Мартенситная коррозионно-стойкая хромсодержащая сталь с улучшенной обрабатываемостью резанием

Изобретение относится к области металлургии, а именно к мартенситным коррозионно-стойким сталям, применяемым для изготовления режущего, мерительного инструмента, пружин, предметов домашнего обихода, подшипников, деталей компрессоров и других изделий, работающих до температур 400-450°C и в слабоагрессивных средах. Сталь содержит, мас.%: углерод 0,36-0,45, кремний 0,20-0,80, марганец 0,20-0,80, хром 12,00-14,00, висмут 0,06-0,13, кальций 0,002-0,003, алюминий 0,02-0,04, сера не более 0,025, фосфор не более 0,030, никель не более 0,60, молибден не более 0,30, медь не более 0,30, титан не более 0,20, ванадий не более 0,20, вольфрам не более 0,20, железо - остальное. Повышается обрабатываемость стали резанием при сохранении требуемых механических свойств и коррозионной стойкости, а также улучшается экологическая обстановка производства за счет снижения агрессивности вредных выбросов в окружающую атмосферу. 2 табл.

 

Изобретение относится к черной металлургии, а именно к получению сталей с особыми технологическими свойствами, применяемых для изготовления режущего, мерительного инструмента, пружин, предметов домашнего обихода, подшипников, деталей компрессоров и других изделий, работающих до температур 400-450°C и в слабоагрессивных средах.

Из уровня техники известна коррозионно-стойкая сталь (ГОСТ 5632-72 «Стали высоколегированные и сплавы коррозионно-стойкие, жаростойкие, жаропрочные». М.: Изд-во стандартов), содержащая хром, углерод и железо при следующем соотношении компонентов, масс. %:

- углерод - 0,36-0,45;

- хром - 12,00-14,00;

- железо - основа.

Кроме того, в состав стали могут входить, масс. %:

- кремний - не более 0,80;

- марганец - не более 0,80.

- сера - не более 0,025;

- фосфор - не более 0,030;

- никель - не более 0,60;

- молибден - не более 0,30;

- медь - не более 0,30;

- титан - не более 0,20;

- ванадий - не более 0,20;

- вольфрам - не более 0,20.

Коррозионно-стойкая сталь обладает высоким сопротивлением коррозии в атмосфере воздуха, паров воды, морской воде, в кислотах, растворах солей и прочих агрессивных средах. Значительная антикоррозионная стойкость коррозионно-стойкой стали обусловлена прежде всего присутствием в ее составе повышенного количества хрома. При воздействии агрессивных сред на поверхности хромсодержащих сталей образуется тончайшая, не различимая глазом, плотная пленка окислов, обладающая свойством надежно защищать сталь от дальнейшего ее разъедания. Установлено, что удовлетворительное защитное действие пленок окислов против дальнейшей коррозии обнаруживается только в том случае, когда в стали имеется не менее 12% хрома. Поэтому коррозионно-стойкие стали всегда содержат более 12% хрома.

Обладая вполне удовлетворительной сопротивляемостью коррозии в атмосфере воздуха, водяного пара, в воде и в ряде кислот, а также в растворах многих солей, хромистые коррозионно-стойкие стали характеризуются наибольшей простотой своего состава и потому находят широкое применение в технике.

Известная сталь имеет следующие недостатки:

- низкая степень чистоты и обрабатываемости поверхности;

- низкий срок службы инструмента;

- высокая вязкость и наклепываемость стали;

- быстрое повышение температуры на контактной поверхности сталь - инструмент.

Кроме того, известна легкообрабатываемая коррозионно-стойкая свинецсодержащая сталь (патент JP 2009013493 «FREE-CUTTING MARTENSITE STAINLESS STEEL», МПК C22C 38/00, C22C 38/60, опубл. 22.01.2009), содержащая углерод, хром, никель, бор, молибден, свинец, теллур, медь и железо при следующем соотношении компонентов, масс. %:

- углерод - 0,16-0,40;

- хром - 12,00-14,00;

- никель - 0,01-1,00;

- молибден - 0,01-1,00;

- бор - 0,001-0,003;

- свинец - 0,05-0,30;

- теллур - 0,01-0,05;

- медь - 0,01-1,00;

- железо - основа.

Кроме того, сталь в качестве примесей может дополнительно содержать, масс. %:

- кремний - не более 1,00;

- марганец - не более 1,25;

- сера - 0,15-0,35.

К недостаткам данной стали можно отнести следующее:

- сера, способствующая улучшению показателей обрабатываемости стали, негативно воздействует на механические свойства металлопродукции;

- очевидная бесперспективность дальнейшего улучшения обрабатываемости стали путем увеличения содержания свинца больше регламентированных значений, поскольку превышение его предельной растворимости в железе приводит к ухудшению механических характеристик и росту их анизотропии, а также способствует усилению красноломкости поверхностного слоя в процессе горячей обработки металла давлением;

- неравномерное распределение свинца в теле слитка вследствие его большой физической плотности и высокой упругости пара, что затрудняет гарантированное получение требуемых свойств стали от плавки к плавке и обусловливает понижение выхода годного металла, а следовательно, и производительности процесса обработки давлением из-за образования дефектов в местах наибольшего скопления данного элемента;

- во время горячего пластического деформирования стали, содержащей свинец, происходит его диффузия на поверхность заготовки, что приводит к образованию в указанной области капиллярного слоя, ухудшающего условия захвата валками полосы металла вследствие уменьшения коэффициента трения, и снижению производительности прокатного оборудования;

- свинец крайне токсичен и согласно установленным на сегодняшний день гигиеническим нормативам относится к наивысшему 1 классу опасности, поэтому в черной металлургии все отчетливее прослеживается тенденция по отказу от его применения вследствие серьезного ухудшения экологии окружающей среды;

- теллур и его летучие соединения токсичны. ПДК в воздухе регламентируется для различных соединений 0,007-0,01 мг/м3. Профессиональные отравления теллуром возможны при выплавке и разливке теллурсодержащих сталей. При этом наблюдаются озноб, головная боль, слабость, частый пульс, отсутствие аппетита, металлический вкус во рту, чесночный запах выдыхаемого воздуха, тошнота, темная окраска языка, раздражение дыхательных путей, потливость, выпадение волос;

- не регламентируется содержание фосфора в стали, что может привести к высокой степени хладноломкости, а значит, ухудшению ее механических свойств;

- содержания таких элементов, как молибден, никель и медь, находятся в широких пределах и будут оказывать отрицательное влияние на механические свойства представленной стали;

Наиболее близкой по существенным признакам к заявляемой стали является мартенситная коррозионно-стойкая хромсодержащая сталь с повышенной обрабатываемостью резанием (патент ЕР 1918408 А2, МПК С22С 38/24, опубл. 07.05.2008), содержащая углерод, кремний, марганец, серу, хром, свинец, теллур, бор, кислород, фосфор и железо при следующем соотношении компонентов, масс. %: углерод - 0,10-1,20; кремний - 0,10-2,00; марганец - 0,80-2,00; сера - 0,10-0,30; хром - 10,50-18,00; свинец -0,03-0,30; теллур - 0,01-0,10; бор - 0,0005-0,010; кислород - 0,005-0,030; фосфор - 0,005-0,100; железо - основа. Кроме того, сталь в качестве примесей может дополнительно содержать, масс. %: азот - не более 0,050.

К недостаткам данной стали можно отнести следующее:

- сера и фосфор, способствующие улучшению показателей обрабатываемости стали, негативно воздействуют на механические свойства металлопродукции; неравномерное распределение свинца в теле слитка вследствие его большой физической плотности и высокой упругости пара, что затрудняет гарантированное получение требуемых свойств стали от плавки к плавке и обусловливает понижение выхода годного металла, а следовательно, и производительности процесса обработки давлением из-за образования дефектов в местах наибольшего скопления данного элемента;

- во время горячего пластического деформирования стали, содержащей свинец, происходит его диффузия на поверхность заготовки, что приводит к образованию в указанной области капиллярного слоя, ухудшающего условия захвата валками полосы металла вследствие уменьшения коэффициента трения, и снижению производительности прокатного оборудования; свинец крайне токсичен и согласно установленным на сегодняшний день гигиеническим нормативам относится к наивысшему 1 классу опасности, поэтому в черной металлургии все отчетливее прослеживается тенденция по отказу от его применения вследствие серьезного ухудшения экологии окружающей среды; теллур и его летучие соединения токсичны. ПДК в воздухе регламентируется для различных соединений 0,007-0,01 мг/м3. Профессиональные отравления теллуром возможны при выплавке и разливке теллурсодержащих сталей. При этом наблюдаются озноб, головная боль, слабость, частый пульс, отсутствие аппетита, металлический вкус во рту, чесночный запах выдыхаемого воздуха, тошнота, темная окраска языка, раздражение дыхательных путей, потливость, выпадение волос; содержания таких элементов, как хром, кремний и марганец находятся в широких пределах, и будут оказывать отрицательное влияние на механические свойства представленной стали; содержания таких элементов, как никель, молибден, медь, титан, ванадий и вольфрам, находятся в не регламентированных пределах и будут оказывать отрицательное влияние на механические свойства представленной стали.

Задачей, на решение которой направлено данное изобретение, является повышение обрабатываемости стали резанием при сохранении требуемых механических характеристик металла, коррозионной стойкости, способности к свариваемости, равномерному распределению легирующих элементов в матрице, а также улучшение экологической обстановки производства за счет снижения агрессивности вредных выбросов в окружающую атмосферу.

Техническое решение поставленной задачи достигается за счет того, что мартенситная коррозионно-стойкая хромсодержащая сталь с повышенной обрабатываемостью резанием содержит углерод, кремний, марганец, хром, висмут, кальций, медь, молибден, никель, вольфрам, серу, фосфор и железо, а также алюминий и титан при следующем соотношении компонентов, масс. %: углерод - 0,36-0,45; кремний - 0,20-0,80; марганец - 0,20-0,80; хром - 12,00-14,00; висмут - 0,06-0,13; кальций - 0,002-0,003; алюминий - 0,02-0,04; сера - не более 0,025; фосфор - не более 0,030; никель - не более 0,60; молибден - не более 0,30; медь - не более 0,30; титан - не более 0,20; ванадий - не более 0,20; вольфрам - не более 0,20; железо - остальное.

Применение висмута и кальция для дополнительного легирования стали с целью улучшения ее обрабатываемости резанием, хрома и марганца с целью регулирования образования сульфидов, а также алюминия имеет целый ряд преимуществ.

Во-первых, висмут выделяется в чистом виде на границах зерен и не ослабляет положительное влияние на результаты процесса со стороны фосфора и сульфидных включений. В сочетании с оптимальным содержанием в стали серы и фосфора это приводит к улучшению ее обрабатываемости резанием на 13% при сохранении требуемых механических свойств. Во-вторых, висмут равномерно распределяется по сечению слитка. В-третьих, для висмута не характерно явление его массопереноса в зону контакта валков с полосой стали, что улучшает их сцепление и приводит к сокращению времени простоя оборудования, связанного с переналадкой прокатного стана, увеличивая производительность обработки давлением. В-четвертых, применение висмута способствует решению экологических проблем, имеющих место при производстве автоматных сталей. Это связано с тем, что в отличие от свинца, принадлежащего к 1 классу опасности, содержание висмута в атмосфере цеха ограничено среднесменной предельно допустимой концентрацией (ПДК), равной 0,50 мг/м3. В-пятых, висмут не снижает антикоррозионную стойкость коррозионно-стойкой стали. В-шестых, кальций является своего рода заменителем алюминия как раскислителя и обеспечивает образование алюминатов кальция в сульфидной оболочке - комплексных оксисульфидных включений, способствует глобуризации сульфидных включений и предупреждает образование микротрещин у остроугольных включений глинозема, оказывающих положительное влияние на обрабатываемость стали. В-седьмых, оптимальное отношение содержания кальция к содержанию алюминию способствует образованию глобулярных, малодеформируемых неметаллических включений.

В-восьмых, оптимальное отношение содержания хрома к содержанию марганца позволяет регулировать оптимальное содержание сульфидов в стали.

Сущность изобретения - выявление оптимального содержания висмута, кремния, марганца, кальция и алюминия, при котором достигается наилучшее сочетание высокой обрабатываемости стали резанием при условии сохранения требуемых значений механических свойств.

В результате проведенных исследований установлено следующее:

- при содержании висмута меньше нижнего предела не удается достигнуть требуемого высокого уровня обрабатываемости стали резанием;

- при условии содержания висмута по верхнему пределу обрабатываемость предлагаемой стали сопоставима с обрабатываемостью металла аналогичной свинец- и теллурсодержащей марки;

- увеличение содержания серы и фосфора в стали выше указанных значений приводит к ухудшению ее механических характеристик;

- при содержании висмута, кальция и алюминия в заявленных пределах уровень обрабатываемости предложенной стали на 13% превышает величину обрабатываемости свинец- и теллурсодержащего аналога; наряду с этим сталь сохраняет свои высокие механические характеристики, а ее получение характеризуется пониженной загрязненностью воздуха рабочей зоны и более безопасными условиями труда производственного персонала.

Испытания по определению обрабатываемости стали проводили на технической базе ФГБОУ ВПО «Южно-Уральский государственный университет» (НИУ).

Эффективность токарной обработки оценивалась по изменению стойкости инструментального материала при заданной скорости резания заготовок. В качестве критерия для оценки обрабатываемости стали было установлено значение приведенной стойкости, выраженное величиной износа режущего инструмента по задней поверхности при обработке одной детали.

В качестве базового уровня принята обрабатываемость резанием мартенситной коррозионно-стойкой стали. Испытания на коррозионную стойкость проводили в концентрированной серной кислоте при температуре 20°С, продолжительностью 720 часов.

Химический состав известной стали марки, принятой за прототип, и предлагаемой стали приведен в таблице 1. Механические характеристики сравниваемых сталей в деформированном и термически обрабатываемом состоянии (после закалки (1500°С, воздух) и отпуска (600°С, выдержка 3 часа)), а также измеренный уровень механической обрабатываемости представлены в таблице 2.

Образец 1. Известная легкообрабатываемая коррозионно-стойкая свинец- и теллурсодержащая сталь с улучшенной обрабатываемостью резанием. Уровень механической обрабатываемости и показатель коррозионной стойкости были приняты в качестве базовых значений для сравнения. В ходе процессов производства стали отмечено выделение в окружающую атмосферу чрезвычайно токсичных паров свинца и теллура.

Образец 2. Содержание серы и фосфора больше заявленных значений. Механические характеристики металла не соответствуют требованиям ГОСТа. Оценка эффективности токарной обработки стали, испытания на коррозионную стойкость не проводились.

Образец 3. Содержание никеля больше верхнего предела. Уменьшается производительность горячей обработки металла давлением. Оценка эффективности токарной обработки стали, испытания на коррозионную стойкость не проводились.

Образец 4. Содержание висмута меньше нижнего предела. Уровень обрабатываемости предложенной стали ниже, чем у известного прототипа. Испытания на коррозионную стойкость не проводились.

Образец 5. Содержание висмута в стали больше верхнего предела. Обрабатываемость предложенной стали резанием сопоставима с механической обрабатываемостью прототипа. Испытания на коррозионную стойкость не проводились.

Образец 6. Содержание серы, фосфора, никеля и меди находится на уровне верхней границы заявленных диапазонов. Показатели механических свойств металла соответствуют минимальным предельно допустимым значениям, установленных требованиями для свинец- и теллурсодержащего аналога. Испытания на коррозионную стойкость не проводились.

Образец 7. Соотношение между содержанием кальция и алюминия выходит за нижнюю регламентированную границу. Размер зерна ниже регламентируемого. Происходит зарастание стаканчиков на машине непрерывного литья заготовок (далее МНЛЗ). Уровень обрабатываемости предложенной стали сопоставим с обрабатываемостью известного прототипа. Испытания на коррозионную стойкость не проводились.

Образец 8. Соотношение между содержанием кальция и алюминия находится на уровне нижнего предела из указанного диапазона. Размер зерна соответствует техническим условиям. Не происходит зарастание стаканчиков МНЛЗ. Уровень обрабатываемости выше, а показатель коррозионной стойкости сопоставим с известным прототипом.

Образец 9. Соотношение между содержанием кальция и алюминия имеет значение, соответствующее верхнему заявленному пределу. Сталь соответствует техническим условиям.

Образец 10. Соотношение между содержанием кальция и алюминия выходит за верхнюю установленную границу. Сталь не соответствует техническим условиям.

Образец 11. Соотношение между содержанием хрома к марганцу не выходит за нижнюю установленную границу. Сталь соответствует техническим условиям.

Образец 12. Содержание всех элементов находится в заявленных пределах. Комплекс технологических свойств легкообрабатываемой коррозионно-стойкой стали имеет оптимальный характер. Показатель обрабатываемости резанием при сохранении механических характеристик металла на 13% выше, чем у известного прототипа. Показатель коррозионной стойкости сопоставим с известным прототипом.

Вместе с тем существенно уменьшается загрязненность воздуха рабочей зоны.

Таким образом, более высокий уровень обрабатываемости резанием предлагаемой стали с сохранением комплекса требуемых механических свойств металла, коррозионной стойкости и улучшением экологии металлургического производства позволяет рекомендовать ее для промышленного применения.

Мартенситная коррозионно-стойкая хромсодержащая сталь с повышенной обрабатываемостью резанием, содержащая углерод, кремний, марганец, хром, висмут, кальций, медь, молибден, никель, вольфрам, ванадий, серу, фосфор и железо, отличающаяся тем, что она дополнительно содержит алюминий и титан при следующем соотношении компонентов, мас.%:

углерод 0,36-0,45
кремний 0,20-0,80
марганец 0,20-0,80
хром 12,00-14,00
висмут 0,06-0,13
кальций 0,002-0,003
алюминий 0,02-0,04
сера не более 0,025
фосфор не более 0,030
никель не более 0,60
молибден не более 0,30
медь не более 0,30
титан не более 0,20
ванадий не более 0,20
вольфрам не более 0,20
железо остальное



 

Похожие патенты:

Изобретение относится к металлургии, преимущественно к производству горячекатаных листов для строительства металлических конструкций со сварными и другими соединениями.

Изобретение относится к области металлургии, а именно к составам жаропрочных сплавов, используемых для изготовления коллекторов и реакционных труб нефтегазоперерабатывающих установок с рабочими режимами при температуре 800-1080°С при давлении до 46 атм.

Изобретение относится к области металлургии, а именно составам жаропрочных сплавов, используемых для изготовления коллекторов и реакционных труб нефтегазоперерабатывающих установок с рабочими режимами при температуре от плюс 700°С до плюс 980°С, при давлении до 46 атм.

Изобретение относится к области металлургии, а именно к жаропрочным сплавам, используемым для изготовления реакционных труб установок производства водорода, метанола, аммиака и др.

Изобретение относится к области металлургии, а именно к составам жаропрочных сплавов, используемых для изготовления реакционных труб установок производства водорода, метанола, аммиака и др.

Изобретение относится к области металлургии, а именно к жаропрочному сплаву, используемому для изготовления реакционных труб установок производства водорода, метанола, аммиака и др.

Изобретение относится к области металлургии, а именно к жаропрочным сплавам, используемым для изготовления коллекторов и реакционных труб нефтегазоперерабатывающих установок с рабочими режимами при температуре 700-950°C при давлении до 50 атм.

Изобретение относится к области металлургии, а именно к жаропрочным сплавам, используемым для изготовления коллекторов и реакционных труб нефтегазоперерабатывающих установок, с рабочими режимами при температуре 700÷950°C при давлении до 50 атм.

Изобретение относится к области металлургии, а именно к жаропрочным сплавам, используемым для изготовления реакционных труб установок производства водорода, метанола, аммиака и др.

Изобретение относится к области металлургии, а именно к жаропрочным сплавам, используем для изготовления реакционных труб змеевиков установок производства этилена и др.

Изобретение относится к сварной стальной детали и способу ее изготовления. Заготовка детали получена сваркой встык, по меньшей мере, одного первого и одного второго листа.

Изобретение относится к области металлургии, а именно к получению горячештампованного листа, используемого для изготовления энергопоглощающих элементов безопасности транспортных средств.

Изобретение относится к области металлургии, а именно к стальному листу, используемому для горячей штамповки. Лист выполнен из стали, имеющей следующий химический состав, мас.%: C: 0,05-0,40, Si: 0,001-0,02, Mn: 0,1-3, Al: 0,0002-0,005, Ti: 0,0005-0,01, O: 0,003-0,03, один или оба из Cr и Mo в сумме 0,005-2, остальное Fe и неизбежные примеси.

Изобретение относится к области металлургии, а именно к коррозионно-стойким мартенситным сталям, используемым для изготовления медицинских инструментов. Сталь содержит, мас.%: углерод 0,2-0,3, хром от более 15 до 16, марганец 0,2-0,5, кремний 0,1-0,3, азот от более 0,15 до 0,2, сера не более 0,015, фосфор не более 0,020, железо остальное.

Изобретение относится к области металлургии, а именно к получению листа из нержавеющей стали для разделителя топливного элемента. Лист выполнен из стали, содержащей, в мас.% С: 0,03 или меньше, Si: 1,0 или меньше, Mn: 1,0 или меньше, S: 0,01 или меньше, Р: 0,05 или меньше, Al: 0,20 или меньше, N: 0,03 или меньше, Cr: от 20 до 40, по меньшей мере, один из металлов, выбранный из Nb, Ti и Zr, в сумме: 1,0 или меньше, Fe и неизбежные примеси остальное.

Изобретение относится к области металлургии, а именно к стальному рельсу, применяемому при железнодорожной перевозке грузов. Рельс выполнен из стали, содержащей в мас.%: от более чем 0,85 до 1,20 С, от 0,05 до 2,00 Si, от 0,05 до 0,50 Mn, от 0,05 до 0,60 Cr, Р ≤ 0,0150, Fe и неизбежные примеси - остальное.

Изобретение относится к области металлургии, а именно к термической обработке заготовок из сплава Х65НВФТ на основе хрома. Для повышения жаростойкости сплава заготовку из сплава Х65НВФТ подвергают закалке путем нагрева до температуры 1270±10°C с выдержкой при этой температуре в течение 20 мин и охлаждают в масло.

Изобретение относится к области термической обработки. Техническим результатом изобретения является снижение твердости и стабилизация ее значений упрочненных заготовок из сплава Х65НВФТ.
Изобретение относится к области машиностроения и может быть использовано при изготовлении шестерен, крестовин, втулок, зубчатых колес и т.д., в том числе работающих при температуре до 500°C и испытывающих при эксплуатации динамические нагрузки и износ.
Изобретение относится к области металлургии, а именно к производству стального круглого, калиброванного, сортового проката в прутках диаметром от 32 до 55 мм, используемого для изготовления штоков амортизаторов.

Изобретение относится к области металлургии, а именно к производству труб нефтяного сортамента. Для повышения коррозионной стойкости металла труб в средах, содержащих сероводород (при парциальном давлении H2S до 1,5 МПа) и углекислый газ (при парциальном давлении СО2 до 0,1 МПа) как одновременно, так и в отдельности, и обеспечения предела прочности не менее 655 МПа, предела текучести от 552 до 758 МПа и сопротивления ударным нагрузкам при минус 60°С не менее 70 Дж/см2 трубы получают из стали, содержащей, мас.%: углерод 0,15-0,25, кремний 0,15-0,35, марганец 0,40-0,70, хром 0,70-1,50, молибден 0,10-0,30, ванадий 0,03-0,08, алюминий 0,015-0,050, сера не более 0,010, фосфор не более 0,015, азот не более 0,012, медь 0,15-0,35, никель не более 0,30 (или 0,30-0,70), железо и неизбежные примеси остальное. 2 н.п. ф-лы, 4 табл.
Наверх