронизированной с референтными временными точками, выбранными в соответствии с фазами физиологических циклов в организме пациента. Составное изображение для серии ангиографических цифровых субтракционных кадров формируют за счет сочетания значений элементов, расположенных на совпадающих позициях в параметрических изображениях. Способ позволяет повысить качество визуализации состояния сосудистой системы пациента за счет сохранения повторяемости результата кодирования параметрического изображения, устранения потери информации о сосудах в местах наложения их проекций и увеличения контрастности изображений артерий и вен на составном параметрическом изображении. 4 з.п. ф-лы, 6 ил.

Группа изобретений относится к технологиям обработки изображений, а именно к системам генерации фильтра изображения. Техническим результатом является повышение точности самостоятельно заданного фильтра изображения за счет преобразования группы подобных изображений в изображение с эффектом фильтра. Предложен способ для генерирования фильтра изображения. Способ содержит этап, на котором получают выбранное изображение с эффектом фильтра. Далее согласно способу получают группу подобных изображений посредством использования изображения с эффектом фильтра, при этом группа подобных изображений содержит, по меньшей мере, одно подобное изображение с подобной структурой, как у изображения с эффектом фильтра, но без эффекта фильтра. Далее согласно способу вычисляют отношение отображения для преобразования группы подобных изображений в изображение с эффектом фильтра и используют отношение отображения в качестве фильтра изображения. 3 н. и 4 з.п. ф-лы, 6 ил.

Изобретение относится к способам обработки изображений при ангиографическом методе исследования кровеносных сосудов, а точнее к способам формирования составного параметрического изображения из серии ангиографических цифровых субтракционных кадров. Способ включает: получение серии ангиографических цифровых субтракционных кадров, выделение базового набора диагностически значимых субтракционных кадров из серии ангиографических цифровых субтракционных кадров, формирование композитного изображения из базового набора диагностически значимых субтракционных кадров. Для каждой позиции композитного изображения находят заданное значение яркости элементов изображения, соответствующих этой позиции на кадрах базового набора диагностически значимых субтракционных кадров и задают яркость элемента композитного изображения, расположенного на данной позиции, в соответствии с найденным значением яркости. Выделяют набор корректируемых кадров из серии ангиографических цифровых субтракционных кадров, ограниченный кадрами, соответствующими референтным временным точкам, связанным с фазами физиологических циклов в организме пациента. Перед формированием композитного изображения корректируют яркость для каждого кадра из набора корректируемых кадров в соответствии с коэффициентом искажения яркости для каждого изображения, где максимальный коэффициент искажения яркости изображения ставят в соответствие кадру, соответствующему моменту максимального капиллярного наполнения, минимальный коэффициент искажения яркости изображения ставят в соответствие первому и последнему кадру набора корректируемых кадров, коэффициенты искажения яркости изображения для других кадров набора корректируемых кадров получают интерполяцией. Выделяют по меньшей мере один дополнительный набор диагностически значимых субтракционных кадров, для каждого из которых формируют композитное изображение. Составное изображение для серии ангиографических цифровых субтракционных кадров формируют за счет сочетания композитных изображений посредством усреднения яркости элементов, расположенных на совпадающих позициях композитных изображений. Способ позволяет сохранить малый объем контрастного вещества, вводимого в сосудистую систему пациента при увеличении диагностической ценности изображения. 5 з.п. ф-лы, 8 ил.

Группа изобретений относится к технологиям формирования изображений. Техническим результатом является устранение артефакта «эффект решетки» при формировании изображения высокого разрешения. Предложена система формирования изображений. Система содержит экран дисплея, состоящий из первой и второй половины экрана. Система также содержит средство переноса, содержащее первый и второй светоделители, причем первый светоделитель расположен в окрестности первой половины экрана дисплея, а второй светоделитель расположен в окрестности второй половины экрана дисплея. Система также содержит первый и второй оптические затворы, причем первый оптический затвор прикреплен к первому светоделителю, а второй оптический затвор прикреплен ко второму светоделителю и объектив переноса, расположенный между первым и вторым светоделителями. 3 н. и 44 з.п. ф-лы, 7 ил.

Изобретение относится к способам преобразования многозональной или гиперспектральной видеоинформации, преимущественно для целей дистанционного зондирования. Предложено формировать изображение на основе пофрагментного просмотра получаемой многозональной или гиперспектральной видеоинформации и сравнения матриц межканальных корреляций для каждого фрагмента с матрицей межканальных корреляций для эталона, выбираемого на снимках или из априорных данных. Сравнение может выполняться путем определения их корреляции. Технический результат - снижение размерности исходной видеоинформации и устойчивость к изменениям условий наблюдения. 1 з.п. ф-лы, 2 ил.

Наверх