Устройство для определения энергоемкости разрушения горных пород

Изобретение относится к исследованию механических свойств горных пород. Технический результат заключается в упрощении процесса проведения измерения энергоемкости за счет возможности удаления фракций разрушенной горной породы посредством вращения перфорированного стакана. Устройство для определения энергоемкости разрушения горных пород включает станину, перфорированный стакан для помещения в него испытуемых образцов горной породы, пуансон и нагрузочный гидроцилиндр. При этом перфорированный стакан установлен относительно станины через упорный и радиальный подшипники, а через шлицевое соединение связан с рукоятью для вращения стакана. 1 ил.

 

Полезная модель относится к устройствам, предназначенным для исследования механических свойств различных по крепости горных пород, и может быть также использована для определения энергоемкости их разрушения.

Известны различные устройства для определения энергоемкости разрушения горных пород, одним из которых является (SU 964165, кл. E21C 39/00, 07.10.1982), состоящее из станины, стакана для помещения испытуемых образцов горной породы, пуансона и поршня нагрузочного цилиндра. При этом пуансон и поршень нагрузочного цилиндра выполнены с возможностью их относительного осевого смещения.

Недостатком устройства (SU 964165, кл. E21C 39/00, 07.10.1982) является неточность фиксируемых аппаратурой сигналов вследствие возникающих в процессе работы устройства ударных процессов. Удары возникают из-за того, что при частичном разрушении образцов горной породы происходит высвобождение упругой энергии, запасенной штоком пресса во время воздействия на образцы. Эта энергия не фиксируется измерительной аппаратурой и поэтому не учитывается при определении энергоемкости разрушения.

Наиболее близким к заявляемому является устройство (RU 2148170, кл. E21C 39/00, 27.04.2000), которое содержит станину, перфорированный стакан для помещения в него испытуемых образцов горной породы, пуансон, нагрузочный гидроцилиндр, стягивающий болт, коническую и цилиндрическую пружины.

Недостатком устройства (RU 2148170, кл. E21C 39/00, 27.04.2000) является отсутствие возможности вращения перфорированного стакана для удаления фракций разрушенной горной породы, что значительно затрудняет процесс проведения измерения энергоемкости.

Задачей предлагаемой полезной модели является облегчение процесса проведения измерения энергоемкости за счет достижения возможности удаления фракций разрушенной горной породы посредством вращения перфорированного стакана.

Решение задачи достигается использованием в устройстве упорного и радиального подшипников, рукояти для вращения стакана, а также шлицевого соединения для ее взаимодействия с перфорированным стаканом.

Технический результат заявляемой полезной модели выражается в облегчении процесса проведения измерения энергоемкости за счет достижения возможности удаления фракций разрушенной горной породы посредством вращения перфорированного стакана.

Указанный технический результат достигается тем, что в устройстве для определения энергоемкости разрушения горных пород, включающем станину, перфорированный стакан для помещения в него испытуемых образцов горной породы, пуансон, нагрузочный гидроцилиндр, согласно заявляемой полезной модели перфорированный стакан установлен относительно станины через упорный и радиальный подшипники, а через шлицевое соединение связан с рукоятью для вращения стакана.

Предлагаемое устройство для определения энергоемкости разрушения горных пород изображено на чертеже.

Заявляемое устройство состоит из станины 1, зажимного замка 2, служащего для удержания перфорированного стакана 3, в котором располагаются испытуемые образцы горной породы 4, упорного 5 и радиального 6 подшипников, установленных на станине 1 и обеспечивающих вращение перфорированного стакана 3 вокруг своей оси посредством рукояти для вращения стакана 7, соединенной с ним через шлицевое соединение 8, пуансона 9, воздействующего на испытуемые образцы горной породы 4, упругого элемента 10, представляющего собой коническую пружину и расположенного между пуансоном 9 и поршнем нагрузочного цилиндра 11.

Предлагаемое устройство работает следующим образом.

В нагрузочный цилиндр 11 подается под давлением жидкость, и поршень начинает движение в сторону испытуемых образцов горной породы 4, до тех пор, пока пуансон 9 не соприкоснется с ними. Далее начинается воздействие пуансона 9 на испытуемые образцы горной породы 4, при этом упругий элемент 10 начинает сжиматься, воспринимая на себя ту же нагрузку, что и испытуемые образцы горной породы 4. В момент скола горной породы пуансон 9, за счет упругой энергии упругого элемента, остается прижатым к образцам и удара по ним не происходит. Воздействием на рукоять для вращения стакана 7 через шлицевое соединение 8 осуществляется вращение перфорированного стакана 3 вокруг своей оси в упорном 5 и радиальном 6 подшипниках, тем самым достигается удаление фракций разрушенных образцов горной породы 4.

Посредством измерения линейного перемещения пуансона 9 и давления в нагрузочном цилиндре 11 становится возможным построение диаграммы деформации и разрушения испытуемых образцов горных пород 4, площадь которой представляет собой работу, затраченную на разрушение. Делением затраченной работы на объем разрушенной горной породы становится возможным определить энергоемкость разрушения данной горной породы.

Таким образом, заявляемое устройство для определения энергоемкости разрушения горных пород с использованием упорного и радиального подшипников, а также шлицевого соединения рукояти для вращения стакана с перфорированным стаканом обеспечивает облегчение процесса проведения измерения энергоемкости за счет достижения возможности удаления фракций разрушенной горной породы посредством вращения перфорированного стакана.

Устройство для определения энергоемкости разрушения горных пород, включающее станину, перфорированный стакан для помещения в него испытуемых образцов горной породы, пуансон, нагрузочный гидроцилиндр, отличающееся тем, что перфорированный стакан установлен относительно станины через упорный и радиальный подшипники, а через шлицевое соединение связан с рукоятью для вращения стакана.



 

Похожие патенты:

Изобретение относится к испытательной технике, к устройствам для исследования энергообмена при деформировании и разрушении блочного горного массива. Стенд содержит опорную раму, размещенные в ней захват для образца и захват для контробразца, гидравлический механизм взаимного поджатия образцов, связанный с захватом для образца, гидравлический механизм взаимного перемещения образцов, связанный с захватом для контробразца, гидравлические аккумуляторы энергии, связанные с механизмами поджатия и перемещения, источники давления, связанные с соответствующими аккумуляторами, пульсаторы давления, соединенные с соответствующими аккумуляторами и выполненные в виде гидроцилиндров со штоками, подпоршневая полость которых соединена с соответствующими аккумуляторами, эксцентриков, кинематически связанных со штоками гидроцилиндров, валов вращения эксцентриков и приводов вращения валов.

Изобретение относится к горному делу и может быть использовано для оценки напряженно-деформированного состояния массива горных пород, выявления местоположения зон повреждения пород и характера их распространения для обеспечения устойчивости обнажений горных выработок и очистного пространства при подземной разработке месторождений полезных ископаемых.

Изобретение относится к области горного дела и может быть использовано для исследования сыпучих свойств геоматериалов. Устройство представляет собой сварную конструкцию башенного типа, устанавливаемую на верхней предварительно спланированной площадке отработанного карьера с обеспечением вертикальной устойчивости.
Изобретение относится к горному делу, преимущественно к угольной промышленности, и может быть использовано для рекомендаций по выбору способов и параметров дегазации сближенных угольных пластов.

Изобретение относится к горному делу и может быть использовано при оценке структурно нарушенных и удароопасных массивов горных пород и прогноза развития деформационных процессов.

Изобретение относится к горному делу, в частности к средствам контроля состояния анкерной крепи и смещений вмещающих пород горизонтальных и наклонных подземных горных выработок, закрепленных анкерной крепью.

Изобретение относится к технике горного дела, добыче полезных ископаемых, в частности к устройствам для изучения физико-механических свойств горных пород, и может быть использовано в геологии, горной, газовой и нефтяной промышленности для расчета предельной величины давления гидроразрыва пласта.

Предложенная группа изобретений относится к измерительной технике, в частности к технике создания скважинных инклинометрических систем, и может быть использована в горном деле для контроля деформационных процессов горных пород и закладочного массива.

Изобретение относится к горному делу и может быть использовано для определения напряжений в массиве горных пород. Техническим результатом изобретения является определение факта превышения значением максимального главного напряжения критического уровня, равного или превышающего 0,9 от предела прочности при сжатии σсж, что свидетельствует о переходе породы в стадию предразрушения.

Изобретение относится к горному делу и предназначено для определения направления максимального напряжения в конструктивных элементах систем разработки относительно пробуренных в них контрольных скважин.

Группа изобретений относится к горному делу и может быть использована для оценки напряженного состояния горных пород в породном массиве и различных сооружений, например плотин. Технический результат - контроль с одного места пространственного распределения напряжений, снижение трудоемкости эксплуатации устройства и упрощение его конструкции. Способ включает установку в породном массиве через скважину устройства для реализации способа. Определение в заданной плоскости значений напряжений по трем направлениям, ориентированным под углом 120° относительно друг друга, по которым находят распределение напряжений в заданной плоскости и оценивают напряженное состояние горных пород. В породном массиве через скважину создают шаровую полость, которую заполняют раствором, отвердевающим и расширяющимся при отвердении. Устройство для реализации способа устанавливают в центре шаровой полости. Распределение напряжений определяют еще в двух плоскостях, которые вместе с первой образуют три ортогональные плоскости, проходящие через центр шаровой полости. Затем представляют распределения напряжений на ортогональных плоскостях в виде эллипсов, по которым, как по трем проекциям на ортогональные плоскости, строят эллипсоид. После этого напряженное состояние горных пород оценивают по ориентациям и численным значениям полуосей эллипсоида. Устройство включает измерительную систему с датчиками силы и регистратор. Измерительная система выполнена в виде шара с радиальными отверстиями, расположенными в ортогональных плоскостях, проходящих через центр шара. Радиальные отверстия расположены под углом 120° относительно друг друга в каждой из указанных плоскостей. В эти отверстия вставлены стержни. Датчики силы установлены между стержнями и дном этих отверстий. 2 н. и 6 з.п. ф-лы, 3 ил.

Изобретение относится к испытательной технике, к устройствам для испытания материалов, в частности, горных пород при исследовании энергообмена в массиве горных пород с целью прогноза и предотвращения опасных динамических явлений. Стенд для исследования энергообмена в блочном массиве горных пород, содержащий раму, размещенные на ней платформу для образца, механизм перемещения платформы, захват для контробразца и связанный с ним механизм взаимного поджатия образца и контробразца, согласно изобретению он снабжен опорной площадкой Г-образной формы, дополнительным захватом для дополнительного контробразца и дополнительным механизмом для взаимного поджатия дополнительного контробразца и образца, связанным с дополнительным захватом для контробразца, при этом каретка имеет Г-образную форму и установлена на опорной площадке с обеспечением взаимодействия с обеими стенками опорной площадки. Предлагаемый стенд обеспечивает проведение испытаний в новых условиях - при действии поджимающей нагрузки как по одному, так и по двум направлениям, ориентированным под углом друг к другу, что позволяет моделировать энергообмен при действии как гравитационной, так и тектонической силы. Это существенно расширяет объем информации при исследовании энергообмена в блочном массиве горных пород. 2 ил.

Группа изобретений относится к измерительной технике и может быть использована для оценки качества железорудного материала при добыче с помощью горных погрузочных средств, преимущественно экскаваторов и фронтальных погрузчиков. Технический результат направлен на повышение эффективности работы горного погрузочного средства за счет оценки качества железорудного материала непосредственно в ковше погрузочного средства с точностью, обеспечивающей отнесение материала к руде или породе. В способе контроля качества железорудного материала формируют в стенке ковша отверстие, которое с внутренней стороны ковша закрывают заглушкой из немагнитного материала. Создают в зоне образовавшейся полости магнитное поле с помощью постоянного магнита с осевой намагниченностью. Измерение изменения магнитного поля при наполнении ковша породой производят с помощью двух цифровых магнитометров, установленных симметрично относительно магнита в плоскости, перпендикулярной оси магнита и проходящей через его центр, с ориентированными встречно измерительными осями. Суммарный сигнал магнитометров, передают по проводному или беспроводному каналу связи на расположенное в кабине горного погрузочного средства и/или в пункте контроля приемное устройство, в котором согласно таблице соответствия показаний магнитометров и процентного содержания железа определяют содержание железа в материале, находящемся в ковше. Если содержание железа не менее заданного, то материал в ковше относят к руде и только тогда он идет на погрузку. 2 н. и 15 з.п. ф-лы, 5 ил.

Изобретение относится к горному делу и может быть использовано для определения направления действия и значений главных напряжений в горном массиве, оценки напряженно-деформированного состояния массива горных пород, выявления местоположения зон повреждения пород и характера их распространения при подземной разработке месторождений полезных ископаемых. Технический результат заключается в повышении точности определения направления главных напряжений, обеспечении безопасности и эффективности освоения месторождения. Способ включает бурение скважин или шпуров в подземных горных выработках длиной от 5 м, диаметром от 40 мм. На внутреннюю поверхность скважин наносят метки в виде окружности маркером или краской. Определяют положения камеры видеоэндоскопа относительно горизонта, направления деформирования горизонтальных и наклонных скважин, сдвигов и ориентации трещин с помощью видеоэндоскопа обследуют скважины. По полученным снимкам оперативно определяют наименьший диаметр скважины, направление которого соответствует направлению действия максимальных напряжений в массиве. На снимках определяют параметры обозначенных контуров d1, d2, при этом направления максимального сжатия скважины указывает на направление действие максимальных напряжений σ1. Определяют угол α - между вертикалью и направлением действия максимальных напряжений, угол β - между вертикалью снимка и направлением действия максимальных напряжений, величину сдвига ΔH. Строят графическое изображение исследуемых участков с нанесением, например, схемы деформирования участка или сдвига. Деформации скважины определяют в зависимости от d1 - начального диаметра скважины, d2 - наименьшего диаметра деформируемой скважины и K1 - эмпирического коэффициента, учитывающего физико-механические свойства горных пород и структурную нарушенность массива в направлении действия максимальных напряжений. 3 ил.
Изобретение относится к горной промышленности и может быть использовано при открытой разработке карбонатных месторождений с целью комплексной подготовки для переработки минерального сырья. Технический результат заключается в повышении производительности и комплексности добычи карбонатного минерального сырья, дифференциации получаемой продукции с увеличением ее товарной стоимости, повышении безопасности, надежности ведения работ и снижении капитальных затрат. С учетом предварительной оценки на основе акустического показателя трещиноватости дополнительно по каждому блоку определяют удельную компоненту трансформации путем выделения зон по направлению и глубине трещин посредством профилирования участков с определением скорости распространения продольных, поперечных упругих волн в блоках и в зависимости от плотности, дифференцируемых прочностных и теплофизических параметров выделенных зон посредством программного обеспечения для уточнения направления слоистости, типа карбонатных пород и прогнозирования энергетических параметров воздействия на выделенные зоны блоков, затем проводят, с оставлением в целости блоков прочной породы, вначале селективную выемку выделенных зон блоков для получения щебня различных марок и карбонатного сырья с помощью стрелового карьерного комбайна, затем выемку блоков прочной породы.

Изобретение относится к определению области распространения, размеров и геометрии трещин и систем трещин, образовавшихся в результате гидроразрыва пласта, конкретно относится к способу и устройству для создания микросейсмических событий внутри трещин и систем трещин. Технический результат заключается в повышении точности и безопасности определения размеров и геометрии трещин гидроразрыва. Способ картирования трещин в пределах углеводородсодержащей зоны подземного пласта, через которую проходит скважина в первом варианте содержит закачивание группы частиц центров присоединения в трещины подземного пласта. Выборочное присоединение первых реакционноспособных частиц к частицам центров присоединения. Закачивание группы первых реакционноспособных частиц в трещины. Закачивание группы вторых реакционноспособных частиц в трещины после закачивания первых реакционноспособных частиц. Вызывание в трещинах группы реакций с участием группы первых и вторых реакционноспособных частиц. Создание группы микросейсмических событий в результате реакций. Во втором варианте способ содержит закачивание группы первых реакционноспособных частиц в трещины зоны подземного пласта, закачивание группы вторых реакционноспособных частиц в трещину после закачивания первых реакционноспособных частиц. Избирательное присоединение вторых реакционноспособных частиц к первым реакционноспособным частицам. Вызывание в трещинах группы реакций с участием группы первых и вторых реакционноспособных частиц и создание группы микросейсмических событий в результате реакций. В третьем варианте способ содержит закачивание группы реакционноспособных частиц в трещины зоны подземного пласта. Причем каждая реакционноспособная частица содержит по меньшей мере два материала, изначально разделенные перегородкой. Удаление перегородки и создание группы микросейсмических событий в местах расположения в трещинах реакционноспособных частиц посредством реакции между по меньшей мере двумя материалами. 3 н. и 29 з.п. ф-лы, 20 ил.

Способ заключается в том, что управляюще-регистрирующий сервер регистрирует измерительные сигналы колебаний из установленных в прилегающих к лаве штреках трехмерных геофонных измерительных зондов, синхронно пространственно ориентированных во всех измерительных каналах и в синхронизированном временном интервале, а также в тесной корреляции с сигналами, информирующими о режиме работы и местоположении очистного комбайна в выработке лавы и на этой основе, при взаимодействии с преобразующим сервером, локализует сейсмические явления. После окончания очистным комбайном каждого реза производится анализ относительных изменений напряжений в угольном массиве впереди фронта очистной лавы по методу сейсмической амплитудной томографии ослабления-затухания, с использованием зарегистрированной энергии волны. После окончания реза, когда очистной комбайн неподвижен, осуществляется активная сейсмическая скоростная или амплитудная томография путем просвечивания горного массива между прилегающими к лаве штреками с помощью сейсмических волн, вызываемых срабатыванием дистанционно запускаемых с поверхности шахты, посредством преобразующего сервера импульсных возбудителей колебаний. Производится анализ напряжений по методу пассивной сейсмической скоростной или амплитудной томографии, с использованием в качестве источника колебаний просвечивающей сейсмической волны толчков, вызываемых горной разработкой. Затем периодически составляется усредненная томографическая карта концентрации относительных изменений напряжений, и составляют карты отдельных видов томографии. 5 з.п. ф-лы, 4 ил.

Изобретение относится к горному делу, предназначено для осуществления контроля напряженно-деформированного состояния (НДС) массива горных пород, в том числе имеющего блочную структуру, и может быть использовано для оценки и прогноза устойчивости горных выработок при производстве добычных работ. Технический результат - повышение точности определения местоположения зон локализации деформаций. Предложен способ, при котором на контролируемом участке бурят скважину из подземной горной выработки в направлении контура отрабатываемого пространства. Отбирают керн, по анализу которого определяют размеры, местоположение естественных блоков в массиве горных пород и границы между ними. Проводят испытания отобранного керна для каждого типа горной породы по глубине скважины и определяют величину предельно допустимой упругой деформации данного типа горной породы. Устанавливают реперы вдоль продольной оси скважины в пределах естественных блоков. Места установки реперов выбирают в непосредственной близости к границам естественных блоков, а при отсутствии последних - через определенный интервал по глубине скважины. Дальний репер закрепляют вблизи контура отрабатываемого пространства. Измеряют величины смещений между смежными реперами вдоль продольной оси скважины. Дополнительно измеряют величины смещений каждого репера вдоль продольной оси скважины относительно кондуктора, которые используют при вычислении величин деформаций массива горных пород, жестко закрепленного на устье скважины, для чего каждый из реперов оснащен автономной гибкой связью, например струной из нержавеющей стали, один конец которой закреплен на репере, а другой конец выведен через установленный на кондукторе измерительный блок и соединен с натяжным устройством для создания постоянного натяжения гибкой связи с возможностью перемещения натяжного устройства вдоль нее. После измерения смещений вычисляют по ним величины деформаций массива горных пород, а по деформациям - параметры упругих или неупругих деформаций, по которым оценивают изменения НДС массива горных пород на контролируемом участке. Причем параметры упругих или неупругих деформаций естественных блоков массива горных пород определяют путем сравнения полученных величин деформаций массива горных пород с предельно допустимой величиной упругой деформации данного типа горных пород. Далее фиксируют зоны их локализации, определяют параметры этих зон. Наступление активной стадии деформирования горной породы в зоне неупругих деформаций и ее продолжительность, вплоть до обрушения приконтурного массива в отработанное пространство, устанавливают по тем реперам, на которых регистрируют величины смещений относительно кондуктора с незатухающей скоростью. Величину предельно допустимых смещений реперов, при которой происходит обрушение приконтурного массива, определяют в момент обрыва гибкой связи любого из реперов и используют ее для прогноза дальнейших обрушений прилегающего к отработанному пространству массива горных пород при последующем контроле его НДС по сохранившимся в работоспособном состоянии реперам. 1 ил.

Изобретение относится к испытательной технике, а именно к механическим испытаниям горных пород при объемном сжатии в режиме жесткого нагружения, обеспечивающем контроль процесса деформирования образцов за пределом прочности. Стабилометр для испытания образцов горных пород содержит камеру для образца, нагрузочный цилиндр с поршнем, источники давления, соединенные с камерой и цилиндром, и золотник стабилизации нагрузки, установленный в поршне и закрепленный посредством резьбовой втулки в основании цилиндра. В поршне выполнена полость, в которой размещена опорная втулка, соединенная с золотником и контактирующая с заплечиками поршня. В нагрузочном цилиндре выполнено сливное отверстие, в которое установлен запорно-регулировочный клапан с электроприводом, электрически связанным с электронным экстензометром, корпус экстензометра закреплен внутри нагрузочного цилиндра на заплечиках, а измерительный стержень экстензометра выведен через отверстие в заплечиках в полость поршня и контактирует с опорной втулкой. Технический результат изобретения заключается в повышении точности объемных испытаний скальных горных пород путем исключения погрешностей, связанных с потенциальной упругой энергией рабочей жидкости при ее сжатии, и уменьшения отрицательного влияния облитерации цилиндра, поршня и плунжера устройства. 1 ил.

Способ контроля напряженного состояния массива горных пород предназначен для определения пространственного распределения напряжений в окрестности горной выработки и глубины максимума зоны опорного давления. Для этого осуществляют прозвучивание ультразвуковыми стационарными шумовыми сигналами со средним равным нулю участков массива, расположенных между параллельными скважинами по их глубине. Прием ультразвуковых сигналов осуществляют двумя акустическими преобразователями, которые на каждом из прозвучиваемых участков располагают симметрично относительно оси основного лепестка диаграммы направленности излучаемого акустического преобразователя. Измеряют интервалы корреляции и коэффициент взаимной корреляции сигналов с выходов приемных преобразователей, увеличивая силу их прижима к стенке скважины до момента прекращения возрастания измеренных интервалов корреляции. Фиксируют значения измеренного коэффициента взаимной корреляции после достижения указанного момента на каждом участке и строят график зависимости этого коэффициента от глубины. Глубину, начиная с которой коэффициент взаимной корреляции приобретает постоянное значение, принимают за границы зоны опорного давления, а глубину, начиная с которой коэффициент взаимной корреляции меньше указанного значения, принимают за границу зоны разгрузки напряжений. Глубина, на которой имеет место максимальное значение коэффициента взаимной корреляции, соответствует максимуму напряжений в зоне опорного давления. 3 ил.

Изобретение относится к исследованию механических свойств горных пород. Технический результат заключается в упрощении процесса проведения измерения энергоемкости за счет возможности удаления фракций разрушенной горной породы посредством вращения перфорированного стакана. Устройство для определения энергоемкости разрушения горных пород включает станину, перфорированный стакан для помещения в него испытуемых образцов горной породы, пуансон и нагрузочный гидроцилиндр. При этом перфорированный стакан установлен относительно станины через упорный и радиальный подшипники, а через шлицевое соединение связан с рукоятью для вращения стакана. 1 ил.

Наверх