Способ измерения коэффициентов диффузии водорода в титане

Изобретение относится к области измерительной техники и может быть использовано для определения коэффициентов диффузии водорода в различных конструкционных материалах на основе титана, используемых в космической и атомной технике, в изделиях, подвергаемых наводороживанию в процессе эксплуатации. Исследуемый образец из титана насыщают водородом в электролитической ячейке. Одна сторона образца соприкасается с электролитом, а ко второй плотно прижат вихретоковый датчик магнитного спектрометра. В процессе насыщения образца водород диффундирует к его противоположной стороне. В результате изменяются показания вихретокового датчика. По измерению времени изменения показаний вихретокового датчика рассчитывают коэффициент диффузии водорода в титане. Изобретение обеспечивает возможность определения коэффициента диффузии водорода в титане в производственных условиях в местах малодоступных для анализа. 1 з.п. ф-лы, 5 ил.

 

Изобретение относится к области измерительной техники и может быть использовано для определения коэффициентов диффузии водорода в различных конструкционных материалах, в космической технике, атомной энергетике, в изделиях, подвергаемых наводороживанию в процессе эксплуатации. Измерение коэффициентов диффузии водорода приобретает особое значение для технологий вновь создаваемых материалов.

Известны следующие способы измерения коэффициентов диффузии водорода в металлах.

Коэффициент диффузии определяют по изменению моментов сил тяжести, возникающих в насыщенной водородом металлической пластине, которая может поворачиваться вокруг оси, проходящей через центр тяжести. Пластину насыщают с одной стороны водородом и уравновешивают. Водород распространяется вдоль по пластине с одного конца к другому. В результате происходит смещение центра тяжести пластины, в которой диффундирует водород. Пластина поворачивается, и по измерению угла поворота пластины судят о процессе диффузии [Авторское свидетельство СССР №1636729, опубл. 23.03.1991]. Метод характеризуется низкой чувствительностью.

Коэффициент диффузии определяют по измерению газовыми бюретками потока диффундирующего водорода через металлическую мембрану, одна из поверхностей которой (входная) соприкасается с раствором электролита [Миндюк А.К., Свист Е.И., Бабей Ю.И. Установка для электрохимических исследований наводороживания и водородной проницаемости металлов. - Защита металлов. - 1973. - Т. 9. - №4. - С. 499-500]. Время выхода водорода из мембраны зависит от чувствительности газовой бюретки и не фиксируется при малых количествах продиффундировавшего водорода.

Коэффициент диффузии водорода определяют по изменению электросопротивления стали [Белоглазое С.М. Наводороживание стали при электрохимических процессах. Л., Изд-во Ленингр. Ун-та, 1975. - с. 27-36.]. Недостатком способа является то, что коэффициент диффузии определяют по изменению общего сопротивления наводороживаемого образца, которое в зависимости от времени наводороживания и прохождения водорода через мембрану изменяется неоднозначно, сложным образом и не позволяет точно определить время установления стационарного потока водорода через мембрану. Имеются противоречивые сведения по этому эффекту. Например, на электросопротивление стали наводороживание не сказывается вообще [Карпенко Г.В., Крипякевич Р.И. Влияние водорода на свойства стали. М., Металлургиздат. 1962. - с. 198]. При наводороживании палладия зависимость электросопротивления от содержания водорода имеет сложный вид с максимумом и, соответственно, не позволяет однозначно идентифицировать момент насыщения образца водородом [Гельд П.В., Рябов Р.А., Мохрачева Л.П. Водород и физические свойства металлов и сплавов: Гидриды переходных металлов. - М.: Наука. 1985. - с. 157].

Наиболее близким аналогом, выбранным в качестве прототипа, является способ, описанный в работе [Грабовецкая Г.П., Никитенков Н.Н., Мишин И.П., Душкин И.В., и др. Диффузия водорода в субмикрокристаллическом титане // Известия Томского политехнического университета. - 2013. - Т. 322. - №2. - С. 56-59]. В данном способе коэффициент диффузии определяют по измерению выхода водорода из наводороживаемого в электролитической ячейке титановой мембраны (образца) с помощью масс-спектрометра. Коэффициенты диффузии рассчитывают тайм-лаг-методом по формуле Бэррера

t 3 = h 2 / 6 D ,                                (1)

где t3 - время установления стационарного потока водорода через металлическую мембрану, h - толщина металлической мембраны, D - коэффициент диффузии.

Основной недостаток прототипа состоит в том, что данный метод не обладает достаточной чувствительностью, требует применения вакуумной системы, громоздких устройств для измерения концентрации водорода как на входе в мембрану (образец), так и на выходе из мембраны (образца). Применяемый прибор (масс-спектрометр) предназначен для научных лабораторных исследований, требует специально приготовленных устройств, создания вакуума и непригоден для эксплуатации в промышленных условиях, для массового оперативного производственного контроля диффузии водорода в деталях, находящихся в эксплуатации, и подвергаемых водородному поражению. Кроме того, при диффузии водорода в металле происходит его неравномерное распределение по объему металла, вызванное неоднородностью структуры металла [Нечаев Ю.С. Характеристики гидридоподобных сегрегаций водорода на дислокациях палладия // УФН, 2001. - Т. 171 - №11. - С. 1252]. При больших концентрациях водорода образуются гидриды металла [Гельд П.В., Рябов Р.А., Кодес Е.С. Водород и несовершенства структуры металла. - М, Металлургия, 1979. - С. 85-121]. На величину коэффициента диффузии влияют границы зерен, пористость материала, напряжения и динамические нагрузки [А.В. Гапонцев, В.В. Кондратьев. Диффузия водорода в неупорядоченных металлах и сплавах // УФН, 2003. - Т. 173. - №10. - С. 1107-1129].

Задача - создание способа определения коэффициента диффузии водорода в титане в производственных условиях и местах малодоступных для анализа водорода, диффундирующего через титановый образец.

Для решения указанной задачи в способе измерения коэффициентов диффузии водорода в титане, включающем, как и прототип, измерение толщины исследуемого образца, насыщение его водородом в электролитической ячейке, фиксирование начала времени электролиза и времени выхода водорода из образца на максимальный режим, определение разности этих величин и вычисление коэффициента диффузии водорода в титане по формуле Бэррера, в отличие от прототипа, по значению удельного сопротивления и толщине образца, рассчитывают частоту вихревого тока датчика магнитного спектрометра, выбирают частоту вихретокового датчика магнитного спектрометра такой, чтобы глубина проникновения вихревого тока превышала измеренную толщину образца в 3-4 раза, устанавливают вихретоковый датчик магнитного спектрометра на образец-мембрану, а время выхода водорода из образца на максимальный режим фиксируют по величине напряжения на вихретоковом датчике.

Целесообразно для определения величины максимального напряжения на вихретоковом датчике в процессе наводороживания образца, датчик поворачивать вокруг его оси на 180 градусов относительно образца и фиксировать величину напряжения через каждые 7-8 градусов.

Теоретически задача о распределении вихретоков по глубине металла описана в работе [Ламмеранер И., Штафль М. Вихревые токи. Перевод с чешского В.И. Дмитриева. - М. - Л., Энергия. - 1967. - 208 с]. Вихревой ток проникает в металл в слой толщиной 8. Глубина проникновения 5 вихревого тока в металл является функцией электропроводности металла а, частоты вихревого тока ω, магнитной постоянной µ0 и магнитной проницаемости металла µ.

δ = 1 ω μ μ 0 σ / 2                            (2)

Для определения концентрации водорода в металлах используют вихревые токи различной частоты [Калинин Н.П., Остапенко В.Д. Контроль газонасыщенных слоев титановых сплавов вихревыми токами повышенной частоты // Дефектоскопия. 1983. №5. С. 15-21.; Лидер A.M., Ларионов В.В., Гаранин Г.В. Способ определения содержания водорода в титане. Патент №2498282 С1, МПК. G01N 27/02 - (2006.1) Бюллетень №31 от 10.11.2013. - С. 557-558.].

Изменение электропроводности металла приводит к изменению напряжения на вихретоковом датчике магнитного спектрометра. Величина электропроводности зависит от количества атомов водорода, приходящихся на каждый атом титана, от направления распространения токов по образцу (мембране). Это вызвано появлением дефектов в ходе наводороживания. При диффузии через образец (мембрану) появление водорода в его приповерхностном слое будет зафиксировано датчиком, если частота подобрана так, чтобы глубина проникновения вихревого тока в металл соответствовала толщине образца. Здесь накопление водорода в образце (мембране) в процессе диффузии изменяет показания датчика магнитного спектрометра. Таким образом, можно зафиксировать время изменения напряжения на вихретоковом датчике магнитного спектрометра, связанное с появлением водорода в результате диффузии через образец.

В заявляемом способе вихретоковый датчик магнитного спектрометра устанавливают на поверхность исследуемого образца из титана, который является мембраной-катодом, расположенным совместно с анодом в электролитической ячейке. Другая сторона образца соприкасается с раствором электролита. Измеряют толщину образца и по формуле (2) рассчитывают частоту вихретокового датчика и устанавливают ее значение на датчике. Включают вихретоковый датчик и, поворачивая его вокруг вертикальной оси, находят максимальное значение напряжения. Включают напряжение на электролитической ячейке и записывают время включения. На поверхности образца (мембраны) со стороны электролитической ячейки при электролизе скапливается водород. Он диффундирует через образец к другой поверхности образца. Как только водород достигает поверхностного слоя с противоположной от ячейки стороны образца, прекращается изменение показаний вихретокового датчика. Фиксируют промежуток времени, в течение которого происходило изменение показаний вихретокового датчика магнитного спектрометра. В связи с тем, что в процессе диффузии в образце образуются дефекты, влияющие на распространение вихревого тока, датчик поворачивают вокруг оси на 180 градусов с частотой один раз за 5-7 мин. Значение промежутка времени, за которое происходит изменение показаний датчика, подставляют в формулу Бэррера (1) и рассчитывают коэффициент диффузии водорода через образец-мембрану.

На фиг. 1 приведена схема измерения коэффициента диффузии водорода через титановый образец 1 (мембрану) с помощью вихретокового датчика 2 и измерителя напряжения 3 на вихретоковом датчике 2.

На фиг. 2 показана зависимость напряжения на вихретоковом датчике от времени насыщения образца водородом.

На фиг. 3 показано угловое расположение датчика вихретокового прибора относительно образца из титана, 1 - образец, 2 - вихретоковый датчик прибора.

На фиг. 4 показаны микротрещины (а) и кратеры (б) на поверхности образца из титана в процессе наводороживания.

На фиг. 5 показана дифрактограмма наводороженного образца. Цифрами показано время (мин) насыщения титана водородом.

Образец 1 является мембраной - частью стенки электролитической ячейки 4, в которой протекает электролиз. Электролитическая ячейка 4, содержит электролит 5, в котором расположены соединенные с источником питания 6 ячейки, анод 7 и образец 1 - катод.

Измерение коэффициента диффузии водорода через образец 1 из титана осуществляют по следующему алгоритму: измеряют толщину h образца 1, используя табличное значение удельного сопротивления титана и значение h, находят частоту вихревого тока. Это значение частоты корректируют в сторону уменьшения так, чтобы глубина δ проникновения вихревого тока в 3-4 раза была больше измеренного значения h. Скорректированное значение частоты устанавливают на магнитном спектрометре и включают магнитный спектрометр. Поворачивают вихретоковый датчик 2 на 180 градусов вокруг своей оси относительно образца 1 через каждые 10-12 градусов (фиг. 3), измеряют при этом напряжение на вихретоковом датчике 2 и находят его максимальное значение. Далее в электролитическую ячейку 4 заливают раствор 0.1 М серной кислоты, включают источник питания 6 электролитической ячейки 4 (фиг. 1). Устанавливают плотность тока электролиза, равную 1 А·см-2. Записывают время включения тока электролиза t1. В титановый образец 1 (мембрану), являющийся катодом, в результате электролиза входит водород, который диффундирует через образец 1. Постоянно измеряют во времени показания вихретокового датчика 2 магнитного спектрометра 3, поворачивая датчик вокруг своей оси на угол φ равный 5-7° до 180 градусов каждые 5-7 минут. Записывают время t2, при котором значения вихретокового напряжения выходят на максимальный режим (фиг. 2, отмечено чертой).

На фигуре 2 представлена зависимость показаний вихретокового датчика 2 от времени электролиза и, где черточками указаны моменты времени. Находят разность t2-t1=t3 и рассчитывают коэффициент диффузии D водорода по формуле Бэррера (1) D=h2/6t3, где t3 - время установления стационарного потока водорода через титановый образец 1, h - толщина титанового образца 1.

Конкретный пример реализации способа определения коэффициента диффузии водорода в титане.

Образец 1 был вырезан из титановой фольги толщиной 48 мкм. По формуле (2) рассчитали частоту вихретокового датчика магнитного спектрометра. В качестве магнитного спектрометра был использован прибор 3МА (производство Германия, Саарбрюккен). Она равна 49 МГц. Частота должна быть такой, чтобы глубина проникновения вихревого тока δ превышала толщину мембраны как минимум в 3 раза (согласно физическому смыслу величины проникновения вихревого тока в металл). Например, для титана ВТ1-0 при его удельном сопротивлении 46·10-8 Ом·м и глубине проникновения 250 мкм (это в 3 раза больше применяемого здесь образца) частота вихревого тока, устанавливаемого на датчике, будет равна 1 МГц. В электролитическую ячейку 4 заливали 0,1 М раствор серной кислоты. Установили рассчитанную 1 МГц частоту на датчике. Одна сторона образца 1 соприкасалась с электролитом, а ко второй был плотно прижат вихретоковый датчик магнитного спектрометра 2. Включали вихретоковый датчик магнитного спектрометра 2, поворачивали датчик вокруг своей оси на 180° градусов и через каждые 10-12 градусов фиксировали максимальное начальное значение напряжения вихретокового датчика. На анод 7 и катод - образец 1 (мембрану) подавали постоянное напряжение от источника питания 9 DC SUPPLY HY 3002 и устанавливали плотность тока 1 А·см-2. Записывали время включения тока электролитической ячейки t1 и следили за показаниями вихретокового датчика, поворачивая его вокруг оси через каждые 5-7 мин. Фиксировали момент времени, когда показание датчика магнитного спектрометра становятся постоянным и максимальным по углу и во времени t2=300 мин и записывали в таблицу. Разность значений t2-t1=t3 подставляли в формулу (1). t3=t2-t1=300 мин. D = h 2 6 t 3 = 2.13 10 14 м2с-1. Погрешность определения коэффициента диффузии зависит от точности фиксации времени достижения стационарного режима показаний вихретокового датчика и колеблется от 3% до 5%.

Вычисление погрешности проводят по формуле Δ D / D = 4 ( Δ h h ) 2 + ( Δ t t ) 2 , где Δh и Δt - погрешность определения толщины образца и времени диффузии водорода через образец. Автоматизированная фиксация времени резко увеличивает точность измерения времени t2.

Вихретоковый датчик магнитного спектрометра калибруют на известных эталонах фирмы ARMI (эталон IARM 178 В: Ti-6Al-6V-2Sn / UNS R56620), а также на образцах из эталонной меди.

Проведен контрольный эксперимент: при взвешивании образца после 340 мин наблюдается стабилизация массы образца, т.е. дальнейшее увеличение времени электролиза не приводит к увеличению массы водорода входящего вобразец. Далее водород начинает уходить из образца (наблюдается некоторое уменьшение массы образца с одновременным уменьшением напряжения на датчике магнитного спектрометра). Это свидетельствует о точности измерений вихретоковым методом.

Показания вихретокового датчика зависят от его положения относительно образца, поэтому его необходимо поворачивать, как показано на фиг. 3. Необходимость этого действия обусловлена наличием (фиг. 4) ярко выраженной неоднородности расположения микротрещин в титане по форме, направлению и глубине вызванных наводороживанием титана. Неоднородность тем больше, чем больше степень наводороженности титана. В наводороженном титане образуются гидриды титана TiHn с различным количеством атомов водорода n в молекуле гидрида в зависимости от количества находящегося в металле водорода, что приводит к изменению электропроводности по глубине титана. Это подтверждено исследованиями дифрактограмм на дифрактометре PDIFF Beamline. Пример дифрактограммы дан на фиг. 5, где показано образование гидридов TiH2. Цифрами у каждой кривой обозначено время в минутах насыщения титана водородом. Из дифрактограммы видно, что с увеличением времени движения (диффузии) водорода через образец из титана увеличиваются пики, соответствующие содержанию гидридов титана в образце. Это свидетельствует об образовании дефектов, которые отличаются друг от друга направлением расположения относительно образца, величиной дефекта, как по длине, так и его поперечным размерам.

Изобретение может быть использовано для определения коэффициентов диффузии водорода в различных конструкционных материалах на основе титана, используемых в космической и атомной технике, в изделиях, подвергаемых наводороживанию в процессе эксплуатации. Кроме того, вихретоковый датчик магнитного спектрометра может быть удален от измерительной аппаратуры на большие безопасные расстояния для обслуживающего персонала и расположен в труднодоступных местах.

1. Способ измерения коэффициентов диффузии водорода в титане, включающий измерение толщины исследуемого образца, насыщение его водородом в электролитической ячейке, фиксирование начала времени электролиза и времени выхода водорода из образца на максимальный режим, определение разности этих величин и вычисление коэффициента диффузии водорода в титане по формуле Бэррера, отличающийся тем, что по значению удельного сопротивления и толщине образца рассчитывают частоту вихревого тока датчика магнитного спектрометра, выбирают частоту вихретокового датчика магнитного спектрометра такой, чтобы глубина проникновения вихревого тока превышала измеренную толщину образца в 3-4 раза, устанавливают вихретоковый датчик магнитного спектрометра на образец, а время выхода водорода из образца на максимальный режим фиксируют по величине напряжения на вихретоковом датчике.

2. Способ по п. 1, отличающийся тем, что в процессе наводороживания образца для определения величины максимального напряжения на вихретоковом датчике датчик поворачивают вокруг его оси на 180 градусов относительно образца и фиксируют величину напряжения через каждые 7-8 градусов.



 

Похожие патенты:

Использование: для измерения параметров трещины в немагнитных электропроводящих объектах. Сущность изобретения заключается в том, что полость трещины дефектного участка заполняют магнитной жидкостью, сканируют дефектный участок подключенным к электронному блоку дефектоскопа вихретоковым преобразователем, регистрируют максимум вихретокового сигнала, вносимого трещиной, и получают основной сигнал, по которому судят о параметрах трещины, далее получают дополнительный сигнал, зависящий преимущественно от глубины трещины, а о ширине трещины судят по совокупности основного и дополнительного сигналов с помощью предварительно полученных зависимостей основного сигнала от трещин, заполненных магнитной жидкостью, с различной глубиной и шириной.

Группа изобретений относится к области измерительной техники и может быть использована для оценки надежности и качества многослойных конструкций из полимерных композиционных материалов на основе контроля толщины слоев.

Изобретение относится к дефектоскопии посредством вихревых токов. Сущность: способ обнаружения дефектов посредством вихревых токов включает в себя этап синхронизации, на котором синхронизируют фазу напряжения возбуждения, прикладываемого средством управления катушкой к катушке возбуждения для генерирования вихревого тока в исследуемом объекте, с фазой напряжения управления, имеющего более высокую частоту, чем напряжение возбуждения, прикладываемое средством управления устройством к устройству на основе эффекта магнитного импеданса, для обнаружения изменения магнитного поля, возникающего в катушке возбуждения; и этап обнаружения магнитного поля (S5), на котором обнаруживают изменение магнитного поля, возникающего в катушке возбуждения вследствие вихревого тока, сгенерированного в исследуемом объекте, с использованием устройства на основе эффекта магнитного импеданса.

Изобретение относится к исследованию или анализу материалов с помощью вихревых токов и может быть использовано для контроля качества паяных соединений обмоток различных электрических машин (ЭМ) при производстве и ремонте.

Согласно изобретению предложен способ неразрушающего контроля материала испытываемого объекта (8), движущегося мимо датчика (1) с переменной относительной скоростью, содержащий следующие этапы: регистрация сигнала (US) датчика посредством датчика (1); аналого-цифровое преобразование сигнала (US) датчика с получением оцифрованного сигнала (USD) датчика в виде последовательности цифровых слов с заранее заданной, в частности постоянной, частотой повторения слов; n-ступенчатое прореживание частоты повторения слов оцифрованного сигнала (USD) датчика или цифрового детектированного сигнала (UM), выделенного из оцифрованного сигнала датчика, причем это n-ступенчатое прореживание осуществляют с помощью n-каскадного прореживателя (от 5_1 до 5_n), где n≥2; выбор выходного сигнала (от UA_1 до UA_n) одного из n каскадов (от 5_1 до 5_n) прореживателя в зависимости от мгновенной относительной скорости; и фильтрация выбранного выходного сигнала посредством цифрового фильтра (7), синхронизированного с частотой повторения слов выбранного выходного сигнала.

Использование: для неразрушающего контроля качества пайки токоведущих соединений. Сущность изобретения заключается в том, что предварительно определяют уровень пропаянности, для чего калибруют первую шкалу вихретокового устройства контроля, используя образец, имитирующий пропаянность 0%, у которого зазор между стенками П-образной оправки и вкладываемой в нее медной пластиной запаян только по поверхности.

Изобретение относится к измерительной технике, представляет собой устройство для вихретоковой дефектоскопии и может быть использовано для выявления и определения параметров подповерхностных дефектов в ферромагнитных объектах.

Изобретение относится к области неразрушающего контроля и может быть использовано для обнаружения коррозии в лопатках газотурбинной установки. Сущность: датчик содержит детекторную головку, форма которой согласована с геометрией поверхности переходной секции лопатки газовой турбины.

Изобретение относится к устройству для регистрации электропроводных частиц (20) в жидкости (16), текущей в трубе (10) со скоростью (v), причем передающие катушки (18) подвергают жидкость воздействию периодических переменных электромагнитных полей для наведения в частицах вихревых токов, улавливающие катушки (15) регистрируют периодический электрический сигнал, соответствующий вихревым токам и содержащий несущее колебание, при этом, когда частицы попадают в эффективную ширину зоны чувствительности улавливающих катушек, наличие частицы способствует формированию амплитуды и/или фазы сигнала, каскад аналого-цифровых преобразователей преобразует сигнал улавливающей катушки в цифровую форму, блок (17, 19, 35, 37, 52, 60, 68, 74, 76, 78, 80, 88, 90, 94) обработки сигналов создает полезный сигнал из сигнала улавливающей катушки, преобразованного в цифровую форму, и блок (50, 60, 64) обработки данных обрабатывает полезный сигнал, чтобы зарегистрировать прохождение в трубе электропроводных частиц.

Использование: для проверки длинномерных изделий с помощью вихревых токов. Сущность изобретения заключается в том, что узел проходной катушки (100) для применения в устройстве проверки длинномерных изделий непрерывным способом с помощью вихревых токов включает узел катушки возбуждения с катушкой возбуждения (122), окружающей проходное отверстие (112) для пропуска длинномерного изделия (190) в направлении прохода (192), и расположенный вокруг проходного отверстия узел приемной катушки.

Изобретение относится к неразрушающему контролю и может быть использовано для контроля качества двухслойной проволоки диаметром менее 1 мм с верхним слоем, имеющим большую электрическую проводимость, например, стабилизированных Nb3Sn сверхпроводников с медной оболочкой и сердцевиной из сплава ниобий-олово. Сущность: вихретоковый преобразователь проходного типа для контроля качества проволоки содержит полый цилиндрический каркас 1 с размещенными на нем соленоидальными и бифилярно намотанными возбуждающей катушкой 2 и измерительной катушкой 3, полый цилиндрический каркас 4 с идентичными измерительными катушками 5 и 6, расположенными с осевым зазором и соединенными последовательно - встречно. Каркас 1 размещен внутри каркаса 4 симметрично с ним. Вихретоковый преобразователь содержит также потенциометр 7, каркас 8, идентичный каркасу 1, с размещенными на нем и намотанными бифилярно катушками 9 и 10 индуктивности, подобным возбуждающей катушке 2 и измерительной катушке 3 индуктивности, соответственно, но с большим числом витков W4=W5=(1,1…1,3)Wв, где W4, W5 и Wв - число витков четвертой катушки 9, пятой катушки 10 и возбуждающей катушки 2 индуктивности, соответственно. Катушка 9 индуктивности соединена последовательно с возбуждающей катушкой 2 индуктивности, а катушка 10 индуктивности соединена параллельно с потенциометром 7, подключенным своим средним выводом к выводу третьей измерительной катушки индуктивности. Преобразователь позволяет в процессе производства контролировать отношение "медь/не медь" в стабилизированных Nb3Sn сверхпроводниках и одновременно выявлять дефекты типа пор и включений из различных металлов. Технический результат: повышение информативности и пороговой чувствительности контроля стабилизированных сверхпроводников, диаметром менее 1 мм. 3 з.п. ф-лы , 4 ил.

Использование: для наружной дефектоскопии труб. Сущность изобретения заключается в том, что установка выполнена в виде модуля контроля толщины стенки трубы, модуля контроля продольных дефектов, модуля контроля поперечных дефектов, снабженных соответствующими сканирующими устройствами. Модуль контроля толщины стенки и модуль контроля продольных дефектов снабжены устройствами для позиционирования сканирующих устройств с датчиками относительно трубы. Устройство для позиционирования выполнено в виде трех корпусов и закрепленных в нем с возможностью вращения направляющих элементов в виде диска, закрепленного в корпусе, с наклоном относительно оси трубы. Диски закреплены в корпусе посредством соединительного элемента, винта и пружины и расположены на входе и выходе из первых двух модулей. Корпуса подвижно соединены между собой с возможностью одновременного схождения-расхождения относительно трубы. Диски выполнены с кольцевыми скосами. Одни из кольцевых скосов являются контактной поверхностью с трубой и выполнены с термоупрочняемым слоем. Другие кольцевые скосы обеспечивают более компактное расположение дисков относительно датчиков для уменьшения «мертвой» зоны сканирования. Сканирующие устройства установлены с возможностью вращения в противоположные стороны. Технический результат: повышение качества контроля труб, расширение диапазона контролируемых диаметров труб без увеличения габаритов установки, а также повышение надежности работы установки. 7 ил.

Изобретение относится к бесконтактному контролю качества объектов из электропроводящих материалов при производстве и эксплуатации. Сущность: способ основан на том, что в электропроводящем объекте постоянным магнитным полем возбуждают вихревой ток и сканируют электропроводящий объект вихретоковым преобразователем, содержащим по меньшей мере один индуктор постоянного поля и по меньшей мере один датчик изменения электромагнитного поля при перемещении вихретокового преобразователя и электропроводящего объекта, фиксируют сигналы, соответствующие изменению электромагнитного поля, по результатам измерений которых определяют наличие дефектов. При этом возбуждение вихревых токов в электропроводящем объекте осуществляют с помощью вихретокового преобразователя накладного типа, в котором датчики изменения электромагнитного поля устанавливают на полюсе индуктора постоянного поля, а возбуждение вихревых токов осуществляют через датчик изменения магнитного поля. Вихретоковый преобразователь состоит по меньшей мере из одного индуктора постоянного поля и по меньшей мере из одного датчика изменения электромагнитного поля, и блока обработки и анализа, вход которого связан с выходом датчика изменения электромагнитного поля. В качестве вихретокового преобразователя используют вихретоковый преобразователь накладного типа, при этом датчик изменения электромагнитного поля закреплен на полюсе индуктора постоянного поля, причем датчик изменения электромагнитного поля и индуктор постоянного поля выполнены в виде единого целого. Технический результат: возможность контроля при одностороннем доступе. 2 н. и 16 з.п. ф-лы, 7 ил.

Использование: для диагностики металла с имеющимися процессами высокотемпературной ползучести и прогнозирования его остаточного ресурса. Сущность изобретения заключается в том, что устройство для контроля роторов паровых турбин по осевому каналу включает механизм для перемещения, модуль для выявления дефектов, согласно изобретению в корпусе устройства расположены три канала с втулками, через первый канал подается контактная жидкость, второй - для датчика, в третьем канале расположена губка для сбора контактной жидкости, при этом в корпус устанавливается либо датчик продольных волн, либо датчик поверхностных акустических волн. Технический результат: обеспечение возможности обнаружения и прогнозирования образования дефектов и оценка ресурса ротора паровой турбины. 1 з.п. ф-лы, 5 ил.

Использование: для неразрушающего контроля днища резервуаров вертикальных стальных (далее РВС) для хранения нефти и нефтепродуктов. Сущность изобретения заключается в том, что обследование днища резервуара вертикального стального (далее РВС) производят комплексом для диагностики днищ, в котором используют метод утечки магнитного потока (MFL) и вихретоковый метод для выявления дефектов листов днища и сварных швов, определения их местоположения, а также измерения остаточной толщины листов днищ РВС и антикоррозионного покрытия, при этом комплекс для диагностики днищ состоит из сканера листов и сканера швов; сканер листов, в свою очередь, включает в себя тележку специальной конструкции, на которой размещены магнитная система с блоком датчиков, блок привода актуатора, блок аккумуляторный, блок электроники, навигационная система, а сканер швов также состоит из тележки, на которой размещены блок электроники, блок аккумуляторный, одометр и внешний датчик, при этом и сканер листов, и сканер швов снабжены бортовым накопителем диагностической информации, а блоки электроники сканера листов и сканера швов запрограммированы на определенные параметры работы, связанные с обнаружением дефектов, накоплением диагностической информации, настройкой навигационной системы. Технический результат: обеспечение возможности повышения достоверности диагностических данных и своевременного прогнозирования развития критических дефектных зон днища резервуара. 2 н.п. ф-лы, 5 ил.

Использование: для автоматизированного неразрушающего контроля резервуаров для хранения нефти и нефтепродуктов. Сущность изобретения заключается в том, что предложено устройство для автоматизированного неразрушающего контроля металлической конструкции, содержащее ультразвуковой блок неразрушающего контроля, блок неразрушающего контроля на основе метода утечки магнитного поля, вихретоковый блок неразрушающего контроля, управляющий блок, соединенный с указанными ультразвуковым блоком неразрушающего контроля, блоком неразрушающего контроля на основе метода утечки магнитного поля и вихретоковым блоком неразрушающего контроля для отправки управляющих сигналов для осуществления контроля металлической конструкции, и блок навигации, соединенный с управляющим блоком управления и выполненный с возможностью определения положения указанного устройства для автоматизированного неразрушающего контроля относительно металлической конструкции и состояния поверхности контролируемой металлической конструкции и направления сигналов с информацией о положении указанного устройства для автоматизированного неразрушающего контроля и состоянии поверхности контролируемой металлической конструкции в управляющий блок, причем все указанные блоки установлены во взрывозащищенном корпусе, имеющем средства перемещения по поверхности контролируемой металлической конструкции, управляющий блок выполнен с возможностью направления управляющих сигналов одновременно на по меньшей мере один блок из числа указанных ультразвукового блока неразрушающего контроля, блока неразрушающего контроля на основе метода утечки магнитного поля и вихретокового блока неразрушающего контроля на основе сигналов, полученных от блока навигации, а блок неразрушающего контроля на основе метода утечки магнитного поля выполнен с возможностью изменения индукции магнитного поля, создаваемого этим блоком, от минимального значения, близкого к нулю, до заданного максимального значения. Технический результат: обеспечение возможности создания устройства для автоматизированного неразрушающего контроля металлических конструкций, которое может осуществлять точный контроль различных видов металлических конструкций, включая металлические конструкции, имеющие препятствия на своей поверхности, например, в виде стыков составляющих их пластин, а также которое может работать в автоматическом или полуавтоматическом режиме. 3 н. и 11 з.п. ф-лы, 7 ил.

Изобретение относится к средствам неразрушающего контроля немагнитных металлических изделий и может быть использовано для контроля их толщины и удельной электрической проводимости материала. Сущность: устройство содержит первый, второй и третий генераторы гармонических сигналов, схему синхронизации, накладной вихретоковый преобразователь, первый, второй, третий, четвертый, пятый и шестой синхронные детекторы, первый, второй, третий, четвертый пятый и шестой интегрирующие дискретизаторы, вычислительный блок, блок индикации. Входы генераторов соединены с первым выходом схемы синхронизации, сигнальные выходы генераторов соединены со входами накладного вихретокового преобразователя. Сигнальные входы синхронных детекторов соединены с выходом накладного вихретокового преобразователя, входы управления первого, второго, третьего, четвертого, пятого и шестого синхронных детекторов соединены соответственно с первым и вторым выходами управления первого генератора, с первым и вторым выходами управления второго генератора, с первым и вторым выходами управления третьего генератора, а выходы синхронных детекторов соединены соответственно с сигнальными входами первого, второго, третьего, четвертого пятого и шестого интегрирующих дискретизаторов. Входы управления интегрирующих дискретизаторов соединены со вторым выходом схемы синхронизации, выходы интегрирующих дискретизаторов соединены каждый с отдельным входом вычислительного блока. Выход вычислительного блока соединен со входом блока индикации. Технический результат: повышение достоверности контроля за счет более качественного разделения реакций вихретокового преобразователя на взаимодействие с объектом каждой в отдельности частотных составляющих возбуждающего магнитного поля. 3 ил.

Изобретение относится к неразрушающему контролю и может быть использовано для выявления дефектов как с внутренней, так и с внешней стороны в ферромагнитных трубах. Технический результат: повышение достоверности контроля путем подавления влияния мешающих факторов, связанных с электромагнитной неоднородностью металла, без доведения его до состояния технического насыщения. Сущность: устройство содержит источник постоянного тока, систему намагничивания, вихретоковый преобразователь, электронный блок, фазовращатель. Система намагничивания состоит из цилиндрического магнитопровода с Н-образным продольным сечением и подключенной к выходу источника постоянного тока обмотки, размещенной на центральном стержне и выполненной в виде двух согласно соединенных и установленных с осевым зазором симметрично относительно центра магнитопровода идентичных секций. Вихретоковый преобразователь размещен в зазоре между обмотками электромагнита на цилиндрическом каркасе, соосном с магнитопроводом. Генератор переменного тока подключен к возбуждающей обмотке вихретокового преобразователя и электронному блоку, подключенного своим входом к выходу вихретокового преобразователя. Электронный блок выполнен с возможностью амплитудно-фазовой обработки сигнала и подключен через фазовращатель к выходу генератора переменного тока. Источник постоянного тока выполнен регулируемым. При изменении напряженности магнитного поля H, создаваемого системой намагничивания, происходит изменение разности фаз между сигналами, связанными с влиянием дефектов, и сигналами, связанными с влиянием структурной неоднородности металла. Величина напряженности магнитного поля выбрана так, чтобы изменения вносимого напряжения на измерительной обмотке вихретокового преобразователя, связанные с воздействием дефектов и влиянием шума за счет структурной неоднородности металла, максимально различались по фазе. При этом условия, благоприятные для выделения сигнала от дефектов, наступают при величине Н<<Нтн, где Нтн – напряженность магнитного поля, требуемая для технического насыщения металла. 1 з.п. ф-лы, 9 ил.

Использование: для контроля качества сверхпроводящей проволоки с медной оболочкой и сверхпроводящей сердцевиной из сплава ниобий-олово. Сущность изобретения заключается в том, что способ измерения отношения Cu/non Cu в сверхпроводящей проволоке с заданными наружным диаметром DH, удельной электрической проводимостью σм медной оболочки и удельной электрической проводимостью σс сверхпроводящей сердцевины, заключается в том, что предварительно в полость проходного вихретокового преобразователя поочередно вводят выполненные из отрезков проволоки контрольные образцы с такими же параметрами Dн, σм и σс, что и у контролируемой проволоки и с известным, изменяющимся от образца к образцу отношением Cu/non Сu, измеряют с помощью электронного блока, подключенного к выходу вихретокового преобразователя, вносимый образцами вихретоковый сигнал и по совокупности измерений получают градуировочную зависимость между вихретоковым сигналом и отношением Cu/non Сu, контролируемую проволоку перемещают через проходной вихретоковый преобразователь, измеряют с помощью электронного блока, подключенного к выходу вихретокового преобразователя, вихретоковый сигнал, регистрируют с помощью датчика перемещения текущую линейную координату контролируемого участка проволоки, получают зависимость изменения вихретокового сигнала вдоль контролируемой проволоки, а по ней, с помощью предварительно полученных градуировочных характеристик, и отношение Cu/non Сu, согласно изобретению периодически выполняют контрольное измерение отношения Cu/non Cu электрическим методом, для чего создают электрический ток I вдоль участка контролируемой проволоки, измеряют создаваемое этим током на участке заданной длины падение напряжение U и по отношению U/I, с учетом параметров Dн, σм, σс и , вычисляют среднее отношение Cu/non Cu на этом участке, затем ставят в соответствие полученную величину Cu/non Cu со средней величиной вихретокового сигнала, измеренного на этом же участке, и по полученному соответствию корректируют градуировочную характеристику. Технический результат: обеспечение возможности повышения достоверности измерения. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области неразрушающего контроля технического состояния рельсовых путей. Согласно способу мониторинга рельсового пути в рельсы передают акустический сигнал, отраженный сигнал принимают акустическими датчиками, обрабатывают сигнал с помощью системы обработки сигналов. По результатам анализа полученных данных судят о состоянии рельсового пути. В качестве источника акустического сигнала используют деформационную волну, возникающую в рельсе при движении подвижного состава. Прием отраженных сигналов осуществляют непрерывно в движении состава. В качестве акустических датчиков используют электромагнитно-акустические преобразователи. В результате расширяются функциональные возможности и повышается надежность способа мониторинга рельсового пути. 3 ил.
Наверх