Способ идентификации параметров навигационных спутников

Изобретение относится к способам навигации по спутниковым радионавигационным системам (СРНС) и может быть использовано для идентификации параметров навигационных спутников и повышения точности определения координат навигационного приемника. Достигаемый технический результат - повышение точности определения местоположения навигационного приемника. Достигаемый технический результат - исключение ошибок взаимной синхронизации часов навигационных спутников и навигационного приемника. Указанный результат достигается за счет компенсации возникающих погрешностей при определении координат навигационного приемника. 1 ил.

 

Изобретение относится к способам навигации по Спутниковым Радионавигационным Системам (СРНС) и может быть использовано для идентификации параметров навигационных спутников и повышения точности определения координат навигационного приемника. Технический результат заключается в повышении точности определения координат навигационного приемника за счет исключения ошибок взаимной синхронизации часов навигационных спутников и навигационного приемника.

Известны различные способы повышения точности определения координат навигационного приемника. В патенте США №7535414 изложен способ, который предполагает, что перед вычислением координат навигационного приемника производится разрешение неопределенностей, вызванных в т.ч. ошибками часов навигационных спутников, в неполных псевдодальностях. В патенте США № 6417801 предлагается разрешение неопределенностей в неполных псевдодальностях путем добавления в вектор оцениваемых параметров поправки ко времени измерения с последующим перебором всех допустимых целочисленных комбинаций неоднозначностей и выбором нужной из них по критерию минимума остаточных невязок.

Также для повышения точности определения координат навигационного приемника используются различные алгоритмы компенсации погрешностей часов [Интерфейсный контрольный документ ГЛОНАСС (5.1 редакция). - М.: РНИИ КП, 2008. - 57 с.], а также применяется дифференциальный режим измерений по кодовым дальностям, реализуемый с помощью контрольного навигационного приемника с известными географическими координатами - т.н. базовой станции [Bar-Sever, Y. Anew Massachusetts model for GPS yaw attitude // Journal of Geodesy, 70, 714723, 1996]. Недостатками данных способов являются сложность их реализации и невозможность точного определения текущих значений ошибок взаимной синхронизации часов навигационных спутников и навигационного приемника для их последующей компенсации.

Наиболее близким к предлагаемому изобретению является способ, описанный в патенте РФ №2432584. Способ определения координат навигационного приемника спутниковой радионавигационной системы / Васильев М.В., Михайлов Н.В., Поспелов С.С., Джалали Биджан, состоящий в том, что вычисление поправок к координатам приемника производится после измерения псевдодальностей и псевдоскоростей по невязкам псевдодальностей.

Недостатком данного способа также является сложность аппаратной и вычислительной реализации и невозможность точного определения текущих значений ошибок взаимной синхронизации часов навигационных спутников и навигационного приемника для их последующей компенсации.

Заявленное изобретение направлено на решение задачи повышения точности определения местоположения навигационного приемника за счет коррекции погрешности взаимной синхронизации часов навигационных спутников и навигационного приемника.

Поставленная задача возникает при разработке систем контроля и управления навигационными спутниками, а также использования их измерений для решения навигационной задачи объекта.

Для обеспечения идентификации параметров навигационных спутников и упрощения аппаратной и вычислительной реализации данной процедуры предлагается способ, состоящий в том, что в группе из пяти навигационных спутников, находящихся в зоне прямой видимости, реализуются одновременные передача навигационных сообщений от каждого спутника к каждому и их прием каждым спутником от каждого, определение межспутниковых псевдодальностей и их передача на другой спутник с последующим решением на каждом спутнике системы девятнадцати линейных алгебраических уравнений, в результате которого определяются истинные дальности между спутниками, погрешности взаимной синхронизации часов спутников и инструментальные погрешности передатчиков, после чего погрешности взаимной синхронизации часов спутников и инструментальные погрешности передатчиков передаются в навигационных сообщениях и компенсируются в навигационном приемнике при определении координат навигационного приемника на основе решения системы трех нелинейных уравнений, каждое из которых сформировано по разности измеренных псевдодальностей между двумя спутниками.

Точность решения навигационной задачи с использованием средств спутниковой навигации в значительной мере зависит от степени подавления помех, возникающих при приеме-передаче спутниковых сообщений. В общем случае информационная структура спутникового измерения псевдодальности ZR, используемого в качестве основного сигнала при позиционировании объектов, с учетом помех, в наибольшей степени влияющих на точность позиционирования, имеет вид:

где ξс, ηс, ζс - текущие координаты спутника в гринвичской системе координат (ГрСК),

ξ, η, ζ - текущие координаты объекта в ГрСК,

C - номинальное значение скорости света в вакууме,

Δτ - погрешность часов навигационного приемника,

ΔT - погрешность часов спутника,

WИТ - погрешности, обусловленные прохождением радиосигнала через ионосферу и тропосферу,

WS - инструментальные погрешности передатчика спутника.

Среди перечисленных погрешностей наиболее значительный удельный вес имеют инструментальные погрешности передатчика спутника и ошибки часов спутника и приемника. Так, например, несмотря на установку атомных часов на навигационных спутниках, среднеквадратическое значение ошибки взаимной синхронизации бортовых шкал времени может достигать 20 и более нс [ГЛОНАСС. Интерфейсный контрольный документ / Навигационный радиосигнал в диапазонах L1, L2 с открытым доступом и частотным разделением (Редакция 5.1). 2008. - 74 с.].

В настоящее время для компенсации погрешности часов применяются различные алгоритмы, построенные на основе ее аппроксимации временными полиномами. Например, в СНС ГЛОНАСС ошибка часов спутника ΔT аппроксимируется линейной зависимостью от времени с заданными параметрами (в GPS применяется квадратичная зависимость):

где t* - время расчета погрешности на момент поступления спутниковой информации, α0, α1 - известные параметры модели ошибки часов спутника, TГ - время задержки спутникового сигнала, TР - релятивистская поправка, определяемая в процессе вычисления координат спутника. Как видно из (2), компенсационная модель содержит 4(!) параметра, требующих дополнительного непростого их определения с различной периодичностью, снижающего общую эффективность применения модели (2). При этом алгоритмы компенсации инструментальных погрешностей передатчика спутника в настоящее время вообще отсутствуют.

Существующие навигационные системы ГЛОНАСС и GPS с целью повышения точности решения навигационной задачи проходят в настоящий момент усиленную модернизацию, позволяющую, в частности, определять с помощью бортовых измерительных средств расстояния между спутниками, находящимися в зоне прямой видимости.

Так, например, навигационные спутники ГЛОНАСС-М оснащаются бортовой аппаратурой межспутниковых измерений [ГЛОНАСС. Принципы построения и функционирования / Под ред. А.И. Перова, В.Н. Харисова. - 3-е изд., перераб. - М.: Радиотехника, 2005. - 688 с.], а навигационные спутники ГЛОНАСС-К - приемоформирующим устройством межспутниковой радиолинии [Ступак Г.Г., Ревнивых С.Г., Игнатович Е.И., Куршин В.В., Бетанов В.В., Панов С.С., Бондарев Н.З., Чеботарев В.Е., Решетнева М.Ф., Балашова Н.Н., Сердюков А.И., Синцова Л.Н. // Выбор структуры орбитальной группировки перспективной системы ГЛОНАС // Космонавтика №3-4 (6) 2013, С. 4-11]. Формирующая часть устройства межспутниковой радиолинии осуществляет формирование и излучение информационно-измерительных радиосигналов, структура которых аналогична структуре навигационного сигнала ГЛОНАСС. В приемной части осуществляется усиление радиосигналов и измерение псевдоскорости и псевдодальности между навигационными спутниками системы ГЛОНАСС.

Повышение точности определения положения навигационных спутников возможно также при использовании лазерных дальномеров [Чубыкин А.А., Рой Ю.А., Корнишев О.М., Падун П.П. Использование бортовых лазерных измерительно-связных средств для повышения точности и оперативности ЭВО спутников системы ГЛОНАСС // ЭВ & ЭС. Т. 12. 2007. С. 25-30, Шаргородский В.Д., Чубыкин А.А., Сумерин В.В. Межспутниковая лазерная навигационно-связная система // Аэрокосмический курьер. 2007. №1 (49). С. 88-89], в основе которого лежит принцип измерения времени распространения лазерных импульсов.

При этом очевидно, что сигналы измерения псевдодальностей между i-м и j-м спутниками будут свободны от погрешностей, обусловленных прохождением сигнала через ионосферу и тропосферу как в (1), и будут иметь вид:

где Zij - псевдодальность, измеренная на j-м спутнике,

Rij - истинная дальность между i-м и j-м спутниками,

ΔTj - погрешность часов j-го спутника,

ΔTi - погрешность часов i-го спутника,

WSi - погрешность передатчика i-го спутника,

ΔTji=c(ΔTj-ΔTi) - ошибка взаимной синхронизации часов i-го и j-го спутников.

Перед построением алгоритма идентификации искомых пространственно-временных параметров спутников предварительно определим число спутников N, необходимое и достаточное для их полной идентификации. Число всех возможных расстояний между N спутниками (равное числу ребер графа с N вершинами) определяется известным выражением: N(N-1)/2. При обоюдном измерении расстояний между двумя спутниками число измеренных межспутниковых дальностей будет равно, соответственно, N(N-1). В полученных измерениях содержатся следующие неизвестные переменные: N(N-1)/2 истинных расстояний между N спутниками, (N-1) линейно независимых ошибок взаимной синхронизации часов N спутников (остальные (N-1)(N/2-1) определяются их линейными комбинациями) и N инструментальных погрешностей передатчиков N спутников, т.е. общее число неизвестных переменных составляет N(N-1)/2+N-1+N. Приравнивая общее число измерений к числу неизвестных переменных, имеем следующее уравнение:

N(N-1)/2=2N-1

или

N2-5N+2=0,

откуда легко определяется число спутников, необходимое и достаточное для решения поставленной задачи идентификации:

N=5.

(Если истинные расстояния между спутниками известны - например, измерены с высокой точностью лазерными дальномерами, то число неизвестных переменных сокращается до 2N-1 и уравнение, определяющее число спутников, принимает вид: N2-3N+1=0, откуда N=3).

В принятых обозначениях измеренные расстояния (псевдодальности) Zij между пятью навигационными спутниками 1i, i=1,5 (фиг. 1) могут быть представлены следующим образом:

где ΔT12, ΔT13, ΔT53, ΔT23…ΔT34, ΔT54, ΔT24 - погрешности взаимной синхронизации часов спутников 11, 12, 13, 14 и 15,

R13, R23, R12…R53, R24, R54 - истинные дальности между спутниками,

WS1, WS2, WS3, WS4, WS5 - инструментальные погрешности передатчиков спутников 11, 12, 13, 14 и 15, соответственно.

Учитывая очевидные соотношения:

ΔTji=-ΔTij, ΔTjk=ΔTik-ΔTij=ΔTk-ΔTj, i, j, k=1, 2…5,

система (4) из 20 уравнений с 35 неизвестными может быть сведена к системе 20 уравнений с 19 неизвестными - десятью истинными дальностями R13, R23, R12, …, R43, R24, R54, четырьмя независимыми погрешностями взаимной синхронизации часов спутников (выбор определяемых погрешностей принципиального значения не имеет, поэтому выберем далее в качестве независимых переменных погрешности ΔT12, ΔT13, ΔT14, ΔT15) и инструментальными погрешностями передатчиков WS1, WS2, WS3, WS4, WS5:

и легко решается любым из известных способов решения линейных алгебраических уравнений непосредственно на борту каждого из спутников 11, 12, 13, 14 и 15. Т.к. при этом одно избыточное уравнение может быть исключено, возникает возможность дополнительного формирования еще C 20 19 1 = 19 систем уравнений, аналогичных (5), для их параллельного решения с целью повышения точности идентификации - за счет, например, усреднения полученных результатов. В данном случае решается не только задача текущего определения погрешностей взаимной синхронизации часов всех спутников и инструментальных погрешностей их передатчиков, используемых, как показано далее, для компенсации помех в сигнале навигационного приемника объекта, но и расстояний между спутниками, используемых, в свою очередь, в качестве дополнительной информации для повышения точности измерения текущего местоположения спутников.

Таким образом, определение всех упомянутых выше параметров позволяет осуществить идентификацию как расстояний между спутниками, так и ошибок синхронизации их собственных часов и инструментальных погрешностей передатчиков.

Компенсация погрешностей спутникового сообщения в навигационном приемнике основана на том, что для решения навигационной задачи спутниковые сообщения принимаются, как правило, не менее чем от четырех спутников [ГЛОНАСС. Принципы построения и функционирования / Под ред. А.И. Перова, В.Н. Харисова. - 3-е изд., перераб. - М.: Радиотехника, 2005. - 688 с.], что позволяет формировать различные линейные комбинации сигналов, принимаемых от разных спутников. Так, разность сигналов псевдодальностей, принятых от двух спутников - i-го и j-го, с учетом (1), имеет вид:

где принято вытекающее из практики спутниковой навигации допущение об идентичности помех, обусловленных прохождением через ионосферу и тропосферу радиосигналов спутников, находящихся в зоне видимости одного и того же объекта.

Как видно из (6), разность сигналов ZRi-ZRj любых двух спутников содержит помеховые составляющие ΔTij, WSi, WSj, которые уже известны из принятого спутникового сообщения и могут быть скомпенсированы (и не содержит остальных помех, приведенных в (1): ошибок часов приемника, его инструментальных погрешностей и др.).

В результате, обработке - применению стандартной итеративной процедуры решения системы нелинейных уравнений (7) относительно координат ξ, η, ζ, подлежат сигналы, содержащие только истинную информацию о координатах объекта, что позволяет существенно повысить общую точность решения навигационной задачи:

где ΔZij - разность псевдодальностей, принятых от i-го и j-го спутников;

ΔZik - разность псевдодальностей, принятых от i-го и k-го спутников;

ΔZkj - разность псевдодальностей, принятых от k-го и j-го спутников.

Алгоритм технической реализации предлагаемого способа рассмотрим по шагам на примере спутника 1 (фиг. 1).

1. Передача навигационных сообщений к спутникам 12, 13, 14, 15.

2. Прием навигационных сообщений от спутников 12, 13, 14, 15 (выполняется одновременно с п. 1).

3. Определение псевдодальностей Z21, Z31, Z41, Z51 до спутников 12, 13, 14, 15.

4. Параллельная передача полученных значений псевдодальностей Z21, Z31, Z41, Z51 на спутники 12, 13, 14, 15.

5. Прием значений псевдодальностей Z12, Z32, Z42, Z52 от спутника 12 (выполняется одновременно с п. 4).

6. Прием значений псевдодальностей Z13, Z23, Z43, Z53 от спутника 13 (выполняется одновременно с п. 4).

7. Прием значений псевдодальностей Z14, Z24, Z34, Z54 от спутника 14 (выполняется одновременно с п. 4).

8. Прием значений псевдодальностей Z15, Z25, Z45, Z35 от спутника 15 (выполняется одновременно с п. 4).

9. Решение системы уравнений (5) и вычисление истинных дальностей R13, R23, R12, …, R53, R24, R54; погрешностей взаимной синхронизации часов ΔT12, ΔT13, ΔT14, ΔT15 и инструментальных погрешностей передатчиков WS1, WS2, WS3, WS4, WS5.

10. Передача в спутниковом сообщении истинных дальностей Rij между всеми спутниками, погрешностей взаимной синхронизации часов и значений инструментальных погрешностей передатчиков для последующей корректировки спутниковых измерений (1).

11. Решение системы уравнений (7) и вычисление координат навигационного приемника.

Предложенный способ идентификации параметров навигационных спутников позволяет, используя простые методы радио- и лазерных измерений, во-первых, существенно повысить точность синхронизации хода часов на всех навигационных спутниках группировки (что особенно важно для системы ГЛОНАСС, наземные станции синхронизации времени которой расположены только на территории РФ), во-вторых, определять истинные дальности Rij между спутниками непосредственно на борту спутника, снижая тем самым вычислительную нагрузку на приемники потребителей и телеметрических станций слежения, и, в-третьих, повысить общую точность решения навигационной задачи за счет компенсации основных помех в принятом навигационном сообщении. При этом также неизбежно увеличение точности определения рассмотренных пространственно-временных параметров в силу большей точности межспутниковых измерений, осуществляемых в космосе, по сравнению с телеметрическими, подверженными влиянию атмосферных возмущений.

Способ идентификации параметров навигационных спутников, заключающийся в том, что в группе из пяти навигационных спутников, находящихся в зоне прямой видимости, реализуются одновременные передача навигационных сообщений от каждого спутника к каждому и их прием каждым спутником от каждого, определение межспутниковых псевдодальностей и их передача на другой спутник с последующим решением на каждом спутнике системы девятнадцати линейных алгебраических уравнений, в результате которого определяются истинные дальности между спутниками, погрешности взаимной синхронизации часов спутников и инструментальные погрешности передатчиков, после чего погрешности взаимной синхронизации часов спутников и инструментальные погрешности передатчиков передаются в навигационных сообщениях и компенсируются в навигационном приемнике при определении координат навигационного приемника на основе решения системы трех нелинейных уравнений, каждое из которых сформировано по разности измеренных псевдодальностей между двумя спутниками.



 

Похожие патенты:

Изобретение относится к области радиотехники, а именно к спутниковым навигационным системам (СНС), и может быть использовано для определения целостности информации от СНС.

Изобретение относится к способам навигации по Спутниковым Радионавигационным Системам (СРНС) и может быть использовано для идентификации параметров навигационных спутников и повышения точности определения координат навигационного приемника.

Изобретение относится к области спутниковой навигации и может быть использовано для определения ионосферной задержки сигнала глобальных спутниковых навигационных систем с помощью двухчастотной навигационной аппаратуры потребителя.

Изобретение относится к беспроводной системе передачи локальных сообщений и предназначено для обеспечения централизованного управления передатчиками, что позволяет сместить сложность аппаратно-программного обеспечения с множества передатчиков на центральное оборудование.

Изобретение относится к области радиотехники и может быть использовано для навигации подвижных объектов в режиме реального времени. Технический результат состоит в повышении точности и надежности определения местоположения подвижных объектов в режиме реального времени.

Изобретение относится к области радиотехники и может быть использовано в составе средств радиоэлектронной борьбы, решающих задачи защиты территории от носителей аппаратуры потребителей (АП) спутниковых радионавигационных систем (СРНС).

Изобретение относится к области радионавигационных систем позиционирования подвижных объектов, таких как животные. Техническим результатом является защита антенны устройства определения местонахождения животного от внешних воздействий за счет ее размещения внутри гибкого корпуса ошейника.

Изобретение относится к области автоматики и телемеханики на железнодорожном транспорте. В способе предварительно задают систему реперных объектов, в качестве которых используют объекты инфраструктуры, в режиме реального времени одновременно определяют координаты транспортного средства и осуществляют лазерное сканирование местности, в автоматическом режиме обрабатывают результаты сканирования и формируют модель текущего положения объектов в виде облака точек, в соответствии с координатами позиционируют транспортное средство на цифровой карте местности с заданной системой реперных объектов.

Изобретение относится к области спутниковой навигации и может быть использовано в качестве оценки достоверности высокоточного навигационного определения. Технический результат состоит в повышении достоверности высокоточных навигационных определений и уменьшении времени оповещения потребителя о нарушении целостности навигации.

Изобретение относится к бортовым системам навигации (БСН) искусственных спутников Земли (ИСЗ) на низких (с высотой до 500-600 км) орбитах. БСН содержит устройство управления системой и соединенные с ним устройство преобразования навигационных сигналов в навигационные параметры, блок преобразования навигационных параметров в параметры движения центра масс (ЦМ) ИСЗ и блок прогнозирования параметров движения ЦМ.

Изобретение относится к области радионавигации. Техническим результатом является обеспечение улучшенной корректирующей информации для навигационных приемников (120) посредством разрешения целочисленных неоднозначностей в измерениях дальности, выполняемых опорными станциями, с использованием ограничений целочисленной неоднозначности двойной разности. Состояние множества глобальных навигационных спутников (110-1, 110-2, 110-N) вычисляется на основе принятых спутниковых навигационных измерений. Идентифицируются базовые линии, причем каждая соответствует паре опорных станций (140-1, 140-2, 140-M). Для каждой идентифицированной базовой линии вычисляют плавающие и целочисленные значения для целочисленной неоднозначности двойной разности. Идентифицируются целочисленные неоднозначности двойной разности, которые удовлетворяют набору заданных условий, и вычисленное состояние множества глобальных навигационных спутников уточняется в соответствии с целочисленным ограничением, применяемым к каждой целочисленной неоднозначности двойной разности, которая удовлетворяет набору заданных условий. Корректирующая информация вычисляется из уточненного вычисленного состояния множества глобальных навигационных спутников. 3 н. и 25 з.п. ф-лы, 9 ил., 1 табл.

Изобретение относится к области дифференциальных навигационных систем и применимо для высокоточной навигации, геодезии, ориентации объектов в пространстве по сигналам глобальных навигационных спутниковых систем (ГНСС - ГЛОНАСС, GPS, Galileo, Bei Dou и другие), в которых осуществляется измерение псевдодальности до навигационных спутников по фазе несущих колебаний. В дифференциальных системах точное определение взаимного положения объектов производится по разностям псевдофазовых измерений, получаемых в разнесенных на местности навигационных приемниках. Достигаемый технический результат изобретения - повышение точности и надежности определения взаимного положения объектов при сокращении временных затрат. 2 ил.

Изобретение относится к технике связи и может использоваться в системах для оценки местоположения объектов. Технический результат состоит в предоставлении пользователю приемного терминала спутникового сигнала, например сотового телефона или навигатора, услуги по определению местоположения без изменения аппаратного или программного обеспечения даже в зонах, недоступных для спутниковых сигналов, например внутри здания, в подземном торговом центре, в туннеле или метро. Для этого система оценки местоположения внутри помещения с использованием устройства генерирования спутникового сигнала включает в себя: приемную антенну для приема спутниковых сигналов; центральный контроллер для вычисления и обновления спутниковой информации в режиме реального времени для всех существующих спутников, получения времени спутника из спутниковых сигналов, принимаемых приемной антенной, и синхронизации, а также выбора для оценки местоположения по крайней мере 4 спутников из всех существующих спутников на основе информации о времени спутника; по крайней мере одно устройство генерирования спутникового сигнала, принимающее номера спутников, назначенные центральным контроллером, и генерирующее спутниковые сигналы, соответствующие назначенным номерам спутников. 2 н. и 3 з.п. ф-лы, 6 ил.

Изобретение относится к способу управления летательным аппаратом (ЛА) при заходе на посадку. Для управления ЛА при заходе на посадку измеряют с помощью инерциальной навигационной системы (ИНС), систем воздушных сигналов (СВС), спутниковой навигационной системы (СНС) курс, крен и тангаж ЛА, угловую, горизонтальную и вертикальную скорости ЛА, координаты и высоту ЛА, формируют курс взлетно-посадочной полосы (ВПП) на основе уточненных координат высоты ЛА и координат высоты ВПП, формируют сигналы управления угловым положением ЛА по крену и тангажу, измеряют в автоматическом или ручном режиме угловое положение ЛА в соответствии со сформированными сигналами управления, формируют траекторию посадки с заданным экипажем углом наклона, совпадающую по направлению с курсом ВПП, с помощью курсового, глиссадного и дальномерного радиомаяков (КРМ, ГРМ и ДРМ). В случае отсутствия на борту ЛА сигналов «Готовность курса (глиссады или дальности)» сигналы управления формируют с помощью параметров виртуального курсового (глиссадного или дальномерного) маяков (ВКРМ, ВГРМ, ВДРМ), размещенных определенным образом. Определяют координаты и высоту ВГРМ, пеленг ВКРМ и угла места ВГРМ относительно ЛА. Определяют рассогласование пеленга ВКРМ относительно ЛА и курса ВПП, рассогласование угла места ВГРМ относительно ЛА и заданного экипажем угла наклона траектории посадки для корректировки сигналов управления. Обеспечивается надежность системы посадки. 5 ил., 1 табл.

Изобретение относится к безопасности сетей. Технический результат - повышение уровня электронной связи и обеспечение безопасности сетей от несанкционированного доступа. Способ аутентификации электронного устройства, включающий: прием устройством верификации одного или более опознавательных параметров луча, соответствующих передаче сфокусированного луча спутника и включающих псевдослучайный код и временную метку; прием устройством верификации первой информации о местоположении, указывающей местоположение электронного устройства; определение второй информации о местоположении на основании одного или более опознавательных параметров луча, указывающей местоположение центра проекции передачи сфокусированного луча; сравнение указанной первой информации о местоположении и второй информации о местоположении; и аутентификацию электронного устройства, когда разность между местоположением электронного устройства и местоположением центра проекции передачи сфокусированного луча меньше порогового значения. 4 н. и 10 з.п. ф-лы, 7 ил.

Изобретение относится к области радиолокации и радионавигации. Достигаемый технический результат заключается в увеличении отношения сигнал/шум в результате совместной обработки сигнала стандартной и высокой точности системы ГЛОНАСС и уменьшении количества вычислений при синтезе радиолокационного изображения земной поверхности. Сущность изобретения заключается в формировании опорного сигнала для совместной обработки сигнала стандартной и высокой точности системы ГЛОНАСС в многопозиционной радиолокационной системе с синтезированной апертурой антенны, использующей сигналы навигационной системы для подсветки земной поверхности. 1 ил.
Изобретение относится к спутниковым навигационным системам, а именно к оборудованию наземного комплекса управления данных систем. Достигаемый технический результат - повышение надежности взаимодействия средств, обеспечивающих управление и измерение на пунктах эксплуатации и в центре управления. Указанный результат достигается тем, что средства управления и измерений для наземного комплекса управления спутниковой навигационной системы включают аппаратно независимый цифровой модуль обработки сигнала средств управления и измерений пункта эксплуатации. Выход цифрового модуля обработки сигнала связан с антенным устройством через преобразователь частоты вверх и усилитель мощности, обеспечивающий суммирование мощности без разрыва фазы, а вход подключен к антенному устройству через входное приемное устройство. Вычислительная аппаратура средств управления и измерений пункта эксплуатации представляет собой кластер серверов, объединенных логически, снабженных средствами пользовательского интерфейса и связанных через сеть Ethernet с цифровым модулем обработки сигнала и внешнюю сеть передачи данных с кластером серверов средств управления и измерений в центре управления. 2 з.п. ф-лы.

Изобретение относится к области радионавигации. Техническим результатом является сокращение времени первого определения местоположения, TTFF, в пользовательском оборудовании, определяющем положение с помощью Глобальной навигационной спутниковой системы, GNSS. Упомянутый технический результат достигается тем, что устройство (15) определения положения с помощью GNSS взаимодействует с Базовой службой (11) в пользовательском оборудовании (16), UE, причем устройство определения положения с помощью GNSS получает (23) сигналы спутников GNSS и навигационные данные и определяет положение в пределах TTFF на основе упомянутых сигналов/данных, и причем Базовая служба обнаруживает (24) пользовательские данные, указывающие определенное поведение пользователя, и инициирует упомянутое определение положения на основе упомянутых пользовательских данных. 5 н. и 11 з.п. ф-лы, 3 ил.

Изобретение относится к радиотехнике и радиоэлектронике, предназначено для дистанционного зондирования атмосферы и может быть использовано в радиолокации, навигации и связи. Достигаемый технический результат - возможность получения амплитудно-частотных и дистанционно-частотных характеристик (АЧХ и ДЧХ) радиолиний на трассах различной протяженности и ориентации, а также проводить измерения допплеровского сдвига частоты отраженного радиосигнала. Указанный результат достигается за счет того, что базовая станция дистанционного зондирования атмосферы состоит из передающей и приемной частей, при этом передающая часть содержит двухсистемный приемник навигационных сигналов ГЛОНАСС/GPS, синхронометр, цифровой вычислительный синтезатор, широкополосный усилитель мощности, антенно-фидерное устройство, а приемная часть содержит антенно-фидерное устройство, усилитель высокой частоты, аналого-цифровой преобразователь, цифровой гетеродин, цифровой вычислительный синтезатор, синхронометр, двухсистемный приемник навигационных сигналов ГЛОНАСС/GPS, электронно-вычислительную машину, монитор. Перечисленные средства определенным образом выполнены и соединены между собой. 3 ил.

Изобретение относится к радиотехнике и может быть использовано в системах радиозондирования атмосферы на основе использования сигналов глобальных навигационных спутниковых систем (ГНСС). Достигаемый технический результат - повышение точности и надежности определения пространственных координат аэрологического радиозонда (АРЗ), направления и скорости ветра, повышении помехоустойчивости и электромагнитной совместимости. Указанный результат достигается за счет того, что навигационная система зондирования атмосферы содержит N передатчиков сигналов ГНСС, АРЗ, антенную систему приема сигналов ГНСС, антенную систему приема сигнала АРЗ с круговой диаграммой направленности, антенную систему приема сигнала АРЗ с узкой диаграммой направленности, снабженную угломестно-азимутальным приводом, антенный переключатель, базовую станцию с блоком отображения и ввода-вывода информации, сверхвысокочастотный (СВЧ) коммутатор, при этом антенная система приема сигналов ГНСС подключена к базовой станции, антенная система приема сигналов АРЗ с круговой диаграммой содержит антенну ближнего канала и антенну дальнего канала, выходы которых через переключатель и СВЧ-коммутатор подключены к базовой станции, соответственно выход базовой станции подключен к угломестно-азимутальному приводу антенной системы с узкой диаграммой направленности, выход которой через СВЧ-коммутатор подключен к базовой станции. Антенная система приема сигналов ГНСС обеспечивает точное определение координат базовой станции, антенная система приема сигналов АРЗ с круговой диаграммой направленности обеспечивает прием сигнала АРЗ при его вертикальном подъеме и удалениях до 250 км, антенная система с узкой диаграммой направленности обеспечивает прием сигнала АРЗ при удалениях более 250 км и сложной помеховой обстановке. 1 ил.
Наверх