Эффективный способ определения режимных значений случайных геофизических величин

Изобретение относится к способам определения режимных значений геофизической величины W - скорости ветра, высоты волнения, температуры воздуха. Геофизическую величину W многократно измеряют, по результатам измерений формируют временной ряд данных W(t) и, с использованием ряда данных измерений W(t), строят эмпирическую вероятностную функцию обеспеченности F(W), затем для нее определяют аналитическую аппроксимацию функции обеспеченности Fap(W), которую экстраполируют за пределы максимального значения данных измерений WM до значения заданного вероятностного режима, по которому определяют искомое режимное значение геофизической величины. Аналитическую аппроксимацию Fap(W) выполняют в виде полинома степени n, коэффициенты которого определяют известным способом в логарифмических координатах для функций обеспеченности и в линейных координатах для геофизической величины W. Нижнюю Wlo и верхнюю Whi границы области построения аппроксимации [Wlo, Whi] и степень полинома n подбирают такими, чтобы значение логарифма аппроксимирующей функции Fap(WM), взятой в точке максимального значения данных измерений WM, было больше соответствующего значения эмпирической функции F(WM) на величину, не превышающую погрешности Δ для F(WM), которую определяют по данным измерений. Способ позволяет повысить достоверность получаемых оценок режимных величин. 1 з.п. ф-лы, 6 ил.

 

Область техники

Предлагаемое изобретение относится к методам определения экстремальных значений по измеренным временным рядам геофизических параметров окружающей среды (например, ветер, волны, течения, температура, давление и т.д.), которые могут наблюдаться (появляться) в заданной географической точке один раз в заданное число лет, например в 10, 30, 50 и 100 лет. Такие величины называются режимными, а вероятности повторения один раз в 30, 50 или 100 лет - режимами [1].

Все виды указанных режимных значений широко используются на практике при оценках риска индустриальной деятельности человека. В частности, в научной и прикладной литературе имеется большое число справочников, атласов и пособий, в которых представлены режимные характеристики волн и ветра для различных акваторий [2, 3]. Полученные результаты широко применяются для решения большого числа практических задач: береговое строительство, безопасность судоходства, морская индустрия нефти и газа, экология, курортное дело и т.п.

Далее все вопросы режимных значений обсуждаются на примере величин скорости ветра и высот волнения, хотя сам предлагаемый способ распространяется на любые случайные геофизические ряды, полученные в результате наблюдений.

Уровень техники

В основе определения режимных значений геофизических величин W используются их долговременные ряды W(t), полученные путем измерений. Здесь t означает набор моментов времени. Сами ряды могут иметь различное происхождение: либо как результаты измерения, либо как результаты моделирования, выполненного при помощи надежных и верифицированных гидродинамических моделей. Для способа определения режимных значений такие ряды считаются эквивалентными и взятыми из измерений (т.е. эмпирическими).

Существует множество подходов к определению режимных значений в заданной географической точке. Главные из этих методов подробно описаны в литературе [1] на примере рядов ветра и высот волн. В основе всех этих методов, как правило, лежат три процедуры (пояснения формул приведены ниже):

1) построение дискретной гистограммы H(Wi) измеренного ряда случайных величин W и построение соответствующей дискретной эмпирической функции обеспеченности F(Wi), выполняемое по известной процедуре;

2) построение аналитической аппроксимации Fap(W) эмпирической функции обеспеченности F(Wi), которое выполняется в каждом применяемом способе по-разному;

3) выполнение экстраполяции аналитической функции обеспеченности Fap(W) за пределы максимального значения ряда данных WM до уровня заданного режима.

Приведем пояснения.

Во-первых, дискретные функции H(Wi) и F(Wi) являются безразмерными, а размерность переменной W определяется ее физическим содержанием и далее не существенна.

Второе. Для гистограммы H(Wi) формулы нет, ее строят в графическом виде. Она строится по ряду измеренной случайной величины W(t) путем подсчета числа попаданий значений величины W в интервал Wi<W≤Wi+ΔW для заданного шага дискретности ΔW и фиксированного набора значений рассматриваемой величины Wi=i*ΔW. Математически, отношение H(Wi)/ΔW соответствует плотности вероятности P(W) для случайной величины W[1], поэтому гистограмма H(Wi) представляет собой эмпирическое представление плотности вероятности P(W) для измеренной случайной величины.

Плотность вероятности P(W) однозначно определяет эмпирическую интегральную функцию обеспеченности измеренного ряда F(W0), которая задает вероятность того, что случайная величина W может достигать значения W0. Функция F(W) определяется через функцию плотности вероятности P(W) или гистограмму H(Wi) при помощи соотношений

где WM есть измеренное максимальное значение ряда. В соотношении (1) знак означает приближенное равенство, достигаемое при малых ΔW и больших WM. Величины H(Wi) и F(W) не имеют размерности, и поэтому формула (1) применима для любых измеряемых величин (ветер, волны, температура, давление и т.п.).

Третье. Все построения обычно делаются в виде графиков. Примеры построения гистограмм H(Wi) и функций обеспеченности F(W) для скорости ветра приведены на Фиг. 1а, б. Эти кривые построены по рядам измерений на буях, расположенных в Индийском океане [4]. Номера буев указаны на рисунках.

Эмпирическая, т.е. полученная из измерений, функция F(W) (Фиг. 1б) используется для определения режимных значений случайных величин путем ее экстраполяции за пределы максимальной измеренной скорости ветра WM до уровня заданного режима.

Экстраполяция функции F(W) нужна для определения режимного значения случайной величины W, поскольку для заданного режима оно выходит за пределы максимального измеренного значения WM. Так, на Фиг. 1а максимальное в ряду значение силы ветра составляет 16 м/с, а вероятность его появления, согласно Фиг. 1б, имеет порядок (2-3)10-3. Для получения режимного значения скорости ветра, появляющегося один раз в 30 лет, т.е. в режиме один раз в 30 лет, следует оценить соответствующую обеспеченность данного режима. Например, при дискретности наблюдения 8 раз в сутки, искомая вероятность (режим) равна величине F(W)=1/(365*8*30)=1,14·10-5. Экстраполируя эмпирическую функцию F(W) до уровня режима 1,14·10-5, согласно Фиг. 1б, получим, что режимное значение скорости ветра, возможное один раз в 30 лет, приблизительно равно 25 м/с.

Основная проблема в оценке режимных характеристик заключается в обеспечении требования однозначности и достоверности выполняемой экстраполяции функции F. Ясно, что неточность в экстраполяции приводит к неточности режимной оценки.

Как правило, решение проблемы экстраполяции функции распределения превращается в отдельное самостоятельное исследование (см. описание методов в [1, 5]). Например, для статистического оценивания экстремальных величин, возможных 1 раз в N лет, в способе BOULVAR [1] используется целая система стохастических моделей. На этой основе созданы справочники нового поколения по ветру и волновому климату [2].

Все другие способы требуют иных, но столь же сложных и неоднозначных действий [5]. Неоднозначность обусловлена практической необходимостью всегда строить гипотезы о том, какой интегральной совокупностью факторов должна определяться экстремальность геофизического процесса. Именно эти гипотезы снижают степень достоверности полученных значений. В итоге, как указано в [1, 5], явно приоритетных способов экстраполяции эмпирической функции обеспеченности F(W) пока не установлено. Физически это объясняется тем, что геофизические величины, как правило, подвержены многомасштабной изменчивости, а универсальное распределение, единым образом ее описывающее, в природе может и не существовать.

Из сказанного следует, что проведение упомянутых режимных исследований весьма затруднительно и требует большого времени. Поэтому необходимы иные, более эффективные, т.е. более быстрые, но достаточно точные способы построения достоверных экстраполяций эмпирических функций обеспеченности F(W), которые статистически соответствуют данным измерений.

В данной заявке предлагается новый эффективный способ, повышающий достоверность получаемых оценок режимных величин.

Раскрытие изобретения

Для достижения искомого технического результата - повышения эффективности определения режимных значений геофизических величин, заданных данными измерений, в предлагаемом способе нами учитываются следующие обстоятельства, которые требуют выполнения новых технологических действий.

1. Поскольку значения функции F(W), полученной по данным измерений, крайне малы по величине, то аппроксимацию Fap(W) и ее дальнейшую экстраполяцию проводят в логарифмических координатах для F(W), сохраняя линейные координаты по переменной W. Такой прием повышает точность аппроксимации именно малых величин.

2. Нами установлено, что для выполнения последующей экстраполяции Fap(W) эмпирической функции обеспеченности F(W), главную роль играют только малое число N (не более 10) последних значений эмпирической функции F(W), т.е. малая область вблизи максимального измеренного значения ряда WM. Такая область, называемая далее областью построения аппроксимации Fap(W), обозначается символом [Wlo, Whi] и задается выражением

где Wlo есть нижняя, a Whi - верхняя границы области построения аппроксимации.

3. С целью повышения точности, аналитическую аппроксимацию логарифма эмпирической функции ln{F(W)} (см. п. 1 выше), в области построения [Wlo, Whi], следует выполнять путем представления логарифма искомой функции аппроксимации ln{Fap(W)} в виде полинома степени n, т.е. в виде

а его коэффициенты А0, A1, …, An, определять любым известным методом (например, методом наименьших квадратов), встроенным в стандартное обеспечение компьютера (например, пакет программ EXEL). При этом надо использовать только те полиномы, которые монотонно спадают по величине, и для которых выполняется условие

где N - число дискретных точек функции F(W) в области построения аппроксимации (2).

При таком способе построения аппроксимации Fap(W) (и ее экстраполяции) достигаются, как высокая точность Fap(W), так и простота ее получения, что и представляет техническое преимущество перед имеющимися аналогами (см. раздел «уровень техники»). Это преимущество, обеспечивающее повышение эффективности определения режимных величин (точность, быстрота, надежность), составляет основной технический результат предлагаемого способа.

4. Для обеспечения наибольшей достоверности аппроксимации Fap(W), параметры ее построения: n, Wlo и Whi подбирают так, чтобы значение аппроксимации Fap(WM) в точке максимальной величины данных измерений W=WM превышало значение исходной, «эмпирической» функции F(WM), полученной по данным измерений. Это важное новое техническое требование. Оно обусловлено тем, что при измерениях нет гарантий замера именно максимального значения измеряемой случайной переменной, в силу временной дискретности наблюдений. Но, на указанное выше превышение накладывают условие нахождения аппроксимации Fap(W) в пределах эмпирической точности измерений вида

где Δ - эмпирическая погрешность величины ln{F(WM)}, которую определяют по данным измерений. Именно условие (5) обеспечивает повышение достоверности определения вида Fap(W) и, как следствие, точности режимных величин для заданного измеренного ряда.

Нами установлено, что в координатах натурального логарифма, т.е. для величины ln{F(WM)}, максимальное значение погрешности есть Δ=ln(2)≈0.7. В реальных измерения она может быть и меньше, что требует ее определения. На данном этапе разработки метода, при использовании условия (5) следует брать указанную величину Δ.

5. Для обеспечения оптимального выбора аппроксимации Fap(W), проводят ее оптимизацию путем варьирования параметров n, Wlo и Whi, т.е. выбирают вариант с минимальной среднеквадратичной ошибкой отклонения δ функции Fap(W) от исходной эмпирической функции F(W) в области Wlo≤W≤Whi. Величину 6 рассчитывают по известной формуле

В (6) первый сомножитель под корнем есть обратное число N используемых точек в области построения аппроксимации [Wlo, WM], a Fap(W; n) означает, что аппроксимация задается полиномом порядка n.

Возможность реализации

Пример реализации предлагаемого способа определения режимных характеристик приводится на Фиг. 2-4. Все приводимые результаты получены с применением широко распространенного пакета программ EXEL Microsoft office.

Так, например, на Фиг. 2а приведены результаты построения гистограммы Н (обозначенной Hysto) и функции обеспеченности F (обозначенной Prov) для эмпирического 30-летнего ряда высот волнения Hs(t) в центральной точке Аравийского моря (Индийский океан), а на Фиг. 2б дана аналитическая аппроксимация «хвоста» F(Hs) по предлагаемому способу (уравнение аппроксимации приведено на фигуре). Наличие двух максимумов на гистограмме Фиг. 2а явно указывает на то, что для построения аппроксимации F(Hs) пригодны только значения эмпирической функции обеспеченности F(Hs), для которых высота волн Hs>4 м, что и показано на Фиг. 2б.

Как видно из Фиг. 2б, уже для полинома 2-й степени наблюдается прекрасное совпадение аппроксимации Fap(Hs) с эмпирической функцией F(Hs) в области построения аппроксимации с высокой величиной статистической достоверностью аппроксимации: R2=0.9994. Ее экстраполяция (линия 3) за пределы измеренных максимальных волн HsR=7,3 м, дает возможность определять любые режимные значения. Например, режиму 1 раз в 100 лет соответствует режимное значение HsR100 = 7,8 м.

Для той же гистограммы, использование полинома 4-й степени (Фиг. 3) оказывается неприемлемым, в силу невыполнения условия (5). Но, например, уже для центральной точки в Бенгальском заливе (Индийский океан) (Фиг. 4), более точной является именно аппроксимация F(Hs) полиномом 4-й степени (режимное значение HsR100 = 8,6 м).

Таким образом, реализация метода действительно демонстрирует простоту, надежность, и возможность получения искомых величин с высокой достоверностью.

Источники информации

1. Лопатухин Л.И. Ветровое волнение: Учеб. пособие. 2-е изд. СПб.: ВВМ. - 2012. - 165 с.

2. Справочные данные по режиму ветра и волнения Берингова и Белого морей. / Ред. Лопатухин Л.И., Бухановский А.В., Чернышева Е.С. / Российский Морской Регистр Судоходства. - 2010. - 565 с.

3. Coastal Engineering manual for Coastal Engineering, US Army Corps of Engineers (CEMCE), 2003. http://publications.usace.army.mil/publications/eng-manuals.

4. Polnikov V.G, Pogarskii F.A. Short-Term Variability of Wind and Waves, Based on Buoy Measurements and Numerical Simulations in the Hindustan Area // Marine Science. - 2013. - №3. - P. 48-53.

5. Caires S., Sterl A. 100-Year Return Value Estimates for Ocean Wind Speed and Significant Wave Height from the ERA-40 Data // J. Climate. - 2005. - V. 18, #4. - P. 1032-1048.

1. Способ определения режимных значений геофизической величины W - скорости ветра, высоты волнения, температуры воздуха, в котором геофизическую величину W многократно измеряют, по результатам измерений формируют временной ряд данных W(t) и, с использованием ряда данных измерений W(t), строят эмпирическую вероятностную функцию обеспеченности F(W), затем для нее определяют аналитическую аппроксимацию функции обеспеченности Fap(W), которую экстраполируют за пределы максимального значения данных измерений WM до значения заданного вероятностного режима, по которому определяют искомое режимное значение геофизической величины, отличающийся тем, что аналитическую аппроксимацию Fap(W) выполняют в виде полинома степени n, коэффициенты которого определяют известным способом в логарифмических координатах для функций обеспеченности и в линейных координатах для геофизической величины W, а нижнюю Wlo и верхнюю Whi границы области построения аппроксимации [Wlo, Whi] и степень полинома n подбирают такими, чтобы значение логарифма аппроксимирующей функции Fap(WM), взятой в точке максимального значения данных измерений WM, было больше соответствующего значения эмпирической функции F(WM) на величину, не превышающую погрешности Δ для F(WM), которую определяют по данным измерений.

2. Способ по п. 1, отличающийся тем, что при построении аппроксимации функции обеспеченности Fap(W), границы области построения аппроксимации Wlo и Whi и порядок полинома n несколько раз изменяют и выбирают из этой серии проб тот вариант аппроксимации, для которого среднеквадратичное отклонение аппроксимирующей функции Fap(W) от эмпирической функции обеспеченности F(W) является минимальным в области построения аппроксимации [Wlo, Whi].



 

Похожие патенты:

Изобретение относится к области вычислительной техники и может быть использовано в системах анализа и обработки изображений, цифровом телевидении. Техническим результатом является уменьшение погрешности восстановления изображений за счет повышения точности поиска похожих блоков путем учета текстурных особенностей изображений.

Изобретение относится к вычислительной технике, а именно к системам обработки изображений. Техническим результатом является уменьшение погрешности определения расстояния от объектов сцены до камеры сенсора.

Изобретение относится к вычислительной технике, а именно к системам обработки изображений. Техническим результатом является уменьшение погрешности восстановления изображений.

Изобретение относится к вычислительной технике и может быть использовано в системах цифровой обработки информации с высокими требованиями к частотной избирательности выполнения фильтрации.

Изобретение относится к области обработки электрических сигналов, а именно к методам удаления импульсной помехи из электрического сигнала. Техническим результатом предлагаемого способа является повышение чувствительности и точности определения отсчета с импульсной помехой.

Изобретение относится к области вычислительной техники, а именно к анализу и обработке изображений. Технический результат - обеспечение реконструкции значений пикселей динамических двумерных сигналов в условиях неполной априорной информации.

Изобретение относится к устройствам прогнозирования результатов измерений. Технический результат заключается в повышении достоверности результатов измерения за счет адаптации времени прогноза.

Изобретение относится к активной радио- и ультразвуковой локации и, в частности, может быть использовано для подповерхностного зондирования. Согласно способу генерируют и облучают объект радио- и ультразвуковыми волнами различных частот и независимо регистрируют амплитуды, фазы и поляризации принятых волн.

Изобретение относится к испытательной технике и может быть использовано для обработки предварительно зарегистрированных однократных или редко повторяющихся нестационарных сигналов, сопровождаемых широкополосным стационарным процессом, например вибрационным.

Изобретение относится к области цифровой вычислительной техники и может быть использовано в автоматических и автоматизированных системах различного назначения для идентификации параметров.

Изобретение относится к вычислительной технике и может быть использовано в специализированных устройствах обработки информации. Техническим результатом является повышение быстродействия при фиксированных точностных характеристиках и программно-аппаратурных затратах. Устройство содержит блок нормализации аргумента, блок вычисления полинома, блок нормализации функции, блок управления. 8 з.п. ф-лы, 2 ил., 5 табл.

Изобретение относится к области вычислительной техники. Технический результат - обнаружение и устранение аномальных измерений при фиксированном значении вероятности ложной тревоги. Устройство содержит блок хранения результатов измерений, коммутаторы, блок разбиения на интервалы, генераторы случайных чисел, блок устранения связанных значений, блок ранжирования, регистр хранения выборки случайных чисел, блоки аппроксимации, блоки вычитания, блоки хранения остатков, блоки получения ранжированного ряда на интервалах, блоки получения усеченной выборки, блоки вычисления оценки среднеквадратического отклонения, блоки умножения, регистр хранения коэффициента, блок определения коэффициента, блок установки вероятности ложной тревоги, компараторы, блоки хранения штрафов, арифметическое суммирующее устройство, блок вычисления порога, компаратор, регистр хранения штрафов, блоки построения и аппроксимации гистограммы, блок вычисления разности, блок хранения разности, блок вычисления максимального значения разности, блок замены, блок хранения, блок управления, регистр хранения, блок задержки, генератор тактовых импульсов. 2 ил.

Изобретение относится к средствам обработки информации для сглаживания и прогнозирования стационарных и нестационарных случайных процессов. Технический результат заключается в удвоении времени прогноза при заданном аналитическом буфере (памяти) предыстории процесса. Для этого в блок прогноза адаптивного цифрового прогнозирующего устройства, содержащего два вычитателя, сумматор усреднения, субблок расчета первой производной, субблок подсчета приращений скорости процесса и схему коррекции кода прогноза на динамике, введен дополнительный субблок коррекции кода прогноза на стационарных режимах. При этом осуществлена замена арифметических операций расчета прогнозируемых параметров (например, упреждения) монтажными сдвигами шин слагаемых, что повысило на порядок быстродействие устройства. 6 ил., 1 прил..

Изобретение относится к средствам обработки информации для прогнозирования стационарных и нестационарных случайных процессов. Технический результат заключается в повышении точности прогноза на динамических режимах. Для этого в блок прогноза адаптивного цифрового сглаживающего и прогнозирующего устройства введена схема коррекции кода прогноза на динамике из двух сумматоров и мультиплексора. 6 ил., 1 прилож.

Данное изобретение относится к области обработки изображений. Техническим результатом является эффективное устранение как гауссовского и пуассоновского шумов в отдельности, так и линейной комбинации этих шумов. Способ устранения шума на основе полной вариации заключается в том, что восстанавливают оригинальное изображение u(x,y), (x,y)∈R2 для заданного зашумленного изображения ν(x,y), вычисляют полную вариацию функции яркости, формулируют задачу минимизации полной вариации функции яркости с ограничением на интенсивность шума, причем рассматривают данное ограничение на основе линейной комбинации смеси гауссовского и пуассоновского шумов, сводят полученную задачу оптимизации с ограничением к задаче оптимизации без ограничения в виде функционала Лагранжа, строят уравнение Эйлера-Лагранжа для решения задачи безусловной оптимизации, строят численную схему решения данного уравнения, ищут оптимальные входные параметры, сравнивают отклонения значений функций яркости двух изображений на двух последовательных шагах итерации с заданной точностью ε для проверки остановки процесса итерации, определяют оптимальные параметры λ1, λ2, μ, σ на каждом шаге итерации для устранения шума на реальных изображениях. 4 табл., 2 ил.

Изобретение относится к средствам обработки информации для сглаживания и прогнозирования стационарных и нестационарных случайных процессов. Технический результат заключается в расширении функциональных возможностей путем увеличения реального времени прогноза в четыре раза при том же объеме буфера памяти предыстории, без какого-либо ущерба для точности прогноза. Цифровое прогнозирующее устройство, в состав которого входят блок сглаживания, регистр и мультиплексор, блок прогноза, субблок расчета квадратичного прогноза, субблок расчета линейного прогноза из одного сумматора, сумматор усреднения дискрет выходов субблоков квадратичного и линейного прогнозов; узел управления динамикой прогноза, субблок расчета первой производной из одного сумматора, узел тактирования блока прогноза, схема коррекции кода прогноза на динамике, субблок подсчета приращений скорости процесса, при этом в блок прогноза введен дополнительный субблок коррекции кода прогноза на стационарном режиме из одного сумматора. 1 приложение, 6 ил.

Изобретение относится к способам определения шумов в измерительной информации чувствительных элементов инерциальных навигационных систем с использованием метода вариации Аллана и может быть использовано при апостериорной обработке показаний инерциальных измерителей с целью получения качественных и количественных оценок основных шумовых характеристик чувствительных элементов инерциальных навигационных систем по результатам испытаний. Техническим результатом является упрощение процедуры осуществления и повышение достоверности определения шумовых составляющих в измерительной информации чувствительных элементов инерциальных навигационных систем. Способ содержит этапы, на которых проводят регистрацию и обработку измерительной информации каждого чувствительного элемента инерциальной навигационной системы. При этом на первом этапе обработки измерительной информации формируют массив интервалов осреднения информации, кратных такту съема данных. На втором этапе обработки определяют совокупность значений вариации Аллана, соответствующих интервалам осреднения измерительной информации чувствительного элемента инерциальной навигационной системы, как квадрат среднего квадратического относительного двухвыборочного отклонения измерительной информации. На третьем этапе обработки полученную совокупность значений вариации Аллана аппроксимируют полиномом со степенями -2, -1, 0, +1, +2. Подбор коэффициентов аппроксимирующего полинома осуществляется путем минимизации в логарифмической шкале его суммарного абсолютного расхождения со значениями вариации Аллана. 2 з.п. ф-лы, 1 ил.

Изобретение относится к средствам обработки информации для прогнозирования стационарных и нестационарных случайных процессов и может быть использовано в цифровых системах контроля и наведения. Техническим результатом является увеличение времени прогноза в пять раз. Устройство содержит три вычитателя, два субблока расчета квадратичного и линейного прогнозов, субблок расчета первой производной, сумматор усреднения, субблок подсчета приращений скорости процесса, схему коррекции кода прогноза на динамике и дополнительный субблок коррекции кода прогноза на стационарном режиме. 5 ил., 1 прил.

Изобретение относится к области вычислительной техники, в частности к цифровой обработке сигналов. Техническим результатом является сокращение времени обработки. В способе при выделении тренда нестационарного процесса адаптируют интервалы аппроксимации таким образом, что дискретную реализацию нестационарного процесса, представляющую сумму полезного сигнала и шума, последовательно разбивают на интервалы, на каждом из которых осуществляют аппроксимацию методом наименьших квадратов, ширину первого интервала выбирают равной части от общей продолжительности единственной дискретной реализации, выполняют аппроксимацию данного интервала и, если несоответствие аппроксимации превышает заданное значение, аппроксимацию повторяют, задавая ширину интервала равной части ее предыдущего значения, для каждого последующего интервала задают ширину, равную значению на предыдущем интервале, выполняют аппроксимацию и, если получают несоответствие аппроксимации меньше заданного значения установленное число раз подряд, увеличивают ширину последующего интервала, а если получают несоответствие аппроксимации больше заданного значения, то ширину текущего интервала выбирают равной части ее имеющегося значения и повторяют аппроксимацию, причем если ширина последнего интервала выходит за пределы единственной дискретной реализации нестационарного процесса, то ширину этого интервала ограничивают шириной оставшегося неаппроксимированного интервала.

Изобретение относится к области радиотехники. Технический результат – обеспечение восстановления изображений в радиолокационных системах дистанционного зондирования протяженных объектов за счет моделирования изображений в виде случайных полей на основе стохастических дифференциальных уравнений в частных производных второго порядка. Способ моделирования изображений в радиолокационных системах дистанционного зондирования протяженных объектов заключается в разработке моделей восстанавливаемого изображения, причем в качестве математической модели восстанавливаемого радиолокационного изображения используют стохастические дифференциальные уравнения в частных производных второго порядка, которые позволяют описать различные по характеру изображения, а также определить связь между типом изображения и вероятностными характеристиками моделей за счет аппроксимации статистической корреляционной функции реальных изображений определенного типа подходящим аналитическим выражением для корреляционных функций разработанных моделей, причем полученную априорную корреляционную функцию модели используют в качестве параметра регуляризации при решении задачи оптимального восстановления изображений. 13 ил., 1 табл.
Наверх