Способ получения сложных полиэфиров для полиуретанов

Настоящее изобретение относится к области получения сложных полиэфиров и может быть использовано для получения эластичных полиуретанов. Сложные полиэфиры получают в результате поликонденсации адипиновой кислоты, этиленгликоля и 1,4-бутандиола при 140°C постепенно доводя температуру до 195±5°C. Молярное соотношение адипиновой кислоты, этиленгликоля и 1,4-бутандиола составляет 1,1:0,8:0,4 соответственно. После введения в реакционную смесь 0,1-5% слоистого силиката в качестве катализатора проводят вакуумную поликонденсацию до кислотного числа 1,8-2 мг KOH/г и гидроксильного числа 60,3-67,2 мг KOH/г. Изобретение позволяет сократить продолжительность и снизить энергозатраты процесса получения полиэфиров. 1 табл., 6 пр.

 

Изобретение относится к области получения сложных полиэфиров и может быть использовано в промышленности для получения эластичных полиуретанов.

Известен способ получения полиэфиров путем взаимодействия многоатомного спирта - глицерина и органической кислоты, дополнительно содержащей органическое основание - триэтаноламин или полиэтиленполиамин, где в качестве органической кислоты взята адипиновая кислота. Процесс проводят при молярном соотношении глицерина, триэтаноламина (полиэтиленполиамина) и адипиновой кислоты (10-17):(17-32):(58-66) соответственно [Патент РФ №2272047, МПК C08G 63/20, C08G 63/685, C08G 63/12, 2004].

Полиэфиры по известному способу предназначены для получения сетчатых полимеров повышенной теплостойкости.

Недостатком известного способа является то, что используемые в качестве органических оснований триэтаноламин и полиэтиленполиамин являются токсичными.

Известен также способ получения сложных полиэфиров путем взаимодействия адипиновой кислоты и многоатомного спирта в присутствии титаноорганического катализатора, в котором в качестве многоатомного спирта используют диэтиленгликоль и пентаэритрит. Процесс проводят при молярном соотношении пентаэритрита, диэтиленгликоля и адипиновой кислоты соответственно (1,0-1,3):(35-37):(33,5-35,0). Поликонденсацию проводят до получения полиэфира с гидроксильным числом 60±3 мг KOH/г и кислотным числом не более 1,5 мг KOH/г [Патент РФ №2024556, МПК C08G 63/12, C08G 18/42, 1994].

Полиэфиры по известному способу предназначены для получения эластичных пенополиуретанов, которые могут найти применение для производства лаков и различных покрытий на их основе.

Недостатком известного способа являются продолжительность процесса получения сложных полиэфиров и большие энергозатраты.

Наиболее близким к заявляемому по технической сущности и достигаемому техническому результату является способ получения сложных полиэфиров для полиуретанов [Патент РФ №2286358 C2, МПК C08G 63/12, 2004] поликонденсацией адипиновой кислоты, этиленгликоля и 1,4-бутандиола в присутствии тетрабутоксититана. Процесс проводят при молярном соотношении адипиновой кислоты, этиленгликоля и 1,4-бутандиола 1:0,78:0,42 соответственно, компоненты нагревают до 200±5°C. Поликонденсацию проводят до получения полиэфира с кислотным числом 35-42 мг KOH/г, после чего в реакционную смесь вводят катализатор тетрабутоксититан в количестве 0,0006-0,001% от массы адипиновой кислоты и ведут вакуумную поликонденсацию в течение 16-17 часов до кислотного числа не более 1 мг KOH/г и гидроксильного числа 40±3 мг KOH/г.

Недостатком известного способа является то, что использование для получения полиуретановых термопластов из полиэфиров, полученных с применением тетрабутоксититана, сопровождается гелеобразованием.

Задачей изобретения является сокращение продолжительности, снижение энергозатрат процесса получения сложных полиэфиров для полиуретанов.

Поставленная задача решена следующим образом.

Для получения сложных полиэфиров для полиуретанов проводят поликонденсацию адипиновой кислоты и смеси многоатомных спиртов при 140°C, постепенно доводя температуру до 195±5°C. При этих температурах сводятся к минимуму побочные процессы (возгонка, разложение исходных веществ). В качестве многоатомных спиртов используют смесь этиленгликоля и 1,4-бутандиола при молярном соотношении адипиновой кислоты, этиленгликоля и 1,4-бутандиола 1,1:0,8:0,4 соответственно и проводят поликонденсацию до кислотного числа 30-32 мг KOH/г. Затем в реакционную смесь вводят 0,1-5% слоистого силиката от массы мономеров, выступающего в качестве катализатора, и проводят вакуумную поликонденсацию в течение 10-12 часов до кислотного числа 1,8-2 мг KOH/г и гидроксильного числа 60,3-67,2 мг KOH/г.

Решение технической задачи позволяет сократить продолжительность процесса получения сложных полиэфиров до 1,5 раз и уменьшить энергозатраты. Проведение синтеза выше 200°C не желательно, т.к. выше этой температуры полиэфиры на основе адипиновой кислоты разлагаются с образованием циклопентанона. Синтез идет в отсутствие традиционных катализаторов (тетрабутоксититан, п-толуолсульфокислота, о-аминометилфенол) и стабилизаторов (ионол, трифенилфосфит), которые в большинстве случаев остаются в готовом полиэфире и могут влиять на его реакционную способность при взаимодействии с диизоцианатами.

Полученные сложные полиэфиры в присутствии слоистого силиката в количестве 0,1-5% от массы загружаемых компонентов позволяют получать полиуретаны с заданными характеристиками.

Способ получения сложных полиэфиров для полиуретанов представлены следующими примерами конкретного выполнения.

Пример 1.

Способ получения сложных полиэфиров для полиуретанов проводят в две стадии. Для проведения первой стадии поликонденсации в колбу, снабженную мешалкой, термометром, загружают 100 г (1,1 моль) адипиновой кислоты, 29,9 г (0,8 моль) этиленгликоля, 33,6 г (0,4 моль) 1,4-бутандиола при температуре 140°C, затем температуру доводят до 195±5°C. Процесс поликонденсации ведут до кислотного числа 30-32 мг KOH/г, после чего на второй стадии добавляют 0,164 г слоистого силиката, выступающего в качестве катализатора, что составляет 0,1% от массы мономеров и проводят вакуумную поликонденсацию в течение 12 ч.

Выход полиэфира составляет 89% от массы мономеров со следующими свойствами: кислотное число 1,8 мг KOH/г, гидроксильное число 60,3 мг KOH/г; массовая доля воды 0,011%). Внешний вид - вязкая однородная жидкость коричневого цвета.

Пример 2.

Способ осуществляется аналогично примеру 1 с той лишь разницей, что на второй стадии вакуумной поликонденсации добавляют 0,818 г слоистого силиката, что составляет 0,5% от массы мономеров и проводят синтез в течение 11 ч.

Выход полиэфира составляет 92% от массы мономеров со следующими свойствами: кислотное число 1,9 мг KOH/г, гидроксильное число 63,6 мг KOH/г; массовая доля воды 0,09%. Внешний вид - вязкая однородная жидкость коричневого цвета.

Пример 3.

Способ осуществляется аналогично примеру 1 с той лишь разницей, что на второй стадии вакуумной поликонденсации добавляют 1,64 г слоистого силиката, что составляет 1% от массы мономеров и проводят синтез в течение 11,5 ч.

Выход полиэфира составляет 87% от массы мономеров со следующими свойствами: кислотное число 2,0 мг KOH/г, гидроксильное число 67,2 мг KOH/г; массовая доля воды 0,012%. Внешний вид - вязкая однородная жидкость коричневого цвета.

Пример 4.

Способ осуществляется аналогично примеру 1 с той лишь разницей, что на второй стадии вакуумной поликонденсации добавляют 3,27 г слоистого силиката, что составляет 2% от массы мономеров и проводят синтез в течение 11 ч.

Выход полиэфира составляет 92% от массы мономеров со следующими свойствами: кислотное число 1,9 мг KOH/г, гидроксильное число 63,6 мг KOH/г; массовая доля воды 0,011%). Внешний вид - вязкая однородная жидкость коричневого цвета.

Пример 5.

Способ осуществляется аналогично примеру 1 с той лишь разницей, что на второй стадии вакуумной поликонденсации добавляют 4,91 г слоистого силиката, что составляет 3% от массы мономеров и проводят синтез в течение 10 ч.

Выход полиэфира составляет 92% от массы мономеров со следующими свойствами: кислотное число 1,8 мг KOH/г, гидроксильное число 60,4 мг KOH/г; массовая доля воды 0,01%. Внешний вид - вязкая однородная жидкость коричневого цвета.

Пример 6.

Способ осуществляется аналогично примеру 1 с той лишь разницей, что на второй стадии вакуумной поликонденсации добавляют 8,18 г слоистого силиката, что составляет 5% от массы мономеров и проводят синтез в течение 10 ч.

Выход полиэфира составляет 91% от массы мономеров со следующими свойствами: кислотное число 1,8 мг KOH/г, гидроксильное число 60,3 мг KOH/г; массовая доля воды 0,011%. Внешний вид - вязкая однородная жидкость коричневого цвета.

Полученные результаты приведены в таблице.

Техническим результатом является получение сложных полиэфиров адипиновой кислоты и многоатомного спирта в присутствии 0,1-5% слоистого силиката при 140°C, постепенно доводя температуру до 195±5°C, в котором в качестве многоатомного спирта берут этиленгликоль и 1,4-бутандиол при молярном соотношении адипиновой кислоты, этиленгликоля и 1,4-бутандиола 1,1:0,8:0,4 соответственно. Изобретение позволяет сократить время получения полиэфиров до 1,5 раз. Полиэфиры получают с высоким выходом от 85 до 92%.

Способ получения сложных полиэфиров для полиуретанов, включающий поликонденсацию адипиновой кислоты и многоатомных спиртов этиленгликоля и 1,4-бутандиола, отличающийся тем, что поликонденсацию проводят при температуре 140°С доводя ее до 195±5°С, причем молярное соотношение загружаемых мономеров адипиновой кислоты, этиленгликоля и 1,4-бутандиола составляет 1,1:0,8:0,4, после чего в реакционную смесь вводят катализатор слоистый силикат в количестве 0,1-5% от массы мономеров и ведут вакуумную поликонденсацию в течение 10-12 часов до кислотного числа 1,8-2 мг КОН/г и гидроксильного числа 60,3-67,2 мг КОН/г.



 

Похожие патенты:
Настоящее изобретение относится к способу получения поли-пара-диоксанона. Описан способ получения поли-пара-диоксанона в массе мономера под действием октаноата олова (II) в присутствии соинициатора, которые вносят в виде раствора в органическом растворителе, удаляют растворитель вакуумированием и проводят полимеризацию при нагревании в атмосфере азота, полученный полимер охлаждают, измельчают и очищают от остаточного мономера, отличающийся тем, что в качестве соинициатора используют простые и сложные глицидиловые эфиры, в качестве растворителя используют бензол, удаление растворителя осуществляют при комнатной температуре и давлении не более 0,5 мм рт.ст., полимеризацию проводят в тонком слое при 80°С, полимер охлаждают до комнатной температуры и очищают от остаточного мономера отгонкой мономера при давлении 0,1-0,5 мм рт.ст.

Изобретение относится к полиэфирным полимерам. Описан полиэфирный полимер, включающий по меньшей мере один полиэтилентерефталатный полиэфир; по меньшей мере одно соединение, содержащее щелочной металл и алюминий; и от 5 до 350 частей на млн.

Настоящее изобретение относится к сложнополиэфирной композиции. Описана сложнополиэфирная композиция для литья под давлением, включающая в себя получаемый в расплаве полиэтилентерефталатный сложный полиэфир, содержащий в своем составе остатки 2,6-нафталиндикарбоновой кислоты в количестве примерно от 0,1 мольного % до 3 мольных % от общего содержания остатков дикарбоновой кислоты в получаемом в расплаве полиэтилентерефталатном сложном полиэфире, которое составляет 100 мольных %, алюминий, присутствующий в количестве примерно от 3 частей на миллион (ч/млн) до 100 частей на миллион (ч/млн) атомов алюминия от общей массы сложнополиэфирной композиции, а также литий, присутствующий в количестве примерно от 4 частей на миллион (ч/млн) до 250 частей на миллион (ч/млн) атомов лития от общей массы сложнополиэфирной композиции.

Изобретение относится к способу получения биоразлагаемого полимера, который может использоваться в производстве упаковочных материалов и изделий медико-биологического назначения.

Изобретение относится к способу получения биоразлагаемого сополимера, который может использоваться в производстве упаковочных материалов. .

Изобретение относится к получению биоразлагаемых полимеров, в частности к способу получения полилактидов из каталитической системы, используемых в пищевой промышленности, медицинской технике, фармакологии и т.д.

Изобретение относится к катализатору поликонденсации для получения сложного полиэфира путем реакции этерификации или реакции трансэтерификации между дикарбоновой кислотой или ее эфиробразующим производным и гликолем.

Изобретение относится к полиэфирному контейнеру с улучшенными газобарьерными свойствами, пригодного для хранения упакованного газированного безалкогольного напитка.

Изобретение относится к (со)олигомерам лактида и гликолида, находящим применение в качестве биосовместимых полимеров в хирургии и фармакологии. .

Изобретение относится к катализаторам полимеризации, конкретно к катализаторам полимеризации лактидов. .

Изобретение относится к способу удаления циклического сложного диэфира 2-гидроксиалкановой кислоты из пара, содержащего указанный сложный диэфир, в котором пар приводят в контакт с водным раствором, так что сложный диэфир растворяется в указанном растворе.

Изобретение относится к способу осуществления процесса полимеризации. На первой стадии осуществляют (со)полимеризацию мономера(ов), а на второй стадии осуществляют разделение продукта и мономеров, олигомеров, продуктов реакции, а также добавок и растворителей.

Настоящее изобретение относится к способу получения упаковки из ПЭТ. Описан способ получения изделия из полиэтилентерефталата (ПЭТ) из биологического сырья, включающий переработку ПЭТ полимера из биологического сырья в изделие из ПЭТ из биологического сырья, выбранного из преформы или упаковки из ПЭТ из биологического сырья, где ПЭТ полимер из биологического сырья содержит по меньшей мере один компонент ПЭТ, выбранный из моноэтиленгликоля (МЭГ), терефталевой кислоты (ТК) и их комбинаций, полученный из по меньшей мере одного материала, содержащего биологические вещества, выбранного из лесопромышленных отходов, сельскохозяйственных отходов и их комбинаций.

Данное изобретение относится к биодеградируемым полимерам и особенно к биодеградируемым полимерам, основанным на полиакриловой и полиаспарагиновой кислотах. Кроме того, данное изобретение относится к способам получения указанных биодеградируемых полимеров и их применения в качестве, например, защитного покрытия или упаковочного материала.

Настоящее изобретение относится к способу получения полиэфир-сложноэфирных полиолов, причем стартовые соединения с активными по Церевитинову атомами водорода (а) взаимодействуют с, по меньшей мере, одним алкиленоксидом (b) в присутствии, по меньшей мере, одного амина (с), выбранного из группы, состоящей из третичного амина, незамещенного имидазола и замещенного имидазола, в присутствии, по меньшей мере, одного сложного эфира жирной кислоты (d) и где более 99 %масс.

Настоящее изобретение относится к контейнеру для пищевых продуктов или напитков, содержащему полиэтилентерефталатный полимер. Описан контейнер для пищевых продуктов или напитков, содержащий полиэтилентерефталатный полимер, где указанный полимер содержит терефталатный компонент и диольный компонент, где терефталатный компонент выбран из терефталевой кислоты, диметилтерефталата, изофталевой кислоты и их комбинаций, и диольный компонент выбран из этиленгликоля, циклогександиметанола и их комбинаций, причем оба компонента - терефталатный и диольный, частично или полностью получены из, по меньшей мере, одного материала на основе биосырья.
Настоящее изобретение относится к способу непрерывного получения сложных полиэфиров. Описан способ непрерывной полимеризации с раскрытием кольца мономеров циклического сложного эфира с образованием алифатических сложных полиэфиров на основе мономеров циклического сложного эфира, который включает следующие операции: a) непрерывную подачу мономера циклического сложного эфира и катализатора полимеризации в смесительный петлевой реактор непрерывного действия, причем реактор работает при эффективных для полимеризации условиях с образованием форполимеризованной реакционной смеси со степенью полимеризации между 40% и 90% при температуре от 100 до 240°С; b) непрерывный отвод форполимеризованной реакционной смеси из смесительного реактора непрерывного действия и непрерывная подача форполимеризованной реакционной смеси в реактор идеального вытеснения, причем реактор идеального вытеснения работает при условиях полимеризации, при которых реакционную смесь полимеризуют до степени полимеризации по меньшей мере 90%, с образованием полимера при температуре от 100 до 240°С; c) непрерывный отвод полимера из реактора идеального вытеснения.
Изобретение относится к способу получения различных биоразлагаемых алифатических и алифатически-ароматических сложных полиэфиров из одной или нескольких алифатических дикарбоновых кислот или сложных эфиров этих кислот и одного или нескольких алифатических диолов или смеси различных алифатических и ароматических дикарбоновых кислот и алифатических диолов.

Изобретение относится к реакторам для проведения поликонденсации, используемым для производства сложных полиэфиров в расплаве. .

Изобретение относится к усовершенствованному способу конденсации и промывки парообразного биоразлагаемого межмолекулярного циклического сложного диэфира альфа-гидроксикарбоновой кислоты, имеющего формулу II, причем R выбран из водорода или линейных или разветвленных алифатических радикалов, содержащих от 1 до 6 атомов углерода, из парообразной смеси, содержащей сложный диэфир формулы II, альфа-гидроксикарбоновую кислоту формулы I, соответствующую сложному диэфиру формулы II, и воду, причем поток конденсационной и промывочной жидкости (3), содержащей водный раствор альфа-гидроксикарбоновой кислоты, соответствующей сложному диэфиру формулы II, имеющей формулу I, приводят в контакт, по меньшей мере один раз, с парообразной смесью, при этом сложный диэфир формулы II, содержащийся в парообразной смеси, растворяется в конденсационной и промывочной жидкости (3).
Изобретение относится к полимерной композиции, содержащей по меньшей мере два сложных полиэфира, обладающей улучшенными механическими свойствами, в частности хорошим балансом между пределом прочности на разрыв, модулем упругости и относительным удлинением при разрыве, и особенно подходит для изготовления промышленных изделий, таких как, например, пленки, изготовленные литьевым формованием изделия, термоформуемые изделия или вспененные изделия.
Наверх