Радиальный магнитный подшипник с отдельными листами в тангенциальном направлении

Изобретение относится к радиальному магнитному подшипнику для вращательного опирания ротора. Радиальный магнитный подшипник для вращательного опирания ротора (3) содержит статор (2) с несколькими катушечными устройствами (6). Катушечные устройства (6) расположены в направлении периферии вокруг оси (1) подшипника. Каждое из катушечных устройств (6) содержит пакет (7) железа из отдельных листов. Кроме того, каждое из катушечных устройств (6) содержит осевую катушку возбуждения (11), намотанную на соответствующий пакет (7) железа. Отдельные листы в каждом пакете (7) железа шихтованы в тангенциальном направлении, при этом каждая катушка (11) выполнена в виде осевой катушки возбуждения. Технический результат: создание легкомонтируемого и высокодинамичного радиального магнитного подшипника. 31 з.п. ф-лы, 8 ил.

 

Изобретение относится к радиальному магнитному подшипнику для вращательного опирания ротора, содержащему статор с несколькими катушечными устройствами, причем катушечные устройства расположены в направлении периферии вокруг оси подшипника и каждое из катушечных устройств содержит пакет железа из отдельных листов и катушку, намотанную на соответствующий пакет железа.

В традиционном радиальном магнитном подшипнике статор содержит катушки, направленные радиально внутрь к опираемому валу. Это значит, что оси катушек проходят, в основном, радиально.

Из книги Gerhard Schweitzer, Eric H. Maslen «Magnetic Bearings», Springer Verlag Berlin, 2009, XV, стр. 82-84, 96, известны также радиальные магнитные подшипники с осевыми катушками. Это значит, что оси катушек проходят параллельно оси подшипника. В соответствии с этим поток течет как в катушках, так и в роторе, в основном, в осевом направлении.

Радиальные магнитные подшипники должны иметь возможность отрегулировать высокодинамичные возмущающие воздействия. При этом сила должна следовать за током с минимальной задержкой.

Задача изобретения заключается, следовательно, в повышении динамики радиального магнитного подшипника.

Согласно изобретению, эта задача решается посредством радиального магнитного подшипника для вращательного опирания ротора, содержащего статор с несколькими катушечными устройствами, причем катушечные устройства расположены в направлении периферии вокруг оси подшипника и каждое из катушечных устройств содержит пакет железа из отдельных листов и катушку, намотанную на соответствующий пакет железа, причем отдельные листы в каждом пакете шихтованы в направлении периферии, а каждая катушка выполнена в виде осевой катушки возбуждения.

Предпочтительным образом радиальный магнитный подшипник содержит, следовательно, катушки в осевом направлении на пакетах, отдельные листы которых шихтованы в тангенциальном направлении. Таким образом, плотность вихревых токов в магнитной цепи поддерживается низкой. За счет этого сила может следовать за током очень быстро, благодаря чему может быть достигнута очень динамичная характеристика подшипника. При этом задача пакета заключается, разумеется, в том, чтобы направлять магнитное поле и за счет позиционирования в радиальном направлении с распределением по окружности воспринимать подъемную силу.

Преимущественно радиальный магнитный подшипник содержит четыре попарно противоположных катушечных устройства. Это позволяет обеспечить достаточное опирание при простой конструкции.

Кроме того, предпочтительно, если каждый пакет имеет в аксиально проходящей плоскости разреза U-образное сечение, имеющее два колена и соединяющий их отрезок. При этом соответствующая катушка намотана на часть пакета в направлении перпендикулярно оси подшипника и часть пакета придана соединяющему отрезку сечения. Таким образом, над опираемым валом можно реализовать почти замкнутую магнитную цепь.

Каждый пакет может быть выполнен в направлении периферии дугообразным. Преимущественно он имеет в направлении периферии контур, отстоящий на постоянное расстояние от опираемого заданного вала. Катушечное устройство имеет тогда, в целом, приблизительно форму почки.

Кроме того, каждое катушечное устройство может содержать каркас, расположенный вокруг соответствующего пакета. Такой каркас придает соответствующей катушке нужную поддержку. Каркас может быть выполнен составным. В частности, он должен состоять, по меньшей мере, из двух частей, которые могут легко надеваться на предварительно изготовленный пакет. Так, например, рекомендуется разделение на две части таким образом, чтобы радиально внешняя и радиально внутренняя части каркаса были противоположны друг другу.

В одном особом варианте каркас катушки может быть также прилит к соответствующему пакету. Таким образом, каркас катушки может быть прикреплен к пакету без больших производственных затрат.

В другом варианте радиальный магнитный подшипник может содержать кольцеобразный корпус, в котором закреплены катушечные устройства. За счет этого кольцеобразного корпуса могут быть не только закреплены катушечные устройства, но и обеспечена защита от влияний окружающей среды.

Корпус может быть выполнен из двух частей, причем обе части также кольцеобразные. Таким образом, корпус может быть составлен в осевом направлении, причем катушечные устройства удерживаются между его обеими половинами.

На внутренней окружности кольцеобразного корпуса может быть размещено отдельное поддерживающее кольцо для радиальной поддержки катушечных устройств. Это поддерживающее кольцо может выполнять не только задачи поддержки, но и при выборе подходящего материала также задачи изоляции.

Изобретение более подробно поясняется с помощью прилагаемых чертежей, на которых изображают:

- фиг. 1: принципиальную конструкцию предложенного радиального магнитного подшипника в разрезе вдоль его оси;

- фиг. 2: сечение активных частей радиального магнитного подшипника из фиг. 1 поперек оси;

- фиг. 3: перспективный вид пакета железа;

- фиг. 4: пакет железа из фиг. 3 с каркасом катушки;

- фиг. 5: пакет железа из фиг. 4 с намотанной на каркас катушкой, в результате чего возникает катушечное устройство;

- фиг. 6: катушечное устройство из фиг. 5, помещенное в половину корпуса;

- фиг. 7: половину корпуса из фиг. 6, оснащенную другими катушечными устройствами и поддерживающим кольцом;

- фиг. 8: укомплектованный второй половиной корпуса радиальный магнитный подшипник.

Подробно описанные ниже примеры осуществления изобретения представляют собой предпочтительные варианты его осуществления.

На фиг. 1 активные части радиального магнитного подшипника изображены в продольном разрезе, т.е. вдоль его оси 1. Подшипник содержит статор 2, служащий для вращательного опирания ротора 3. Ротор 3 содержит вал 4, окруженный в зоне статора листом 5 ротора. Задачей листа 5 является поддержание на минимальном уровне потери от вихревых токов, если магнитное поле из-за небольшого числа полюсов проникает глубоко в ротор. В свою очередь, с небольшим числом полюсов можно достичь небольшой частоты перемагничивания.

Статор содержит несколько распределенных по окружности катушечных устройств 6, каждое из которых содержит пакет 7 железа. Он состоит из отдельных листов, которые по отношению к его середине шихтованы в тангенциальном направлении подшипника. Сечение каждого пакета 7 вдоль оси 1 подшипника имеет, в основном, U-образную форму. Она состоит из двух колен 8, 9 и соединяющего их отрезка 10. На этот соединительный отрезок 10 или на соответствующий участок пакета намотана осевая катушка возбуждения 11. Ее ось проходит параллельно оси 1 подшипника.

При основном возбуждении катушечных устройств 6 в подшипнике возникает обозначенный на фиг. 1 стрелками 12, 13 магнитный поток. Он течет сначала по стрелке 12 из осевой катушки возбуждения 11 через колено 9 пакета 7. Оттуда он течет дальше через радиальный воздушный зазор 14 между статором 2 и ротором 3. Затем он течет через лист 5 ротора и вал, а оттуда - по стрелке 13 аналогичным образом обратно в катушку 11. Следовательно, магнитный поток течет в катушке 11 сначала в осевом направлении и отклоняется в пакете 7, так что он течет в радиальном направлении через колено 9, воздушный зазор 14 и лист 5 ротора, в основном, радиально внутрь. В роторе 3 магнитный поток снова отклоняется в радиальном направлении, покидая ротор 3, к статору 3. В колене 8 пакета 7 магнитный поток снова отклоняется в осевом направлении. Аналогичный поток возникает также для всех других катушечных устройств 6.

На фиг. 2 активные части из фиг. 1 изображены в сечении перпендикулярно оси 1 подшипника. В частности, видны пакеты 7, 7' железа, в которых отдельные листы шихтованы в тангенциальном направлении или в направлении периферии.

В данном примере с равномерным распределением по окружности расположены четыре катушечных устройства, содержащих соответственно пакет 7 железа и осевую катушку возбуждения 11. Это значит, что по отношению к оси 1 попарно напротив друг друга расположены всегда два из четырех катушечных устройств.

На фиг. 2 обозначено также направление 15 тока для основного возбуждения в каждой катушке 11. Это направление тока приводит к магнитному потоку на фиг. 1.

На фиг. 3 пакет 7 железа изображен в перспективе. Как уже сказано, пакет 7 имеет в осевом направлении U-образное сечение. В направлении периферии он изогнут. Контур обращенного к ротору участка пакета 7 соответствует отрезку дуги окружности. Таким образом, в данном примере пакет 7 перекрывает приблизительно круговой сектор ротора 3 в 90°. На фиг. 3 видны также шихтованные в тангенциальном направлении или в направлении периферии отдельные листы пакета 7.

На фиг. 4 пакет 7 из фиг. 3 снабжен каркасом 16 катушки. Каркас 16 состоит преимущественно из пластика. Он может быть выполнен из двух частей, так что он легко надевается на пакет 7. Например, каркас 16 состоит из двух половин: радиально внешней и радиально внутренней. Они надеваются на участок 10 пакета 7. В качестве альтернативы каркас 16 может быть также прилит к пакету 7.

На фиг. 5 изображено катушечное устройство 6 в перспективе в сборе. На каркас 16 намотана катушка 17. Ее ось проходит параллельно оси 1 подшипника.

Следовательно, согласно изобретению, магнитопровод может быть выполнен с малыми вихревыми токами. Четыре магнитопровода в статоре шихтованы.

Как показано на фиг. 5, катушечное устройство имеет преимущественно форму почки. Это позволяет реализовать особенно компактный подшипник, как это показано на фиг. 6-8.

На фиг. 6 изображена первая часть 17 кольцеобразного корпуса, в которую помещено катушечное устройство 6 из фиг. 5. Заплечик 18 в части 17 корпуса удерживает катушечное устройство 6 от радиального смещения наружу. Кроме того, рядом с катушечным устройством 6 в части 17 корпуса видны канавки 19, которые служат для фиксации показанного на фиг. 7 поддерживающего кольца 20. Канавки 19 проходят в радиальном направлении и заканчиваются перед внутренним радиусом части 17 корпуса.

На фиг. 7 часть 17 корпуса изображена с четырьмя распределенными по окружности катушечными устройствами 6. Кроме того, показано поддерживающее кольцо 20, которое внутри прилегает ко всем катушечным устройствам 6, поддерживая их тем самым радиально внутрь. Поддерживающее кольцо 20 имеет радиально отстоящие крылья 21, которые удерживают его в нужном положении относительно корпуса за счет геометрического замыкания. Отдельные катушечные устройства изолированы друг от друга крыльями 21, поскольку между двумя катушечными устройствами 6 находится соответственно одно крыло 21.

На фиг. 8 радиальный магнитный подшипник изображен в сборе без ротора. Вторая часть 22 корпуса, которая может быть выполнена идентично его первой части 17, надета на нее, в результате чего катушечные устройства 6 полностью закрыты. Внутри кольцеобразного корпуса, составленного из обеих половин 17, 22, видно поддерживающее кольцо 20 с его крыльями 21. На обеих сторонах поддерживающего кольца заподлицо с ним расположены оба колена 8, 9 соответствующих пакетов железа.

Предложенное строение магнитного подшипника с катушками в форме почки на каркасах обеспечивает особенно компактную конструкцию. За счет шихтовки магнитомягких сегментов достигается высокое качество регулирования. Все детали имеют преимущественно такую форму, что они могут фиксироваться за счет простого осевого соединения. Это обеспечивает недорогой монтаж.

1. Радиальный магнитный подшипник для вращательного опирания ротора (3), содержащий статор (2) с несколькими катушечными устройствами (6), причем катушечные устройства (6) расположены в направлении периферии вокруг оси (1) подшипника, и каждое из катушечных устройств (6) содержит пакет (7) железа, содержащий отдельные листы, и катушку (11), намотанную на соответствующий пакет (7) железа, отличающийся тем, что отдельные листы в каждом пакете (7) шихтованы в направлении периферии, при этом каждая катушка (11) выполнена в виде осевой катушки возбуждения.

2. Подшипник по п. 1, содержащий четыре попарно противоположных катушечных устройства (6).

3. Подшипник по п. 1 или 2, причем каждый пакет (7) железа имеет в аксиально проходящей плоскости разреза U-образное сечение, имеющее два колена (8, 9) и соединяющий их отрезок (10), причем соответствующая катушка (11) намотана на часть пакета железа в направлении перпендикулярно оси (1) подшипника, каковая часть придана отрезку (10).

4. Подшипник по п. 1, причем каждый пакет железа выполнен в направлении периферии дугообразным.

5. Подшипник по п. 2, причем каждый пакет железа выполнен в направлении периферии дугообразным.

6. Подшипник по п. 3, причем каждый пакет железа выполнен в направлении периферии дугообразным.

7. Подшипник по п. 1, причем каждое катушечное устройство (6) содержит каркас (16), расположенный вокруг соответствующего пакета (7) железа.

8. Подшипник по п. 2, причем каждое катушечное устройство (6) содержит каркас (16), расположенный вокруг соответствующего пакета (7) железа.

9. Подшипник по п. 3, причем каждое катушечное устройство (6) содержит каркас (16), расположенный вокруг соответствующего пакета (7) железа.

10. Подшипник по п. 4, причем каждое катушечное устройство (6) содержит каркас (16), расположенный вокруг соответствующего пакета (7) железа.

11. Подшипник по п. 7, причем каркас (16) выполнен составным.

12. Подшипник по п. 8, причем каркас (16) выполнен составным.

13. Подшипник по п. 9, причем каркас (16) выполнен составным.

14. Подшипник по п. 10, причем каркас (16) выполнен составным.

15. Подшипник по п. 7, причем каркас (16) прилит к соответствующему пакету (7) железа.

16. Подшипник по п. 8, причем каркас (16) прилит к соответствующему пакету (7) железа.

17. Подшипник по п. 9, причем каркас (16) прилит к соответствующему пакету (7) железа.

18. Подшипник по п. 10, причем каркас (16) прилит к соответствующему пакету (7) железа.

19. Подшипник по п. 1, содержащий кольцеобразный корпус (17, 22), в котором закреплены катушечные устройства (6).

20. Подшипник по п. 2, содержащий кольцеобразный корпус (17, 22), в котором закреплены катушечные устройства (6).

21. Подшипник по п. 3, содержащий кольцеобразный корпус (17, 22), в котором закреплены катушечные устройства (6).

22. Подшипник по п. 4, содержащий кольцеобразный корпус (17, 22), в котором закреплены катушечные устройства (6).

23. Подшипник по п. 5, содержащий кольцеобразный корпус (17, 22), в котором закреплены катушечные устройства (6).

24. Подшипник по п. 6, содержащий кольцеобразный корпус (17, 22), в котором закреплены катушечные устройства (6).

25. Подшипник по п. 19, причем корпус (17, 22) выполнен из двух частей и обе части корпуса выполнены кольцеобразными.

26. Подшипник по п. 20, причем корпус (17, 22) выполнен из двух частей и обе части корпуса выполнены кольцеобразными.

27. Подшипник по п. 21, причем корпус (17, 22) выполнен из двух частей и обе части корпуса выполнены кольцеобразными.

28. Подшипник по п. 22, причем корпус (17, 22) выполнен из двух частей и обе части корпуса выполнены кольцеобразными.

29. Подшипник по п. 19, причем на внутренней окружности кольцеобразного корпуса (17, 22) размещено отдельное поддерживающее кольцо (20) для радиальной поддержки катушечных устройств (6).

30. Подшипник по п. 20, причем на внутренней окружности кольцеобразного корпуса (17, 22) размещено отдельное поддерживающее кольцо (20) для радиальной поддержки катушечных устройств (6).

31. Подшипник по п. 21, причем на внутренней окружности кольцеобразного корпуса (17, 22) размещено отдельное поддерживающее кольцо (20) для радиальной поддержки катушечных устройств (6).

32. Подшипник по п. 25, причем на внутренней окружности кольцеобразного корпуса (17, 22) размещено отдельное поддерживающее кольцо (20) для радиальной поддержки катушечных устройств (6).



 

Похожие патенты:

Изобретение относится к машиностроению, преимущественно к магнитным опорам вертикальных роторов быстровращающихся приборов: гироскопов, накопителей энергии, генераторов, турбомолекулярных насосов, центрифуг и подобных устройств.

Изобретение относится к машиностроению и преимущественно, к опорам высокооборотных роторов с вертикальной осью вращения, например, роторов газовых центрифуг, накопителей энергии, гироскопов и подобных устройств.

Изобретение относится к области машиностроения и может быть использовано при проектировании, например, газотурбинных установок замкнутого цикла большой мощности.

Изобретение относится к бесконтактным опорным устройствам с активными магнитными подшипниками для роторов вращения, а именно к опорному узлу магнитного подвеса ротора, и может быть использовано при создании высокооборотных машин, например газоперекачивающих агрегатов, с целью улучшения их эксплуатационных характеристик.

Изобретение относится к радиальному магнитному подшипнику. Радиальный магнитный подшипник имеет статор и ротор, который оперт в статоре с возможностью вращения, при этом ротор имеет вал (7), а этот вал (7) окружен кольцеобразной системой (5) пакета сердечника.

Изобретение относится к системам подшипников асинхронной электрической машины, и в частности к системам подшипников электродвигателя. Система подшипников для асинхронной электрической машины содержит раму (20), вал (40), вращающийся внутри рамы (20), и опорную обойму подшипника, соединенную с рамой (20) и окружающую по меньшей мере часть вала (40).

Изобретение относится к области электротехники и может быть использовано в роторных механизмах на электромагнитных опорах. Техническим результатом является повышение быстродействия и динамической точности электромагнитного подвеса ротора.

Изобретение относится к области энергомашиностроения, в частности к электромеханическим преобразователям энергии на бесконтактных подшипниках, и может быть использовано для управления положением ротора в магнитных подшипниках.

Изобретение относится к области электромашиностроения и может быть использовано в различных установках с высокоскоростным электрическим приводом рабочего органа, в частности, в условиях вакуума.

Изобретение касается магнитного радиального подшипника и способа управления такого рода магнитным радиальным подшипником. Подшипник включает в себя статор (4), который имеет первую катушку (S1), вторую катушку (S2), третью катушку (S3) и четвертую катушку (S4), из которых первая катушка (S1) и третья катушка (S3) находятся на первой оси (Y), а также вторая (S2) и четвертая (S4) катушки - на второй оси (X) напротив друг друга.

Изобретение относится к способу работы трехфазного инвертора (6) питаемого вентильным преобразователем магнитного подшипника (2), в котором находящаяся на верхнем магнитном якоре (8) катушка (12) соединена с помощью первого контактного вывода (20) с первым выходом (W) трехфазного инвертора (6), а находящаяся на нижнем магнитном якоре (10) катушка (14) соединена с помощью своего первого контактного вывода (22) со вторым выходом (V) инвертора (6), и обе катушки (12, 14) с помощью их соответствующего второго контактного вывода (24, 26) соединены с третьим выходом (U) инвертора. Изменяемый управляющий ток магнитного подшипника (2) создается в третьем выходе (U) трехфазного инвертора (6) и разделяется на катушки (12, 14) и соединенные с ними другие выходы (W, V) трехфазного инвертора (6), а также создается неизменный ток предварительного намагничивания в первом выходе (W) и втором выходе (V) трехфазного инвертора (6) и в соединенных с ними включенных последовательно катушках (12, 14), в результате чего из разницы изменяемого управляющего тока и неизменного тока предварительного намагничивания, в зависимости от их знака, в катушках (12, 14) и в соединенных с ними обеих выходах (V, W) создаются соответствующие фазовые токи (iw, iv). Технический результат: усовершенствование способа работы питаемого вентильным преобразователем магнитного подшипника так, что значительно уменьшается эффективный ток и достигается возможно высокая скорость нарастания тока. 8 з.п. ф-лы, 11 ил.

Изобретение относится к области электротехники и может быть использовано в нагнетателях, компрессорах, турбодетандерах газоперекачивающих агрегатов с тяжелыми роторами горизонтального исполнения массой, например, не менее 900 кг. Техническим результатом является обеспечение низкого уровня вибрации, высокого быстродействия. В системе автоматического управления электромагнитным подвесом ротора каждый канал содержит датчик положения ротора (1), блок задания положения вала (2), элемент сравнения (3), блок обработки сигнала вибрации (4), пропорциональный (5), интегральный (6), дифференциальный (7), пропорционально-дифференциальный (8) регуляторы, элемент сравнения (9), пропорциональный регулятор тока (10), датчик тока (11), силовой преобразователь (12) и два электромагнита (13 и 14). Выходное значение датчика положения ротора (1) вычитается из значения блока задания (2) положения ротора в элементе сравнения (3). Разница подается на вход блока (4) обработки сигнала вибрации, выходной сигнал которого подается одновременно на входы пропорционального (5), интегрального (6) и дифференциального (7) регуляторов. Сумма выходных значений регуляторов (5, 6, 7) подается на вход пропорционально-дифференциального регулятора (8), из выходного значения которого в элементе сравнения (9) вычитается значение силы тока, измеренного датчиком тока (11) в обмотках электромагнитов (13, 14). Разница подается на вход пропорционального регулятора тока (10), выход которого соединен с входом силового преобразователя (12), к выходу которого подключены обмотки электромагнитов (13 и 14). 1 з.п. ф-лы, 5 ил.

Изобретение относится к машиностроению, преимущественно к магнитным опорам вертикальных роторов быстровращающихся приборов, например роторов газовых центрифуг, накопителей энергии, генераторов, гироскопов и подобных устройств. Магнитная опора вертикального ротора, расположенная в устройстве в виде полого тонкостенного вертикального ротора, установленного в корпусе и опирающегося на подпятник, содержит систему постоянных магнитов, установленных соосно с ротором. Система магнитов содержит магниты, закрепленные на неподвижной части устройства, между которыми установлен один или несколько магнитов, закрепленных на вращающейся части устройства, и один или несколько ферромагнитных элементов, закрепленных на вращающейся части устройства. Техническим результатом является обеспечение требуемой нагрузки на нижнюю опору, величина которой не зависит от вертикальных перемещений вращающейся части относительно неподвижной части при динамических изменениях осевого положения ротора, обеспечивающей работоспособность быстровращающихся роторов в процессе разгона и эксплуатации, а также повышение надежности и долговечности работы роторов. 6 з.п. ф-лы, 2 ил.

Изобретение относится к машиностроению, а именно к бесконтактным опорным узлам с электромагнитными подшипниками, и может быть использовано при создании высокооборотных роторных агрегатов. Магнитный подшипник для поддержки ротора с возможностью его вращения содержит два магнитопроводящих кольца (1), соединенных между собой цельными магнитопроводящими стержнями (2), с установленными на них катушками (3). Катушки (3) расположены по окружности вокруг оси подшипника с параллельными ей осями, каждая из катушек (3) имеет магнитопроводящий сердечник и обмотку (5), обеспечивающие аксиальную организацию магнитного потока. Обмотки (5) находятся на втулках (4), выполненных из изоляционного материала, а втулки (4), в свою очередь, находятся на стержнях (2), являющихся сердечниками катушек (3) и соединяющих два кольца (1). Технический результат: повышение технологичности изготовления магнитного подшипника, его надежности и простоты ремонта, а также увеличение диапазона воспринимаемых осевых нагрузок, за счет использования цельного сердечника катушек. 4 з.п. ф-лы, 10 ил.

Изобретение относится к энергетическим машинам, выполненным в несмазываемом исполнении, содержащим полости низкого и высокого давления (компрессорные машины, авиационные двигатели, насосы и т.п.). Подшипниковый узел содержит вал (2), установленный в подшипнике (2), камеру (3), находящуюся в корпусе подшипника, отверстия, выполненные во вкладышах (4) подшипника, и постоянный магнит (5), установленный между вкладышами (4). Подшипник выполнен несмазываемым из полимерного материала. В подшипниковый узел введены полости высокого и низкого давления и организовано по крайней мере более одного узла разгрузки. Узел разгрузки образован за счет камеры (3), магнита (5), отверстия (14) во вкладыше (4) подшипника, расположенного диаметрально камере (3), и дополнительно введенных упругого элемента (6), регулирующего дроссельного элемента (7) и каналов (8, 9). Полости высокого и низкого давления и узлы разгрузки объединены каналами (8, 9). Технический результат: увеличение ресурса энергетической машины путем разгрузки радиальных подшипников при переменных во времени нагружающих усилиях как по модулю, так и по направлению в случае изменения режима работы энергетической машины или ее ориентации в пространстве. 3 ил.

Изобретение относится к электротехнике, а именно к высокоскоростным электромеханическим преобразователям энергии на гибридных магнитных подшипниках. Определяют скорость вращения ротора электромеханического преобразователя энергии, измеряют напряжения на обмотках статора, сравнивают со значениями, заложенными в программу блока управления электромагнитными подшипниками, и при приближении к значению напряжения, соответствующему диапазону критической частоты вращения ротора, импульсно повышают ток на обмотках электромагнитных подшипников, смещая диапазон критических частот для данного ротора. При прохождении зоны критических частот, заложенных в программе блока управления электромагнитными подшипниками, ток на обмотках электромагнитных подшипников возвращают к номинальному значению, возвращая жесткость гибридных магнитных подшипников к номинальным значениям. Технический результат состоит в повышении точности автоматического регулирования жесткости гибридного магнитного подшипника в зоне критической скорости вращения ротора при максимальной надежности конструкции высокоскоростного электромеханического преобразователя энергии на гибридных магнитных подшипниках. 2 ил., 1 табл.

Изобретение относится к магнитным подшипникам для вращающихся машин, в соответствии с чем подшипник представляет собой интегрированную радиально-осевую конструкцию, при этом осевой магнитный поток управления проходит через центральное отверстие магнитомягкого сердечника. Магнитный подшипник содержит узел радиального привода и узел осевого привода. Узел радиального привода содержит пакет (2) пластин статора, который обеспечивает магнитопровод (3) статора. Магнитопровод (3) статора связан с замкнутой ферромагнитной структурой (9), которая окружает магнитопровод (3) статора. Технический результат: обеспечение альтернативного способа для уменьшения потерь из-за вихревых токов. 3 н. и 12 з.п. ф-лы, 16 ил.

Изобретение относится к устройству магнитного подшипника. Устройство магнитного подшипника содержит первое магнитное устройство, которое выполнено кольцеобразным и имеет центральную ось (1), для удержания вала (2) с возможностью поворота посредством магнитных сил на центральной оси, второе магнитное устройство, которое является независимым от первого магнитного устройства, для компенсации предопределенной силы, которая воздействует на вал (2), причем второе магнитное устройство выполнено кольцеобразным и расположено концентрично к первому магнитному устройству. Первое магнитное устройство имеет первую систему (10) катушек, а второе магнитное устройство имеет вторую систему (12) катушек, каждая система катушек имеет соответственно множество пар полюсов, и количество пар полюсов второй системы (12) катушек точно на единицу меньше, чем количество пар полюсов первой системы (10) катушек. Первое магнитное устройство служит для центрирования вала (2), а второе магнитное устройство противодействует силе тяжести. Таким способом может компенсироваться сила тяжести или силы, вызванные дисбалансом. Технический результат: создание усовершенствованного способа для установки в магнитных подшипниках вращающегося вала, с помощью которого могут компенсироваться предопределенные силы, действующие на вал. 5 з.п. ф-лы, 3 ил.

Группа изобретений относится к машиностроению и может быть использована в конструкциях, включающих гибкий ротор на электромагнитных подшипниках (ЭМП). Технический результат - повышение надежности и ресурса работы гибкого ротора на ЭМП в результате увеличения степени компенсации остаточного дисбаланса за счет формирования в каждом радиальном ЭМП гибкого ротора двух дополнительных ортогональных управляющих сил, повышающих эффективность корректировки положения оси гибкого ротора в переходных режимах и определяемых с помощью предлагаемых системы и порядка управления работой гибкого ротора. Для достижения указанного технического результата в способе управления работой гибкого ротора, включающем измерение в дискретные моменты времени отклонений оси гибкого ротора дополнительно измеряют в дискретные моменты времени угловую скорость вращения гибкого ротора Ω и угол его поворота Ф и для компенсации резонансных биений гибкого ротора в k-х интервалах указанной угловой скорости Ω определяют в каждом n-м радиальном ЭМП две дополнительные ортогональные управляющие силы F1(n) и F2(n), а затем формируют указанные дополнительные силы в каждом n-м радиальном ЭМП. Для достижения технического результата в системе для управления работой гибкого ротора, состоящей из N каналов для создания двух ортогональных управляющих сил в радиальных ЭМП в каждом канале, содержащем блок измерения отклонений оси гибкого ротора в месте расположения радиального ЭМП, введен блок измерения угловой скорости вращения гибкого ротора и угла его поворота, а каждый канал системы снабжен блоком программного определения двух дополнительных ортогональных управляющих сил, подключенным своим выходом ко второму входу блока регулирования указанных управляющих сил в радиальном ЭМП, при этом блок измерения угловой скорости вращения гибкого ротора и угла его поворота своим многоканальным выходом соединен со входами указанных канальных блоков программного определения двух дополнительных ортогональных управляющих сил. 2 н.п. ф-лы, 7 ил., 1 табл.

Изобретение относится к машине с улавливающим подшипником гибридной конструкции. Машина содержит статор (1) и ротор (2). Ротор (2) имеет вал (3) ротора, который установлен в подшипниках (4) так, что ротор (2) может вращаться вокруг оси (5) вращения. Подшипники (4) выполнены в виде активных магнитных подшипников (4), в которых ротор (2) установлен бесконтактно. Каждому активному магнитному подшипнику (4) придан улавливающий подшипник (6), который улавливает ротор (2) при отказе соответствующего активного магнитного подшипника (4). Улавливающий подшипник (6) имеет расположенную на валу (3) ротора втулку (7) и расположенное на статоре (1) устройство (8) скольжения. Втулка (7) имеет расположенное радиально внутри внутреннее кольцо (9), посредством которого втулка (7) закреплена и удерживается на валу (3) ротора. Втулка (7) имеет охватывающее внутреннее кольцо (9) радиально снаружи внешнее кольцо (10), которое при отказе соответствующего активного магнитного подшипника (4) скользит в устройстве (8) скольжения соответствующего улавливающего подшипника (6). Внутреннее кольцо (9) и внешнее кольцо (10) выполнены из отличающихся друг от друга материалов и неразъемно соединены друг с другом с замыканием по материалу. Технический результат: создание усовершенствованного улавливающего подшипника машины, в котором втулка разделена на два кольца, каждое из которых возможно оптимизировать в соответствии с их функциями. 16 з.п. ф-лы, 4 ил.
Наверх