Способ выплавки рельсовой стали в кислородном конвертере

Изобретение относится к металлургии, в частности к способу выплавки рельсовой стали из фосфористого чугуна в кислородном конвертере. Способ включает нанесение гарнисажа и оставление в конвертере остатков шлака предыдущей плавки, заливку фосфористого чугуна, продувку расплава кислородом при переменном положении фурмы, присадку сыпучих материалов и скачивание шлака. Продувку ведут в три периода до содержания углерода в металле 0,3…0,6%, производя три скачивания шлака на 5…6, 13…14 и 17…18 минутах продувки. В начале каждого периода фурму располагают на расстоянии 2500…3000 мм от уровня поверхности металлической ванны в конвертере с пошаговым опусканием фурмы до 1000…1200 мм в конце периода. Сыпучие материалы присаживают порциями в течение первых 5…6 минут продувки каждого периода, после чего производят кратковременную додувку продолжительностью 30…90 сек для увеличения температуры металла до 1640…1650°С. Фурму опускают с шагом 200…250 мм, а число шаговых опусканий составляет 6…8. Использование изобретения обеспечивает получение высококачественной рельсовой стали с высоким содержанием углерода, низкой окисленностью и низким содержанием фосфора. 5 з.п. ф-лы, 1 табл., 1 пр.

 

Изобретение относится к металлургии и может быть использовано при производстве рельсовой стали в кислородных конвертерах.

Известен способ выплавки рельсовой стали в кислородном конвертере [Способ выплавки рельсовой стали в кислородном конвертере. Авторское свидетельство СССР №1675340, МПК С21С 5/28. Опубл. Бюлл. №33, 1991 г. ], включающий загрузку в агрегат шихтовых материалов, заливку чугуна, продувку кислородом до низкого содержания углерода, выпуск металла в ковш и ввод раскислителей.

Недостатком данного способа является низкое качество выплавляемой стали ввиду сильной загрязненности металла оксидными неметаллическими включениями, появляющимися при продувке металла в конвертере до низкого содержания углерода.

Наиболее близким по своей технической сущности является способ выплавки рельсовой стали в кислородном конвертере из высокофосфористого чугуна [Способ выплавки рельсовой стали в кислородном конвертере. Авторское свидетельство СССР №1511283, МПК С21С 5/28. Опубл. Бюлл. №36, 1989 г.], включающий оставление шлака предыдущей плавки, ввод на шлак углеродсодержащего материала, извести, плавикового шпата, заливку чугуна, продувку расплава при переменном положении фурмы и скачивание шлака.

Данный способ принят за ближайший аналог.

Недостатком известного способа является невозможность получения в конвертере из фосфористого чугуна стали с высокой температурой и низким содержанием фосфора, пригодной для получения высококачественных рельсов.

Задачей, на решение которой направлено данное изобретение, является получение в конвертере углеродистого металла с низким содержанием фосфора и высокой температурой, достаточной для внепечной обработки и разливки стали на машине непрерывного литья заготовок (МНЛЗ).

Поставленная задача достигается тем, что предлагается способ выплавки рельсовой стали в кислородном конвертере из фосфористого чугуна, включающий нанесение гарнисажа и оставление в конвертере остатков шлака предыдущей плавки, заливку чугуна, продувку расплава кислородом при переменном положении фурмы, присадку сыпучих материалов, скачивание шлака и слив металла в ковш, причем продувку ведут в три периода до содержания углерода в металле 0,3…0,6%, производя три скачивания шлака на 5…6, 13…14 и 17…18 минутах продувки, при этом в начале каждого периода фурма располагается на расстоянии 2500…3000 мм от уровня поверхности металлической ванны в конвертере и опускается пошагово до 1000…1200 м к концу периода с одновременной присадкой сыпучих материалов порциями в течение первых 4…6 минут продувки каждого периода, после чего производят кратковременную додувку продолжительностью 30…90 с, при этом температура металла перед сливом из конвертера составляет 1640…1650°С. Опускание фурмы производят с шагом 200…250 мм, а число шаговых опусканий составляет 6…8. В качестве сыпучих материалов используются известь вращающихся печей, мягкообожженный доломит, окатыши и плавиковый шпат, при этом порция сыпучего материала составляет: извести - 600...700 кг; доломита - 150…200 кг; окатышей - 200…250 кг; плавикового шпата - 100…150 кг, а число порций составляет: в 1-м периоде - 1…2; во 2-м периоде - 5…6; в 3-м периоде - 3…4.

Продувка в три периода обусловлена необходимостью трехкратного скачивания (обновления) шлака для получения в металле низкого (менее 0,015%) содержания фосфора. Додувка производится в течение 30…90 сек для увеличения температуры металла до 1640…1650°С.

В первый период продувки происходит окисление кремния и удаление его в шлак в виде кремнезема SiO2. Этот шлак с высоким содержанием кремнезема не обладает необходимой дефосфорирующей способностью и скачивается из конвертера после первого периода продувки. Удаление фосфора в этот период происходит весьма незначительно.

Второй период продувки начинается при высоком содержании углерода и низкой температуре. В этот период удаляется большая часть содержащегося в чугуне фосфора. Шлак с высоким содержанием фосфорного ангидрида Р2O5 скачивается после второго периода продувки.

Рельсовая сталь для скоростных железных дорог относится к высококачественным сталям. По техническим условиям содержание фосфора не должно превышать 0,015% в готовой стали, а с учетом внесения в металл небольшого количества фосфора ферросплавами и некоторого восстановления фосфора при сливе стали в ковш содержание его в металле перед сливом из конвертера не должно быть выше 0,010…0,012%.

Задачу получения такого содержания фосфора в металле решает третий период продувки. Скачивание шлака после третьего периода продувки предупреждает восстановление фосфора из шлака в металл во время ожидания анализа, слива стали в ковш и пр.

Скачивание шлака на 5...6 мин продувки обусловлено тем, что к этому моменту заканчивается окисление кремния и формирующийся основной шлак связывает кремнезем в силикаты кальция.

Второе скачивание шлака на 13…14 мин обусловлено тем, что к тому моменту продувки начинается интенсивное окисление углерода и шлак с высоким содержанием фосфора целесообразно удалить из конвертера во избежание восстановления части фосфора из шлака в металл.

К 17…18 мин продувки содержание углерода в металле приближается к заданным пределам (0,6…0,7%). Продувку прекращают, производят третье скачивание шлака, предупреждая восстановление фосфора из шлака в металл при выдержке стали в конвертере для замера температуры, отбора пробы, ожидания анализа и слива металла из конвертера в ковш, а затем производят кратковременную додувку в течение 30…90 с для нагрева металла до заданных пределов.

Расположение кислородной фурмы на расстоянии 2500…3000 мм от уровня поверхности металлической ванны в конвертере в начале каждого периода обусловлено необходимостью окисления железа в начале периода для быстрого растворения извести и наводки основного шлака. Расстояние 1000…1200 мм от фурмы до поверхности металлической ванны является рабочим положением фурмы при продувке стали в конвертере.

Присадка сыпучих материалов порциями в течение первых 4…6 мин продувки каждого периода связана с необходимостью формирования шлака с самого начала каждого периода продувки, который длится от 5 до 8 мин. Более поздние присадки материалов не успевают раствориться в шлаке и не оказывают рафинирующее действие на металл, так как этот шлак после окончания каждого периода сливается из конвертера.

Температура металла перед сливом из конвертера составляет 1640…1650°С. Меньшая температура недостаточна для компенсации теплопотерь, имеющих место при сливе стали в ковш и внепечной обработке, а также последующей разливке стали на машине непрерывного литья заготовок. Большая температура металла вызывает повышенный износ футеровки сталеразливочного ковша.

Опускание кислородной фурмы с шагом 200…250 мм производится для того, чтобы за 6…8 приемов опустить фурму с начального (2500...3000 мм) до рабочего положения (1000…1200 мм от уровня поверхности металлической ванны) за ограниченное время продувки в каждом периоде (5…8 мин). Меньший шаг опускания фурмы (менее 200 мм) нецелесообразен из-за того, что фурма не будет опущена до рабочего положения за регламентированный промежуток времени. Больший шаг опускания фурмы (более 250 мм) нарушает ход процесса шлакообразования и вызывает преждевременное интенсивное окисление углерода.

Использование сыпучих материалов в качестве шлакообразующих обусловлено следующим: известь используется для придания шлаку необходимой основности; мягкообоженный доломит вносит в шлак магнезию (MgO), что снижает степень износа магнезиальной футеровки конвертера; окатыши служат для дополнительного окисления фосфора и охлаждения горячего хода конвертерной плавки; плавиковый шпат является флюсом, снижающим температуру плавления шлаковой системы и повышающим жидкотекучесть шлака.

Порция сыпучего материала и ее количество связаны между собой. Порция сыпучего материала обоснована тем, что при меньшей массе каждой порции недостаточно времени для введения необходимого количества материалов для формирования шлака в каждом периоде плавки. Большая масса порции вызывает переохлаждение шлака, замедляет растворение материала в шлаке.

Число порций при фиксированной массе определяет общее количество вводимого в конвертер сыпучего материала. В первом периоде число таких порций 1...2, так как в конвертере остается реакционно-способный шлак предыдущей плавки и для его доформирования не требуется много нового материала. К началу второго и третьего периодов плавки шлак предыдущего периода полностью удаляется из конвертера. Поэтому во втором периоде, когда из металла удаляется большая часть фосфора, число порций составляет 5...6, а в третьем периоде для удаления оставшегося фосфора, когда не требуется много шлака и металл нельзя переохлаждать большим количеством присадок ввиду необходимости нагрева до заданной температуры, число порций составляет 3…4.

Продолжительность додувки металла в конвертере составляет 30…90 с для нагрева стали до температуры выпуска - 1640…1650°С. Это связано с тем, что для нагрева металла в конвертере на 10°С продолжительность додувки составляет в среднем 30 с. Поэтому для нагрева металла на 10…30°С требуется 30…90 с.

Пример осуществления предлагаемого способа

В 140-тонном кислородном конвертере оставляется шлак предыдущей плавки. Шлак раздувается газообразным азотов для нанесения гарнисажа на футеровку конвертера. На оставшийся в конвертере шлак заливают 140 т чугуна с содержанием фосфора 0,120%, опускают кислородную фурму до расстояния 3000 мм от поверхности жидкого металла и начинают продувку газообразным кислородом. Одновременно с началом продувки в конвертер присаживают первую порцию сыпучих материалов: 600 кг извести; 150 кг доломита; 200 кг окатышей и 100 кг плавикового шпата.

Первый период продувки продолжается 6 мин. В течение этого времени фурму с шагом 250…260 мм семью приемами опускают до расстояния 1200 мм от уровня металлической ванны. На 3-й минуте продувки в конвертер присаживают вторую порцию сыпучих материалов аналогичного количества и состава.

На 6-й минуте продувку прекращают, конвертер наклоняют и скачивают шлак. После отбора проб металла, шлака и замера температуры продувку продолжают.

Второй период продувки продолжается до 13 мин и длится 7 мин. Кислородную фурму устанавливают на расстоянии 3000 мм от уровня поверхности металлической ванны и 8-ю шагами по 230…240 мм опускают до расстояния 1100 мм от уровня поверхности металла. Одновременно с началом продувки в конвертер вводят первую порцию сыпучих материалов: 700 кг извести; 200 кг доломита; 250 кг окатышей и 100 кг плавикового шпата. Остальные сыпучие материалы вводят аналогичными порциями на 8, 9, 10 и 11 минутах продувки. Всего присадку сыпучих материалов осуществляют 5 порциями.

Продувку металла в конвертере останавливают на 13 мин, скачивают шлак и после отбора проб металла и шлака, измерения температуры начинают третий период продувки.

В 3-м периоде продувки кислородную фурму устанавливают на расстоянии 2500 мм от уровня металлической ванны и 6-ю шагами по 250 мм опускают до расстояния 1000 мм от уровня поверхности металла. Одновременно с началом продувки в конвертер вводят первую порцию сыпучих материалов: 600 кг извести; 150 кг доломита; 200 кг окатышей и 100 кг плавикового шпата. Остальные порции сыпучих материалов вводят аналогично на 14 и 15 минутах продувки. Общее число порций - 3.

Продувку прекращают на 18 мин при содержании в металле углерода 0,7%, фосфора 0,012% и температуре стали 1630°С. Затем производят додувку в течение 60 с для нагрева металла. После окончания додувки температура металла составляет 1650°С, содержание углерода 0,5%, фосфора - 0,011%.

Металл сливают в сталеразливочный ковш, присаживая ферросилиций на струю металла. Затем ковш со сталью направляют на внепечную обработку.

Технологические показатели плавок, проведенных по предлагаемому и известному способам, приведены в таблице. Как видно, предлагаемый способ позволяет получить из фосфористого чугуна высококачественную рельсовую сталь для скоростных железных дорог с высоким содержанием углерода, низкой окисленностью, с низким содержанием фосфора и температурой, позволяющей провести полноценную внепечную обработку и разливку стали на МНЛЗ.

1. Способ выплавки рельсовой стали в кислородном конвертере из фосфористого чугуна, включающий нанесение гарнисажа и оставление в конвертере остатков шлака предыдущей плавки, заливку фосфористого чугуна, продувку расплава кислородом при переменном положении фурмы, присадку сыпучих материалов, скачивание шлака и слив металла в ковш, отличающийся тем, что продувку ведут в три периода до содержания углерода в металле 0,3…0,6%, производя три скачивания шлака на 5…6, 13…14 и 17…18 минутах продувки, причем в начале каждого периода фурму располагают на расстоянии 2500…3000 мм от уровня поверхности металлической ванны в конвертере и опускают пошагово до 1000…1200 мм к концу периода с одновременной присадкой сыпучих материалов порциями в течение первых 4…6 минут продувки каждого периода, после чего производят кратковременную додувку, при этом температура металла перед сливом из конвертера составляет 1640…1650°С.

2. Способ по п. 1, отличающийся тем, что фурму опускают с шагом 200…250 мм, при этом число шаговых опусканий составляет 6…8.

3. Способ по п. 1, отличающийся тем, что в качестве сыпучих материалов используют известь вращающихся печей, мягкообожженный доломит, окатыши и плавиковый шпат.

4. Способ по п. 3, отличающийся тем, что порция сыпучего материала составляет: извести - 600…700 кг, доломита - 150…200 кг, окатышей - 200…250 кг, плавикового шпата - 100…150 кг.

5. Способ по п. 4, отличающийся тем, что число порций составляет: в 1-м периоде - 1…2, во 2-м периоде - 5…6, в 3-м периоде - 3…4.

6. Способ по п. 1, отличающийся тем, что продолжительность додувки составляет 30…90 сек.



 

Похожие патенты:
Изобретение относится к области черной металлургии, в частности к производству стали в кислородных конвертерах. Способ включает загрузку в конвертер шихты, содержащей жидкий чугун и лом, продувку металла кислородом через фурму, изменение интенсивности подачи кислорода по ходу продувки, ввод измерительной фурмы для измерения температуры металла и содержания в нем углерода, доводку плавки по температуре и содержанию углерода.

Изобретение относится к области металлургии и может быть использовано при производстве марганецсодержащей стали с использованием в качестве легирующих - оксидных марганецсодержащих материалов.

Изобретение относится к области черной металлургии, а именно к производству качественных сталей с внепечной обработкой. В способе осуществляют выпуск металла в сталь-ковш при температуре металла не менее 1680°C в течение не менее 4 мин, во время выпуска присаживают кальцийсодержащие шлакообразующие материалы в количестве не менее 2,8 кг/т стали и марганецсодержащие ферросплавы в количестве не более 7 кг/т стали, затем в течение 7-15 мин производят вакуумирование металла, после чего осуществляют ввод алюминия до его содержания в металле в количестве 0,04-0,06%, легирование кремний- и марганецсодержащими ферросплавами в количестве 5-20 кг/т стали, затем на установке печь-ковш проводят нагрев металла до температуры 1620-1650°C, производят ввод кальцийсодержащих шлакообразующих материалов в количестве 1-2 кг/т стали, после чего осуществляют повторное вакуумирование металла в течение 13-18 мин, а затем выполняют окончательное легирование металла и его обработку кальцийсодержащим реагентом в количестве 0,05-0,3 кг/т стали.

Изобретение относится к черной металлургии, а именно, к способу переработки в кислородном конвертере низкокремнистого ванадийсодержащего металлического расплава.
Способ изготовления аустенитной нержавеющей стали из латеритной никелевой руды и хромитовой руды включает определение содержания никеля в латеритной никелевой руде.

Изобретение относится к области черной металлургии, в частности к производству коррозионностойкой стали с внепечной обработкой и разливкой на установке непрерывной разливки.
Изобретение относится к черной металлургии, в частности к способу производства рельсовой стали в кислородном конвертере. Способ включает загрузку в конвертер твердых шихтовых материалов, заливку жидкого чугуна, продувку расплава кислородом через фурму.

Изобретение относится к черной металлургии, в частности к способу производства рельсовой стали. Способ включает продувку расплава кислородом, выпуск расплава в ковш, наводку покровного шлак в ковше, обработку расплава в вакууматоре.

Изобретение относится к области металлургии, в частности к способу получения нержавеющей стали в конвертере. Способ включает введение вспенивающего материала между слоем шлака, образовавшегося в результате окислительного рафинирования в конвертере, и расплавленным металлом в виде смеси из оксида металла или носителя железа, углерода и связующего материала в виде гранул или брикетов.
Изобретение относится к черной металлургии, а в частности к способу производства качественных сталей. .
Изобретение относится к металлургии и может быть использовано для получения стали из железоуглеродистого полупродукта. В качестве алюминийсодержащих отходов используют лом алюминия, который брикетируют с ломом черных металлов, причем доля лома алюминия в брикетах составляет не более 20%, а его количество на плавку составляет 0,3-2,5% от массы стали, при этом продувку кислородом осуществляют после подачи жидкого железоуглеродистого полупродукта, упомянутых брикетов и шлакообразующих материалов, а шлакообразующие материалы, содержащие оксиды кальция и магния, подают из расчета получения шлака эвтектического состава в системе СаО-Al2O3-MgO: СаО 45-48%, Al2O3 45-48%, MgO 5-7%. Изобретение позволяет увеличить долю лома черных металлов при производстве стали, повысить производительность кислородного конвертера за счет увеличения выхода жидкой стали, уменьшения времени продувки кислородом, повышения стойкости футеровки и снижения расхода кислорода. 2 пр.

Изобретение относится к области металлургии и может быть использовано для загрузки зернистого материала в металлургический агрегат через фурменную систему. Устройство содержит металлургическую фурму, имеющую внутренний ствол, сообщающийся с головкой фурмы и коллектором фурмы, впускную трубу для зернистого материала, вспомогательную трубу для газа-носителя, внешнюю трубу, первый конец которой свободно сообщен с внутренним стволом в коллекторе фурмы и второй конец герметично сочленен с внешней стороной впускной трубы для зернистого материала, при этом первая часть впускной трубы расположена соосно внешней трубе, а на второй части, выступающей из внешней трубы, расположен запорный клапан, первый конец вспомогательной трубы для газа-носителя свободно сообщен с внешней трубой, а на втором ее конце расположен по меньшей мере один клапан регулирования давления, причем первый конец вспомогательной трубы расположен между местом герметичного сочленения внешней трубы с впускной трубой для зернистого материала и первым концом упомянутой впускной трубы. Изобретение позволяет сократить время нагревания в технологическом процессе, связанное с оптимизацией скорости растворения известковой добавки, при этом срок эксплуатации головки фурмы будет продлен, поскольку известь будет защищать головку от излучения ванны. 2 н. и 12 з.п. ф-лы, 10 ил.

Изобретение относится к области металлургии, в частности к выплавке металла в конвертере. Способ включает завалку лома, заливку чугуна, продувку расплава металла кислородом, присадку магнийсодержащих шлакообразующих материалов по ходу продувки, раздув азотом шлака, оставленного в конвертере после слива из него металла. Перед началом продувки расплава металла кислородом определяют количество присаживаемых по ходу продувки магнийсодержащих шлакообразующих материалов на основании прогнозируемых данных о составе шлака перед выпуском плавки и величине шлаковой коррозии футеровки конвертера. Затем осуществляют продувку расплава металла кислородом, по ходу которой осуществляют присадку магнийсодержащих шлакообразующих материалов. Осуществляют слив металла из конвертера и перед началом раздува азотом оставленного в конвертере шлака на него присаживают магний- и углеродсодержащие материалы в количестве 1-3,0 и 0,3-1,0 т соответственно. В качестве магний- и углеродсодержащих материалов используют доломит осушенный и кокс. Раздув шлака азотом осуществляют в течение 1-8 мин. Использование изобретения обеспечивает снижение расхода магнийсодержащих шлакообразующих материалов. 2 з.п. ф-лы, 1 пр.

Изобретение относится к области металлургии, в частности к способу выплавки стали в кислородном конвертере. Способ включает подачу в кислородный конвертер в качестве металлошихты жидкого чугуна и металлолома, шлакообразующих материалов в виде извести, ожелезненного и сырого доломита, последующую продувку металла кислородом сверху через погружную фурму с изменением расхода кислорода и положения фурмы над уровнем расплава в спокойном состоянии. Одновременно с продувкой кислородом в расплав дополнительно вводят порциями сырую сидеритовую руду с интервалом от 1 до 1,5 минут в количестве 1,0-1,5% от суммы расхода металлошихты при соотношении сырой сидеритовой руды к количеству металлолома в шихте 0,08:1-0,16:1. Кроме того, используют сырую сидеритовую руду класса крупности 20-60 мм и с содержанием железа не менее 25% и оксида магния не менее 9%. Заявляемый способ позволяет повысить качество выплавляемой стали и увеличить выход годного металла. 2 з.п. ф-лы, 2 табл., 1 пр.

Изобретение относится к области черной металлургии, в частности к способу выплавки стали в кислородном конвертере. Способ включает загрузку твердой шихты, заливку жидкого чугуна, последующую продувку ванны кислородом, ввод шлакообразующих и твердых окислителей. В качестве твердой шихты используют металлический лом и полуфабрикат для металлургического передела, состоящий из железоуглеродистого сплава и окислов железа. Полуфабрикат для металлургического передела изготавливают в виде спрессованных пакетов, внутрь которых перед прессованием помещают капсулы, наполненные окислами железа с содержанием железа не менее 55% и влажностью не более 12%. Массовая доля окислов в пакете составляет 35-45%, а массовая доля спрессованных пакетов - 20-45% от суммарной массы металлического лома и спрессованных пакетов. В качестве капсул используют емкости из железосодержащих материалов. Использование способа обеспечивает сокращение расхода металлического лома и снижение себестоимости выплавки стали. 1 табл., 1 пр.
Изобретение относится к области черной металлургии, в частности к выплавке стали в кислородных конвертерах. В способе осуществляют завалку лома, заливку чугуна, продувку металла кислородом, присадку шлакообразующих материалов по ходу продувки. После окончания продувки металла кислородом осуществляют замер окисленности металла и в зависимости от его значения в конвертер присаживают высокомагнезиальный флюс в количестве 0,3-4,0 кг/т стали, имеющий состав, мас. %: оксид магния 47,0-65,0, оксид кальция 1,0-10,0, потери при прокаливании 25,0-45,0 и неизбежные примеси остальное, причем при окисленности металла менее 400 ppm присаживают 0,3-2,0 кг/т стали, при окисленности металла 400-1200 ppm - 0,5-3,0 кг/т стали, а при окисленности металла более 1200 ppm - 1,0-4,0 кг/т стали упомянутого флюса, при этом при окисленности металла 400-1200 ppm и более 1200 ppm в конвертер дополнительно присаживают алюминийсодержащий материал, состоящий из 3,0-20,0% алюминия металлического и 35,0-65,0% оксида алюминия, в количестве 0,2-1,5 кг/т стали и 0,5-2,0 кг/т стали соответственно. После слива металла, производят нанесение шлакового гарнисажа на футеровку конвертера методом раздува шлака азотом, во время которого осуществляют присадку высокомагнезиального флюса в количестве до 4,0 кг/т стали и/или кокса в количестве до 5,0 кг/т стали. Изобретение позволяет повысить выход годной стали, сократить удельный расход огнеупорного боя для подварок и торкретмасс, снизить износ футеровки конвертера со стороны слива металла за счет формирования после окончания продувки металла кислородом насыщенного магнезиального шлака. 1 з.п. ф-лы, 1 пр.

Изобретение относится к области металлургии, в частности к сталеплавильным агрегатам, и может быть использовано при получении стали из жидкого чугуна и металлического лома, содержащих в своем составе повышенное количество таких вредных примесей, как фосфор и сера. Кислородный конвертер для переработки шихты с повышенным содержанием вредных примесей содержит футерованный изнутри огнеупорами и опоясанный снаружи двумя бандажами и зубчатым венцом цилиндрический металлический корпус со сферическим днищем и горловиной в виде усеченного конуса, имеющий возможность поворота в вертикальной плоскости на двух опорных цапфах и вращения на центрирующих роликах относительно продольной оси симметрии с помощью индивидуальных приводов, размещенных на рабочей площадке. Конвертер снабжен системой подачи порошкообразной извести в струе кислорода через водоохлаждаемую фурму, содержащей механизмы перемещения и качания фурмы, а также дозирующее устройство. Кроме этого, он дополнительно оборудован системой газодинамической отсечки конечного технологического шлака во время слива расплава через горловину в ковш, содержащей два жестко взаимосвязанных между собой коромысла, закрепленных с возможностью поворота на горизонтальном валу, установленном в подшипниковых опорах перпендикулярно к вертикальной плоскости, в которой лежит продольная ось симметриии корпуса конвертера. Причем коромысла снабжены направляющими С-образного сечения с установленными в них роликами, закрепленными с возможностью вращения на торцевых частях цилиндрической газораспределительной камеры, имеющей щелевые отверстия и жестко связанной с одним концом газоподающей трубы, другой конец которой закреплен в шарнирной опоре. На задних концах коромысел имеются контргрузы, а на передних посредством осей закреплены рычаги, входящие в зацепление при повороте корпуса конвертера с упорами, неподвижно установленными на его опорном кольце. В результате обеспечивается повышение качества выплавляемой стали и снижение интенсивности износа футеровки разливочных ковшей. 7 ил.
Изобретение относится к области черной металлургии, в частности к выплавке стали в кислородном конвертере. Способ включает завалку лома, заливку чугуна, загрузку флюсов, продувку расплава металла газообразным окислителем, отбор пробы металла и шлака на химический анализ, замер температуры металла, анализ, выпуск металла, слив шлака, осмотр и подготовку конвертера к очередной плавке. В качестве одного из флюсов в конвертер присаживают смесь из серпентинита и магнезита, содержащую компоненты при следующем соотношении (мас.%): MgO≥40; СаО≤5; SiO2≤40; Fe2O3≤8; Аl2O3≤1; Н2O≤2; потери при прокаливании ≤47%, крупностью 4-60 мм, при этом расход флюса составляет 1-50 кг/т стали, а содержание MgO в конвертерном шлаке по окончании продувки металла составляет 8-15%. При этом упомянутый флюс присаживают в конвертер перед завалкой лома, и/или после завалки лома, и/или перед началом продувки расплава металла газообразным окислителем, и/или в процессе продувки расплава металла газообразным окислителем. Изобретение позволяет стабилизировать процесс шлакообразования, увеличить стойкость футеровки, предотвратить образование металлических настылей на кислородных фурмах, улучшить дефосфорацию и десульфурацию металла. 1 з.п. ф-лы, 1 пр.

Изобретение относится к черной металлургии, конкретнее к извлечению ванадия из природнолегированного ванадиевого чугуна. Сущность изобретения заключается в том, что на первой стадии дуплекс-процесса, включающей заливку ванадиевого жидкого чугуна в конвертер, продувку его кислородом и ввод в конвертер охладителей в виде брикета железосодержащего для деванадации чугуна в количестве 20-100 кг/т чугуна. Брикет для деванадации чугуна изготавливается методом холодного брикетирования железосодержащих отходов - шламов газоочистки доменных печей или конвертеров 20-40%, замасленной окалины вторичных отстойников 5-30%, прокатной окалины 30-60% и содержит натриевое жидкое стекло в качестве связующего, причем содержание железа общего в брикете должно составлять 65%, а содержание СаО не более 1,5%. Изобретение позволяет утилизировать отходы металлургического производства, получить кондиционный по химическому составу ванадиевый шлак и обеспечить глубокое извлечение ванадия из чугуна в товарный ванадиевый шлак с требуемым химическим составом. 3 табл.
Изобретение относится к черной металлургии, в частности к выплавке стали в кислородном конвертере. Способ включает загрузку металлолома и железосодержащего продукта переработки отвальных шлаков, состоящего из металлической и шлаковой составляющих, загрузку извести и магнезиального флюса, заливку чугуна, продувку ванны газообразным окислителем. В процессе загрузки извести и магнезиального флюса дополнительно вводят углеродсодержащий материал при соотношении масс углеродсодержащего материала и железосодержащего продукта переработки отвальных шлаков, равном 1:(5-10), и после заливки чугуна перед продувкой ванны газообразным окислителем перемешивают расплав смесью нейтрального газа и кислорода в соотношении 1:(0,3-1,0). Изобретение позволяет увеличить выход годного металла за счет восстановления железа из шлаковой составляющей железосодержащего продукта переработки отвальных шлаков.
Наверх