Устройство для разобщения отдельных участков ствола скважины

Изобретение относится к пакерам. Техническим результатом является обеспечение возможности работы устройства при высоких давлении и температуре. Устройство для разобщения отдельных участков ствола скважины содержит трубы НКТ, уплотнительный элемент цилиндрической формы, установленный концентрично трубе НКТ между нею и обсадной трубой, при этом уплотнительный элемент выполнен из двух частей: верхней, изготовленной из материала, имеющего относительно низкий коэффициент температурного расширения, и нижней, имеющей относительно высокий коэффициент температурного расширения, при этом обе части без осевого зазора установлены между верхним и нижним упорами, жестко связанными с трубой НКТ и опорной сопло-муфтой, установленной на конце нижней трубы НКТ. Верхний уплотнительный элемент изготовлен из графлекса, а нижний - из базальтового волокна, имеющего диаметр от 0,5 до 3,5 мкм, насыщенного алюминиевой пудрой. 5 з.п. ф-лы, 1 табл., 2 ил.

 

Изобретение относится к нефтедобывающей промышленности и может быть использовано при разработке месторождений природных битумов, тяжелых и высоковязких нефтей, а также для комплексного освоения нефтеносных сланцевых плеев.

Конкретно предложен высокотемпературный скважинный пакер для тепловых методов увеличения нефтеотдачи (МУН).

По данным World Energy Council, геологические запасы природных битумов, тяжелых и высоковязких нефтей в России суммарно составляют 55 млрд. тонн, а их месторождения в России сосредоточены, главным образом, в Волго-Уральской (Татарстан, Удмуртия, Башкортостан, Самарская область и Пермский край), Восточно-Сибирской (Тунгусский бассейн) и Тимано-Печорской нефтегазоносных провинциях. Современная концепция внутрипластового ретортинга, предполагающая внутрипластовую конверсию тяжелых углеводородов в их более легкие формы, требует использования высокотемпературного теплового воздействия на продуктивные пласты, при котором температура рабочего агента, преимущественно в форме перегретого пара, может достигать 500°C.

Но наиболее значительные запасы углеводородов России все же сосредоточены в Баженовской свите, причем большая их часть сосредоточена в керогене - около 383,1 млрд. тонн. Содержание же нефти низкопроницаемых пород в продуктивных пластах Баженовской свиты не превышает 22 млрд. тонн. По мнению экспертов отрасли, освоение Баженовской свиты, основанное только на извлечении нефти низкопроницаемых пород и без вовлечения в активную разработку керогена, - малоперспективно и убыточно. В свою очередь, вовлечение в активную разработку керогена также предполагает использование высокотемпературных тепловых МУН для его внутрипластовой пиролизации. При этом в продуктивный пласт должен инжектироваться рабочий агент в форме воды, находящейся в сверхкритическом состоянии (СК-вода) и имеющий следующие термобарические характеристики: давление до 45 МПа и температура до 500°C.

Технологическая схема высокотемпературного теплового воздействия на продуктивные пласты, содержащие природные битумы, тяжелые и высоковязкие нефти, а также кероген, предусматривает использование термостойкого пакера. Но таких термостойких пакеров, способных работать при температуре до 500°C, нет ни в России, ни за рубежом. Необходимость же работы термостойкого пакера в присутствии высоких давлений (до 45 МПа) еще более усугубляет названную проблему.

Так, например, известен термостойкий пакер "ArrowTherm Mechanical-Set Thermal Packer" компании Weatherford, который может эксплуатироваться при давлении до 20,68 МПа и температуре до 288°C. В случае необходимости по специальному заказу компанией Weatherford может быть изготовлена более совершенная модификация этого же термостойкого пакера для эксплуатации при температуре до 343°C («Каталог пакеров», Weatherford, 2005-2010 гг., стр. 86).

Также известен термостойкий пакер "ХНР Premium Production Packer" компании Schlumberger, который способен работать при очень высоких давлениях - до 103 МПа, но не может эксплуатироваться при температуре выше 218°C («Каталог пакеров», Schlumberger, 2009 г., стр. 17).

Известны способ и устройство для разработки вязкой нефти по патенту РФ на изобретение №2548639, МПК Е21В 33/128, опубл. 20.04.2015 г. (прототип).

Это устройство для разобщения полостей скважин (пакер) выполнено с радиальным расширением под действием осевого давления.

С целью повышения герметичности установки пакера в скважине пакер опорно-механический содержит ствол, телескопически соединенный посредством манжет с опорным ниппелем с возможностью их осевого перемещения между собой. Ствол оснащен кольцевым уплотнением, присоединительной муфтой, регулировочной гайкой с верхним нажимным кольцевым упором, установленной на муфте с возможностью регулирования положения кольцевого уплотнения на стволе между упорами на регулировочной гайке и на втулке, соединенной с опорным ниппелем. Во втулке выполнена ступенчатая поверхность, упирающаяся уступом ступени в буртик на стволе. На буртике выполнена канавка, взаимодействующая со срезными штифтами, установленными во втулке. На стволе выполнены треугольные насечки, взаимодействующие с цангой, внутри которой выполнены ответные треугольные насечки и наружный конус. Цанга расположена в полости втулки с упором в торец опорного ниппеля и удерживается от осевых перемещений стопорным кольцом с внутренним конусом, взаимодействующим с наружным конусом цанги для фиксации кольцевого уплотнения в сжатом состоянии, с возможностью перемещения вдоль ствола на длину, большую величины сжатия кольцевого уплотнения с радиальным расширением до герметичного разобщения полости скважины. Стопорное кольцо выполнено с канавкой под дополнительные срезные штифты, установленные во втулке.

Недостаток известного изобретения заключается в невозможности работы устройства при высоких давлениях (до 45 МПа) и температурах (до 500°С).

Задачей заявленного изобретения, совпадающей с техническим результатом, является обеспечение возможности работы заявленного устройства при высоких рабочих давлениях (до 45 МПа) и температурах (до 500°С).

Решение указанных задач достигнуто в устройстве для разобщения отдельных участков ствола скважины, содержащем трубы НКТ, уплотнительный элемент цилиндрической формы, установленный концентрично трубе НКТ между нею и обсадной трубой, при этом уплотнительный элемент выполнен из двух частей: верхней, изготовленной из материала, имеющего относительно низкий коэффициент температурного расширения, и нижней, имеющей относительно высокий коэффициент температурного расширения, при этом обе части без осевого зазора установлены между верхним и нижним упорами, жестко связанными с трубой НКТ и опорной соплом-муфтой, установленной на конце нижней трубы НКТ, тем, что верхний уплотнительный элемент изготовлен из графлекса, а нижний - из базальтового волокна, имеющего диаметр от 0,5 до 3,5 мкм, насыщенного алюминиевой пудрой.

Уплотнительный элемент, изготовленный из базальтового волокна, может быть предварительно спрессован. Нижняя труба НКТ может быть выполнены из титана. Опорная сопло-муфта может быть выполнена из карбида вольфрама. Устройство для разобщения отдельных участков ствола скважины может быть выполнено с возможностью работы при давлении до 70 МПа и температуре до 600°С. На трубы НКТ может быть нанесено теплоизоляционное покрытие.

Сущность изобретения поясняется на чертежах, где

на фиг. 1 приведен вид заявленного устройства;

на фиг. 2 приведено устройство с теплоизолированными трубами НКТ.

Заявленное устройство (фиг. 1) содержит сверху вниз: трубы НКТ 1 (насосно-компрессорные трубы), соединительные муфты 2, нижнюю трубу НКТ 3, которая изготовлена из титана, уплотнительный элемент 4, установленный концентрично нижней НКТ 3. Уплотнительный элемент 4 выполнен из двух участков - верхнего 5 и нижнего 6 - и установлен между верхним и нижним ограничителями 7 и 8 без осевого зазора. Верхний и нижний ограничители 7 и 8 жестко закреплены на нижней трубе НКТ 3 любым известным способом: сваркой, на резьбе и т.д.

Уплотнительный элемент 4 размещен внутри обсадной трубы 9 в полости 10 между осадной трубой 9 и нижней трубой НКТ 3. Внутри нижней трубы НКТ 3 образуется полость 11. В нижней части обсадной колонны 9 выполнена перфорация 12.

Далее (ниже) на нижней трубе НКТ 3 установлена опорная сопло-муфта 13, выходное отверстие 14 которой сообщает полость 11 внутри нижней трубы НКТ 3 с продуктивным пластом 15. На трубах НКТ 1 может быть нанесено теплоизоляционное покрытие 16 (фиг. 2). На нижней трубе НКТ 3 теплоизоляционное покрытие не нанесено.

РАБОТА УСТРОЙСТВА

Работает заявленное устройство следующим образом (фиг. 1…2).

Бурят скважину нагнетательную для закачки горячего агента в продуктивный пласт 15 и устанавливают в нее обсадную колонну 9, собирают компоновку согласно фиг. 1.

Подают горячий рабочий агент по трубам НКТ 1 в кольцевой зазор 10. Материал нижнего участка 6 уплотнительного элемента 4, выполненный из супертонкого базальтового волокна, имеющего диаметр от 0,5 до 3,5 мкм, насыщенного алюминиевой пудрой, значительно увеличивается в объеме и спрессовывает верхний участок 5 в осевом направлении, при этом он (верхний участок 5) расширяется в радиальном направлении и перекрывает зазор между обсадной трубой 9 и нижней трубой НКТ 3.

Верхняя часть 5 уплотнительного элемента, изготовленная из графлекса, расширяется незначительно из-за того, что графит имеет низкий коэффициент температурного расширения.

В результате полость 10 разобщается уплотнительным элементом 4.

Извлечение заявленного устройства из скважины осуществляют после прекращения подачи горячего агента путем подъема труб НКТ 1 вверх. При этом уплотнительный элемент 4 разжимается, а подвижный элемент сжатия 8 возвращается в исходное положение и опирается на опорную сопло-муфту 14.

Одной из основных отличительных функциональных особенностей заявленного изобретения является то, что заявленное устройство является саморегулируемым устройством. Это выражается в том, что чем выше давление рабочего агента на забое скважины - в подпакерной зоне, тем более плотным и менее проницаемым становится уплотнительный элемент 6 и тем плотнее фрикционная поверхность уплотнительного элемента 6 прижимается к внутренней поверхности обсадной трубы 5.

Верхняя часть 5 уплотнительного элемента 4 выполнена из графлекса.

Графлекс - это совокупность уплотнителей и набивок, изготовленных из терморасширенного графита (ТРГ), углеродного низкотемпературного волокна, экспандированного фторопласта и арамидной пряжи. В процессе технологического производства все эти ингредиенты могут быть скомбинированы с другими разнообразными пропитками и добавками.

Современные научные разработки позволяют развивать новые технологии производства уплотнителей различной сложности. В основу материалов серии Графлекс входит природный графит - минерал слоистой структуры, являющийся аллотропной модификацией углерода. Графит обладает уникальными химическими свойствами, позволяющими изготавливать из него материалы, используемые для герметизации в любых температурных средах. Процесс производства продукции Графлекс основан на нанотехнологиях, когда в кристаллическую решетку графита внедряются молекулы различных химических элементов. Затем образовавшееся соединение очищают от посторонних примесей и подвергают термическому вспениванию. В результате получается продукция группы Графлекс.

Ранее для уплотнения фланцевых соединений, арматурных штоков, центробежных насосов и сальников применялись уплотнители и набивки на основе асбеста. Но многолетняя практика применения этих материалов показала, что они имеют конкретные недостатки. Асбестовые уплотнители способствовали выгоранию их компонентов, вызывая ослабление затяжки. Это приводило к разгерметизации узла уплотнения. Повышалась электрохимическая коррозия элементов оборудования, которые контактировали с асбестовым уплотнителем. Чтобы обеспечивать нужную герметизацию, приходилось увеличивать высоту сальниковой камеры. Уплотнители из асбеста с высоким коэффициентом трения увеличивают мощность привода, что приводит к быстрому старению и износу втулок валов насоса и арматурных штоков.

На сегодняшний день уплотняющие материалы из терморасширенного графита нашли широкое применение во всем мире. Такие набивки и уплотнители выдерживают различные температуры и давление, рассчитаны на неограниченный срок эксплуатации и не восприимчивы к износу.

В перечень современных уплотнительных материалов нового поколения, которые известны под общим названием Графлекс, входят:

- сальниковая набивка для фланцевых соединений, арматуры и насосов;

- различные прокладки;

- графитовая фольга;

- плетеные набивки;

- графитовые кольца;

- листы графитовые армированные и неармированные.

Чтобы поддерживать высокое качество выпускаемой продукции, практикуется полный цикл производства. Процесс начинается с переработки сырья до формирования и выпуска готовой продукции.

Сальниковые уплотнители, набивки и прокладки являются самой распространенной продукцией среди мягких уплотнителей. Существует около 40 видов данной продукции. Температурный диапазон эксплуатации набивок колеблется от -200°C до +560°C. Прокладки Графлекс используются для уплотнения трубопроводов, насосов, соединительной арматуры и составных частей различного оборудования, применяемого в нефтеперерабатывающей, газовой и химической промышленности.

Продукция Графлекс значительно снижает расход уплотнителей на определенный сальниковый узел и надежно сохраняет его герметизацию. Если раньше для укладки в сальниковую камеру применяли от 8 до 18 колец, то сегодня их применение уменьшилось до 4-6 штук. Уменьшение количества колец уплотнения привело к значительному сокращению глубины сальниковой камеры, что повлекло за собой понижение металлоемкости арматуры. Выпускаемая новая арматура получила конструкцию самих сальниковых камер, предназначенных для использования уплотнителей Графлекс. Этот метод предусматривает установку в камеру особую втулку - проставку. Таким образом, было достигнуто меньшее количество колец в сальниковой камере, избыток которых не позволил бы обжать их качественно. Не до конца зажатые кольца могут привести к перемещению штока и ослаблению сальникового уплотнения, что может нарушить герметизацию.

Группа уплотнителей Графлекс эффективно используется в агрессивных средах. Эти материалы применяются в сальниках центробежных поршневых насосов, которые работают в таких средах. Применение уплотнителей Графлекс в плунжерных и центробежных насосах, работающих на битуме, феноле и различных растворителях, обеспечивает продолжительную эксплуатацию данных механизмов. Например, если раньше центробежный насос, работающий с тяжелым газойлем, выдерживал асбестовые уплотнители 10 часов, то теперь с применением Графлекс срок службы уплотняющего материала повысился до 2,5 суток. Плунжерный насос с асбестовым уплотнителем работал с парафином около 20 уток, но с материалом Графлекс его работа увеличилась до 4 месяцев.

Приведем некоторые показатели отличий уплотнений арматуры в табл. 1.

Преимущество уплотнителей и набивок Графлекс налицо. Проделанный анализ эксплуатации материалов говорит о том, что уплотнителя Графлекс требуется в 3-4 раз меньше, чем изделий из асбеста. В итоге экономия материалов увеличивается в 3-8 раз.

Имея пониженный коэффициент трения, продукция Графлекс более чем в три раза снижает затраты энергии, расходуемой на привод насоса. Такие затраты полностью покрывают расходы на приобретение материалов группы Графлекс.

Нижняя часть уплотнительного элемента 4 выполнена из предварительно спрессованного супертонкого базальтового волокна, имеющего средний диаметр 0,002 мм (или в диапазоне от 0,5 до 3 мкм). Именно диаметр волокна в основе определяет проницаемость уплотнительного элемента. Чем он меньше, тем эффективность уплотнительного элемента выше. Так, например, если диаметр какого-либо используемого волокна относительно большой, например 0,1 мм, то изготовленный из такого материала уплотнительный элемент будет обладать высокой проницаемостью, сопоставимой с проницаемостью мелкозернистого песчаника, имеющего размер зерен от 0,1 до 0,25 мм. Используемое сверхтонкое базальтовое волокно имеет малый диаметр и изготовленный из него и окончательно спрессованный в скважине под действием давления рабочего агента уплотнительный элемент обладает сверхнизкой проницаемостью, сопоставимой с проницаемостью тонкозернистых известково-доломитовых пород, имеющих размер зерен от 0,001 до 0,01 мм. Менее проницаемой для флюидов может быть только коллоидозернистая известково-доломитовая порода, имеющая размер зерен менее 0,001 мм.

Уплотнительный элемент в процессе его изготовления и до начала его предварительного спрессовывания насыщается частицами различных металлов, таких как: алюминий, цинк, цирконий, вольфрам и т.д. В предпочтительном варианте изобретения используется алюминиевая пудра ПАП-2, имеющая средний линейный размер частиц от 0,02 до 0,03 мм. При подаче высокотемпературного рабочего агента на забой скважины уплотнительный элемент нагревается и за счет теплового расширения сверхтонкого базальтового волокна и частиц алюминия плотность его увеличивается, а проницаемость, напротив, еще более уменьшается. Степень прижатия уплотнительного элемента к внутренней поверхности обсадной трубы также возрастает. В этом процессе более значимую роль играют частицы алюминия, так как коэффициент температурного расширения (КТР) алюминия (КТР=0,000024 м/(м·°C)) в 3,69 раза выше коэффициента температурного расширения базальта (КТР=0,0000065 м/(м·°C)). Примечание: размерность КТР - м/(м·°C) или 1/°C - показывает, на сколько (в метрах) удлинится материал при увеличении его температуры на 1°C. Также следует отметить и то, что супертонкое базальтовое волокно начинает спекаться только при температуре, превышающей 1100°C. В результате названного выше процесса теплового воздействия на уплотнительный элемент его проницаемость на микроуровне заметно снижается.

При установке заявленного устройства на забое скважины и после подачи на забой скважины высокотемпературного рабочего агента высокого давления, представляющего собой воду, находящуюся в сверхкритическом состоянии, инициируется химическая реакция окисления некоторой части частиц алюминия в сверхкритической воде. В процессе реакции из некоторой части частиц алюминия, имеющих размер от 0,02 до 0,03 мм, синтезируются наночастицы оксида алюминия, которые имеют размер от 0,00002 до 0,0004 мм (от 20 до 400 нм). Результатом названного выше химического процесса синтеза наночастиц алюминия в СК-воде является уменьшение проницаемости уплотнительного элемента на наноуровне.

Таким образом, максимально возможная низкая проницаемость уплотнительного элемента достигается за счет осуществления следующих трех основных процессов:

- предварительного механического сжатия уплотнительного элемента в процессе его изготовления и окончательного его сжатия на забое скважины под действием давления рабочего агента;

- теплового расширения супертонкого базальтового волокна и частиц металлов, которыми насыщен уплотнительный элемент; и

- синтеза наноразмерных частиц оксидов металлов из некоторой части частиц металлов, которыми насыщен уплотнительный элемент.

Для обеспечения еще более плотного прижатия уплотнительного элемента к стенкам скважины воспринимающая уплотнительный элемент часть опорного элемента и поджимающая уплотнительный элемент часть подвижного элемента сжатия выполнены в форме конуса, что при сжатии уплотнительного элемента создает дополнительный эффект расклинивания уплотнительного элемента. В силу значительных силовых нагрузок в присутствии высоких температур все элементы заявленного устройства в предпочтительном варианте выполнены из титана. Результатом использования заявленного устройства является надежное разобщение отдельных участков ствола скважины в процессе использования тепловых МУН при давлении до 70 МПа и температуре до 600°C.

Несмотря на то что настоящее изобретение описывается на представленном примере, возможны различные модификации, не противоречащие основным принципам изобретения. Поэтому настоящее изобретение следует рассматривать как относящееся к любым подобным модификациям в пределах существа изобретения.

1. Устройство для разобщения отдельных участков ствола скважины, содержащее трубы НКТ, уплотнительный элемент цилиндрической формы, установленный концентрично трубе НКТ между нею и обсадной трубой, при этом уплотнительный элемент выполнен из двух частей: верхней, изготовленной из материала, имеющего относительно низкий коэффициент температурного расширения, и нижней, имеющей относительно высокий коэффициент температурного расширения, при этом обе части без осевого зазора установлены между верхним и нижним упорами, жестко связанными с трубой НКТ и опорной соплом-муфтой, установленной на конце нижней трубы НКТ, отличающееся тем, что верхний уплотнительный элемент изготовлен из графлекса, а нижний - из базальтового волокна, имеющего диаметр от 0,5 до 3,5 мкм, насыщенного алюминиевой пудрой.

2. Устройство для разобщения отдельных участков ствола скважины по п. 1, отличающееся тем, что уплотнительный элемент, изготовленный из базальтового волокна, предварительно спрессован.

3. Устройство для разобщения отдельных участков ствола скважины по п. 1, отличающееся тем, что нижняя труба НКТ выполнена из титана.

4. Устройство для разобщения отдельных участков ствола скважины по п. 1, отличающееся тем, что опорная сопло-муфта выполнена из карбида вольфрама.

5. Устройство для разобщения отдельных участков ствола скважины по п. 1, отличающееся тем, что оно выполнено с возможностью работы при давлении до 70 МПа и температуре до 600°С.

6. Устройство для разобщения отдельных участков ствола скважины по п. 1, отличающееся тем, что на трубы НКТ нанесено теплоизоляционное покрытие.



 

Похожие патенты:

Изобретение относится к заглушкам для буровой скважины. Техническим результатом является изоляция буровой скважины.

Пакер // 2584712
Изобретение относится к нефтедобывающей промышленности и предназначено для разобщения пластов в процессе строительства скважин. Технический результат заключается в повышении надежности разобщения пластов в процессе строительства скважин.

Изобретение относится к нефтегазодобывающей промышленности, а именно к устройствам для изоляции зоны осложнения ствола скважины при бурении. Технический результат заключается в повышении надежности устройства.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для оснащения скважин потайными обсадными колоннами при нарушении эксплуатационных колонн.

Изобретение относится к нефтяной промышленности и может найти применение при разобщении и изоляции интервалов скважины. Техническим результатом является повышение изолирующей способности пакера.

Изобретение относится к ремонту скважин, а именно к элементам скважинного инструмента. Технический результат заключается в получении временного элемента скважинного инструмента для ремонта скважин и технологии расчета механической прочности разлагаемого полимера.

Группа изобретений относится к нефтегазодобывающей отрасли, в частности к устройствам расширения, помещаемым в обсадную колонну или в трубчатую конструкцию скважины для расширения кольцевой перегородки внутри скважины.

Группа изобретений относится к нефтегазодобывающей отрасли, в частности к устройствам расширения, помещаемым в обсадную колонну или в трубчатую конструкцию скважины для расширения кольцевой перегородки внутри скважины.

Изобретение относится к устройствам для разобщения и герметизации нарушений скважины. Техническим результатом является повышение надежности пакера.

Изобретение относится к нефтяной и газовой промышленности, а именно к оборудованию для разобщения и уплотнения интервалов добывающих или нагнетательных скважин. Технический результат заключается в уменьшении усилия на ограничительную втулку и повышении надежности работы.

Изобретение относится к устройствам для разобщения отдельных участков ствола скважины. Техническим результатом является обеспечение возможности работы при высоких давлении и температуре. Устройство для разобщения отдельных участков ствола скважины содержит трубы НКТ, уплотнительный элемент цилиндрической формы, установленный концентрично трубе НКТ между ней и обсадной трубой. Уплотнительный элемент выполнен из трех частей: верхней, изготовленной из материала, имеющего относительно низкий коэффициент температурного расширения, средней, изготовленной из металлорезины, и нижней, имеющей относительно высокий коэффициент температурного расширения. При этом все части без осевого зазора установлены между верхним упором, жестко связанным с трубой НКТ, и поршнем, установленным под уплотнительным элементом. На конце нижней трубы НКТ установлено опорное сопло-муфта. Верхняя часть уплотнительного элемента изготовлена из графлекса, нижняя часть уплотнительного элемента изготовлена из базальтового волокна, имеющего диаметр от 0,5 до 3,5 мкм, базальтовое волокно насыщено частицами металла. В качестве металла для насыщения применена алюминиевая пудра. 6 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к механическим пакерам. Техническим результатом является повышение надежности герметизации трубного и затрубного пространств за счет достижения и проверки полной герметизации в месте кабельного ввода, обеспечение защиты кабеля от повреждения, регулирование усилия срабатывания пакера при его посадке, ориентирование и предотвращение от свободного вращения на внешнем стволе пакера заякоривающего узла. Пакер механический осевой с кабельным вводом, содержащий внешний и внутренний стволы, вставленные один в другой, крепящиеся вместе с ориентированием по кабельному вводу и образующие между собой продольный канал, кабельный герметизатор, расположенный в верхней части пакера, уплотнительный узел. Пакер содержит последовательно расположенные кабельный герметизатор, уплотнительный, заякоривающий, центрирующий и соединительный узлы, последний из которых имеет накидную гайку и корончатую втулку, закрепленную верхней частью на внешнем стволе, а нижней частью входящей в пазы, расположенные на муфте внутреннего ствола. 3 з.п. ф-лы, 1 ил.

Пакер // 2590171
Изобретение относится к пакерам. Техническим результатом является обеспечение возможности эффективной работы заявленного устройства при высоких рабочих давлении и температуре. Пакер содержит трубы НКТ, уплотнительный элемент цилиндрической формы, установленный концентрично трубе НКТ между нею и обсадной трубой, между верхним и нижним упорами. Между уплотнительным элементом и нижним упором установлен подвижный элемент и прижимной элемент из материала с памятью формы, при этом уплотнительный элемент изготовлен из базальтового волокна, имеющего диаметр от 0,5 до 3,5 мкм. Базальтовое волокно насыщено частицами металла. 8 з.п. ф-лы, 3 ил.

Группа изобретений относится к кольцевым барьерам, расширяемым в кольцевом пространстве между трубчатой конструкцией скважины и внутренней стенкой ствола скважины, а также к кольцевым барьерным системам и системам ствола скважины, содержащим указанный кольцевой барьер. Технический результат заключается в обеспечении более высокой герметичности между манжетой и трубчатым элементом, а также в обеспечении возможности механически обработать соединительный элемент так, чтобы идеально подогнать его к трубчатому элементу, не подвергая изменению материал манжеты и способность манжеты к расширению. Кольцевой барьер содержит трубчатый элемент для установки в качестве части трубчатой конструкции скважины, расширяемую манжету, изготовленную из первого металла, охватывающую трубчатый элемент и ограничивающую пространство, гидравлически соединенное с внутренней полостью трубчатого элемента, причем расширяемая манжета вытянута в продольном направлении и имеет внутреннюю поверхность, обращенную к трубчатому элементу, и два конца. Кольцевой барьер также содержит два соединительных элемента, изготовленных из второго металла и соединяющих расширяемую манжету с трубчатым элементом на каждом из концов расширяемой манжеты соответственно, отверстие в трубчатом элементе для обеспечения возможности прохождения текучей среды в указанное пространство для расширения манжеты и переходную область, содержащую соединение манжеты с соединительным элементом, при этом первый металл является более гибким, чем второй металл. 3 н. и 17 з.п. ф-лы, 9 ил.

Группа изобретений относится к затрубным барьерам, скважинным системам и способам сохранения уплотнения. Технический результат заключается в увеличении уплотнительной способности затрубного барьера. Затрубный барьер содержит трубчатую часть для установки в качестве части скважинной трубчатой конструкции, разжимную муфту, окружающую трубчатую часть, при этом каждый конец разжимной муфты прикреплен к трубчатой части посредством соединительной части, проход в трубчатой части или соединительной части, и предохранительную муфту, имеющую первое соединение и второе соединение для прикрепления предохранительной муфты на внешней поверхности разжимной муфты, а также отверстие в соединении с предохранительной муфтой. Предохранительная муфта и разжимная муфта образуют полость, связанную с возможностью передачи текучей среды с затрубным пространством через отверстие, при этом предохранительная муфта имеет среднюю часть, расположенную между двумя соединениями, а отверстие расположено ближе к одному из соединений, чем к средней части, обеспечивая связь с возможностью передачи текучей среды между полостью и затрубным пространством напротив одного из соединений через отверстие. 3 н. и 17 з.п. ф-лы, 19 ил.

Группа изобретений относится к трубным исполнительным системам и способам приведения в действие множества трубных исполнительных механизмов. Техническим результатом является уменьшение негативного воздействия на поток в стволе скважины. Трубная исполнительная система и способ приведения ее в действие содержит множество последовательностей исполнительных механизмов, установленных в трубном изделии, при этом, по меньшей мере, одна из последовательностей имеет несколько исполнительных механизмов, причем каждый из множества исполнительных механизмов, по меньшей мере, в одной из последовательностей можно изменить, переведя из первого положения, обеспечивающего проход пробок меньше выбранного габарита, во второе положение, обеспечивающее приведение в действие пробками выбранных диаметров, причем множество исполнительных механизмов, по меньшей мере, в одной из последовательностей распределено в трубном изделии так, что расположенный выше по потоку из любых двух из множества исполнительных механизмов может входить в контакт для срабатывания большей одной из пробок, чем расположенный ниже по потоку из двух из множества исполнительных механизмов, когда переведен во второе положение, и множество последовательностей распределены так, что для любых двух последовательностей расположенная выше по потоку из двух последовательностей требует большей пробки для изменения исполнительных механизмов в ней. 2 н. и 11 з.п. ф-лы, 4 ил.

Изобретение относится к области строительства нефтяных и газовых скважин и, в частности, к устройствам для разобщения пластов с применением пакеров. Технический результат - повышение надежности работы устройства. Устройство включает корпус, выполненный с радиальными отверстиями. Кожух устройства образует с наружной поверхностью корпуса кольцевую полость и выполнен с циркуляционными отверстиями. В кольцевой полости против радиальных отверстий корпуса помещена дифференциальная втулка. Эта втулка образует с внутренней поверхностью кожуха циркуляционную полость и выполнена с радиальными отверстиями, перекрытыми обратным клапаном. В нижней части корпуса помещен пакер с манжетой гидравлического действия. Имеется нижняя втулка с радиальными отверстиями, образующая с внутренней поверхностью корпуса проточную полость. Нижняя втулка связана с корпусом срезным штифтом, по меньшей мере одним, и помещена против радиальных отверстий корпуса. Выше нижней втулки помещена верхняя втулка с посадочным седлом под нижнюю цементировочную пробку. Верхняя втулка взаимодействует с нижней втулкой и связана с кожухом срезным штифтом, по меньшей мере одним. Эта втулка помещена над циркуляционными отверстиями кожуха. В нижней втулке помещено седло с перекрытием ее радиальных отверстий, которое связано с нижней втулкой срезным штифтом, по меньшей мере одним. Устройство имеет возможность, при перемещении седла, гидравлической связи полости корпуса с полостью гидравлической манжеты через радиальные отверстия нижней втулки, проточную полость, радиальные отверстия корпуса, радиальные отверстия дифференциальной втулки и циркуляционную полость со стабилизацией давления в полости гидравлической манжеты пакера при достижении расчетного давления пакеровки за счет гидравлического ресурса дифференциальной втулки от ее осевого хода с разрядкой локального давления через радиальные отверстия дифференциальной втулки в циркуляционную полость. 2 з.п. ф-лы, 1 ил.

Изобретение относится к устройствам для изоляции пласта в скважине. Технический результат заключается в повышении надежности работы устройства, улучшении эксплуатационных характеристик. Устройство для изоляции пласта в скважине включает корпус с верхним радиальным отверстием, по меньшей мере одним, перекрытым полым срезным штифтом, нижним радиальным отверстием, по меньшей мере одним, перекрытым обратным клапаном, кожух с радиальным отверстием, по меньшей мере одним, помещенный снаружи корпуса и образующий с последним кольцевую камеру, в верхней части которой против радиального отверстия кожуха помещена подпружиненная ступенчатая втулка, в нижней части упомянутой камеры против нижнего радиального отверстия корпуса помещена дифференциальная втулка, на верхнем торце которой свободно помещен кольцевой толкатель, пакер с уплотнительным элементом, помещенный в нижней части корпуса. Наружная поверхность корпуса образует с внутренними поверхностями ступенчатой втулки и дифференциальной втулки по два кольцевых кармана - верхних и нижних, в первых из которых помещены фиксаторы с упорными фиксирующими лепестками, каждый из которых имеет возможность перезарядки - перемещения в нижний кольцевой карман при работе устройства. Фиксатор для ступенчатой втулки выполнен с возможностью взаимодействия его нижнего торца с верхним торцом кольцевого толкателя для обеспечения осевого механического перемещения дифференциальной втулки, открытия последней нижнего радиального отверстия корпуса и сообщения внутренней полости корпуса с полостью пакера. 1 ил.

Изобретение относится к нефтяной и газовой промышленности и может быть использовано для изоляции пласта, по меньшей мере одного, в скважине как при ее креплении с применением операции цементирования обсадной колонны, так и в виде отдельной независимой изоляционной операции. Технический результат - упрощение устройства, повышение его надежности и улучшение эксплуатационных характеристик. Устройство включает корпус с верхним радиальным отверстием, по меньшей мере одним, перекрытым полым срезным штифтом. Корпус имеет также нижнее радиальное отверстие, по меньшей мере одно, перекрытое обратным клапаном. Между упомянутыми радиальными отверстиями корпус выполнен с верхними и нижними продольными пазами. Снаружи корпуса помещен кожух, образующий с корпусом кольцевую камеру. В верхней части кольцевой камеры помещена верхняя подпружиненная дифференциальная втулка, жестко связанная с корпусом срезным штифтом, по меньшей мере одним. В нижней части кольцевой камеры помещена нижняя дифференциальная втулка, жестко связанная с корпусом срезным элементом, по меньшей мере одним, и перекрывающая нижнее радиальное отверстие корпуса. В нижней части корпуса помещен пакер с уплотнительным элементом. При этом устройство выполнено таким образом, что предусмотрена возможность после разрушения полого срезного штифта расфиксации верхней дифференциальной втулки, передача давления через верхние продольные пазы на нижнюю дифференциальную втулку, расфиксация последней и обеспечение гидравлической связи полости корпуса с полостью уплотнительного элемента пакера через нижнее радиальное отверстие корпуса и его нижние продольные пазы. После приведения пакера в его рабочее положение предусмотрена возможность перекрытия нижнего радиального отверстия корпуса нижней дифференциальной втулкой с использованием давления в полости уплотнительного элемента пакера. 2 з.п. ф-лы, 1 ил.

Изобретение относится к оборудованию для проведения работ по изоляции межтрубного пространства скважины. Техническим результатом является повышение надежности установки пакера за счет исключения воздействия на него колонны НКТ. Двуствольный пакер с проходом кабеля содержит силовой кабель, внешний и внутренний стволы, вставленные один в другой и скрепленные между собой с образованием внутреннего кольцевого пространства, шарнирно-разъемный узел герметизации, включающий уплотнительные элементы с каналами для силового кабеля и трубки для закачки химреагентов, гидравлический привод, состоящий из поршня и цилиндра, толкатель, пакерный и якорный узлы. Поршень гидравлического привода установлен с возможностью осевого перемещения и снабжен наружной упорной резьбой. На внутренней поверхности нижней части цилиндра, установленного неподвижно, выполнен паз, в котором размещена разрезная гайка с ответной упорной резьбой, взаимодействующей с поршнем. Гидравлический привод расположен между узлом герметизации и толкателем, опирающимся сверху на пакерный узел. 1 з.п. ф-лы, 3 ил.
Наверх