Способ работы поршневого насос-компрессора и устройство для его осуществления

Изобретение относится к области насосо- и компрессоростроения и может быть использовано при создании поршневых машин объемного действия, предназначенных для сжатия и подачи потребителю одновременно или попеременно жидкостей и газов. Способ работы поршневого насоса-компрессора состоит в том, что осуществляют попеременное всасывание, сжатие и подачу потребителю газа из надпоршневой полости, а также всасывание и нагнетание жидкости в подпоршневую полость и подачу ее потребителю. Подача сжатого газа потребителю осуществляется через самодействующий нагнетательный клапан и линию нагнетания газа. Подача жидкости потребителю осуществляется через линию нагнетания жидкости. Сопротивление линии нагнетания газа изменяют в соответствии с давлением нагнетания жидкости. Насос-компрессор содержит цилиндр 1 с установленным в нем поршнем 2, делящим цилиндр на газовую 3 и жидкостную 4 полости. Они соединены с линиями всасывания газа 5 и жидкости через всасывающие самодействующие клапаны 6 и 10 и с линиями нагнетания газа 7 и жидкости 11 через нагнетательные самодействующие клапаны 9 и 12. Газовый нагнетательный клапан 9 имеет ограничитель подъема, выполненный в виде сильфона 17 с торцовой частью, обращенной в сторону газового нагнетательного клапана 9, и внутренняя полость которого подключена к жидкостной линии нагнетания 11. В линии нагнетания газа 7 может быть установлен подпружиненный поршень 20, размещенный одним концом в цилиндре 21, соединенном с жидкостной линией нагнетания, а другим концом размещен непосредственно в трубопроводе линии нагнетания газа 7 с возможностью частичного перекрытия этой линии. Действие пружины 19 направлено против действия давления в жидкостной линии нагнетания. В процессе пуска насоса-компрессора не создается условий для возникновения гидроудара из-за проникновения жидкости из камеры 4 в камеру 2 при отсутствии давления в линии нагнетания газа 7. Аналогично насос-компрессор работает, если по каким-либо причинам (разрыв линии нагнетания, увеличение расхода потребителя газа) давление в линии нагнетания газа существенно уменьшается против номинального. 3 н. и 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к области насосо- и компрессоростроения и может быть использовано при создании поршневых машин объемного действия, предназначенных для сжатия и подачи потребителю одновременно или попеременно жидкостей и газов.

Известен способ работы поршневого насоса-компрессора, заключающийся в попеременном сжатии и подаче потребителю газа из надпоршневой полости, сжатии жидкости в подпоршневой полости и подаче ее потребителю (см. патент РФ №118371, МКИ F04B 19/06 от 20.07.2012).

Известен также способ работы поршневого насоса-компрессора, заключающийся в попеременном всасывании, сжатии и подаче потребителю газа из надпоршневой полости, и всасывании и сжатии жидкости в подпоршневой полости и подаче ее потребителю, причем подача сжатого газа потребителю осуществляется через самодействующий нагнетательный клапан и линию нагнетания газа, а подача жидкости потребителю осуществляется через линию нагнетания жидкости (см., например, Патент РФ №125635 на полезную модель «Поршневой насос-компрессор», МПК F04B 19/06, заявл. 24.09.2012, опубл. 10.03.2013).

Недостатком известных способов является высокая вероятность гидроудара, возникающая из-за того, что в начальный момент пуска насоса-компрессора, когда избыточное давление в линии нагнетания газа еще отсутствует (равно атмосферному), а давление жидкости в жидкостной линии нагнетания уже есть, жидкость при возвратно-поступательном движении поршня через уплотнение между поршнем и цилиндром в большом количестве проникает в газовую полость агрегата, и как только ее объем превышает мертвый объем газовой полости, происходит гидроудар. Это особенно актуально в том случае, когда давление жидкости в жидкостной линии нагнетания существенно превышает атмосферное давление. В результате гидроудара происходит разрушение клапанной коробки газовой полости и выход агрегата из строя с полной потерей работоспособности. Аналогичное явление возникает и в том случае, когда по каким-либо причинам (повреждение газового нагнетательного трубопровода, излишне высокое потребление газа) давление в нагнетательном газовом трубопроводе становится очень низким.

Технической задачей изобретения является повышение работоспособности насоса-компрессора путем исключения возможности гидроудара в процессе его пуска и работы при пониженном давлении газа.

Указанная техническая задача решается тем, что в известном способе работы насоса-компрессора согласно изобретению сопротивление линии нагнетания газа изменяют в соответствии с давлением нагнетания жидкости.

Это изменение сопротивления могут осуществлять путем воздействия на газовый нагнетательный клапан, изменяя величину его открытия, или изменением проходного сечения линии нагнетания газа.

В поршневом насосе-компрессоре для осуществления указанного способа, содержащем цилиндр с установленным в нем поршнем, делящим цилиндр на газовую и жидкостную полости, соединенные соответственно с линиями всасывания газа и жидкости через всасывающие самодействующие клапаны, и с линиями нагнетания газа и жидкости через нагнетательные самодействующие клапаны, причем газовый нагнетательный клапан имеет ограничитель подъема, согласно изобретению этот ограничитель подъема выполнен в виде сильфона с торцовой частью, обращенной в сторону газового нагнетательного клапана, и внутренняя полость которого подключена к жидкостной линии нагнетания. Изменение сопротивления газовой линии нагнетания также может быть создано в известном насосе-компрессоре за счет установки в этой линии подпружиненного поршня, размещенного одним концом в цилиндре, соединенном с жидкостной линией нагнетания, а другой конец которого размещен непосредственно в трубопроводе линии нагнетания с возможностью частичного перекрытия этой линии, причем действие пружины направлено против действия давления в жидкостной линии нагнетания.

Сущность изобретения поясняется на примере работы двух конструктивных вариантов насосов-компрессоров, схематично изображенных на чертежах.

На фиг. 1 изображена схема поршневого насоса-компрессора с устройством для изменения хода запорного элемента газового нагнетательного клапана для изменения гидравлического сопротивления линии нагнетания.

На фиг. 2 изображена схема поршневого насоса-компрессора с устройством для изменения гидравлического сопротивления линии нагнетания за счет установки подпружиненного поршня, частично перекрывающего сечение линии нагнетания.

Насос-компрессор (фиг. 1) содержит цилиндр 1 с установленным в нем с зазором поршнем 2, делящим цилиндр 1 на газовую 3 и жидкостную 4 полости, которые имеют газовую линию всасывания 5, соединенную с газовой полостью 3 через самодействующий клапан 6, и с линией нагнетания газа 7 через самодействующий клапан 8, жидкостную линию всасывания 9, соединенную с полостью 4 через самодействующий клапан 10, и жидкостную линию нагнетания 11, соединенную с полостью 4 через самодействующий клапан 12. В линию нагнетания газа 7 встроен ресивер 13 с манометром 14 и вентилем 15, через который газ подается потребителю. На линии нагнетания жидкости 11 установлен воздушный колпак 16, являющийся частью линии нагнетания жидкости 11 и снижающий пульсации давления нагнетаемой жидкости, верхняя (газовая) часть которого через пневмопровод подключена к внутренней полости ограничителя подъема 17 нагнетательного клапана 8. Ограничитель подъема 17 выполнен в виде сильфона с торцовой частью, обращенной в сторону клапана 9. Пластина 18 с отверстием, в которое входит клапан 8, служит для ограничения движения торцовой части сильфона 17 в сторону клапана 8, при этом обеспечивается минимальное проходное сечение клапана 8 при положении торца сильфона 17 в крайнем нижнем положении, когда он уперт в пластину 18. В этой конструкции изменение гидравлического сопротивления в линии нагнетания 7 газа организовано путем изменения усилия, действующего на клапан 8 в сторону его закрытия со стороны линии нагнетания жидкости 11 - чем больше это усилие, тем выше гидравлическое сопротивление линии нагнетания газа 7.

В насосе-компрессоре, изображенном на фиг. 2, в линии нагнетания газа 7 установлен подпружиненный пружиной сжатия 19 поршень 20, размещенный одним (нижним) концом в цилиндре 21, соединенном с воздушным колпаком 16 линии нагнетания 17, а другим (верхним) концом - непосредственно в трубопроводе линии нагнетания газа 7, причем этот верхний конец своим торцом частично перекрывает линию нагнетания 7, для чего напротив этого торца установлена ответная торцу плоская бобышка 22 с ограничителем движения поршня 20 в виде выступа 23. Действие пружины 19 направлено против действия давления жидкости на поршень со стороны линии нагнетания 11. В этой конструкции изменение гидравлического сопротивления в линии нагнетания 7 газа организовано путем воздействия на поршень 20 давления жидкости с образованием щели переменного сопротивления - чем больше разность между давлением жидкости и давления газа, тем больше гидравлическое сопротивление щели и, следовательно, тем больше гидравлическое сопротивление линии нагнетания газа 7.

Способ работы поршневого насоса-компрессора осуществляется следующим образом (фиг. 1). При пуске насоса-компрессора, как правило, гидравлическая линия 11 уже находится под давлением нагнетания в связи со слабой сжимаемостью жидкости и ее высокой вязкостью, а газовая линия нагнетания 7 - под атмосферным давлением в связи с неизбежными утечками маловязкого рабочего тела - газа - через вентиль 15 и клапан 8 во время остановки насоса-компрессора, которая может быть неопределенно долгой.

При возвратно-поступательном движении поршня 2 объем жидкостной полости 4 попеременно увеличивается (происходит открытие клапана 10 и всасывание жидкости из линии всасывания 9) и уменьшается (происходит нагнетание жидкости через клапан 12 в линию нагнетания 11) и подача потребителю под давлением. Пульсация давления жидкости, возникающая в связи с неравномерной ее подачей, гасится газом, находящимся под давлением нагнетания жидкости в верхней части воздушного колпака 16. При ходе поршня 2 вниз, когда происходит сжатие жидкости в камере 4 и ее нагнетание потребителю, жидкость из камеры 4 поднимается в зазоре между поршнем 2 и цилиндром 1.

Одновременно в связи с попеременным изменением объема газовой полости 3 при ее увеличении происходит всасывание газа через клапан 6 из линии всасывания 5, его сжатие и подача потребителю через клапан 8, линию нагнетания 7 с ресивером 13. Поскольку в начальный момент работы насоса-компрессора в ресивере 13 давление равно атмосферному, вентиль 15 закрыт и оператор отрывает его только после того, как манометр 14 покажет номинальное давление нагнетания газа, обусловленное работой потребителя газа.

Таким образом, на первых же ходах поршня 2 в линии нагнетания жидкости 11 устанавливается номинальное давление жидкости, а в линии нагнетания газа 7 остается практически атмосферное давление. При этом давление из линии нагнетания жидкости 11 через колпак 16 и находящийся в его верхней части газ подается в полость сильфона 17, который расширяется, не имея противодавления со стороны линии нагнетания газа 7, упирается в пластину 18, ограничивающую его движение, и своей торцовой частью ограничивает возможность подъема клапана 8, в связи с чем клапан 8 открывается на минимальную величину (становится «прикрытым»), что приводит к увеличению его гидравлического сопротивления и повышению давления в камере 3 при ходе поршня 2 в процессе сжатия-нагнетания (ход вверх). Это повышенное давление «выдавливает» жидкость из зазора между поршнем 2 и цилиндром 1 вниз в сторону камеры 4, не давая ей попасть в камеру 3 и создать условия возникновения гидроудара.

Прошедший через «прикрытый» клапан 8 газ попадает в ресивер 13, постепенно повышая в нем от хода к ходу поршня 2 давление, при этом растет, соответственно, и давление в линии нагнетания 7, действующее на нижний торец сильфона 17. Постепенно давление в линии нагнетания 7 возрастает до такой величины, когда перепад давления между полостью сильфона 17 и линией нагнетания газа 7 становится небольшим и сильфон 17 под действием сил упругости своего материала отходит от пластины 18, увеличивая возможное открытие клапана 8. Этот процесс по мере роста давления газа в линии нагнетания 7 продолжается до тех пор, пока сильфон 17 полностью не освободит клапан 8, который начинает работать в штатном режиме. В это время давление газа в ресивере 13 становится равным номинальному давлению нагнетания газа и оператор открывает вентиль 15, начинается снабжение сжатым газом потребителя.

В том случае, если по каким-либо причинам (рост потребления газа, разрыв или повреждение газовой линии нагнетания 7) давление нагнетания газа существенно уменьшается, снова возникает угроза гидроудара, которая предотвращается тем, что под действием возникшего большого перепада давления на сильфоне 17 он прижимает клапан 8 к седлу, увеличивая сопротивление нагнетательной линии 7 в зоне между клапаном 8 и ресивером 13.

Работа конструкции, показанной на фиг. 2, происходит аналогично вышеописанной. Здесь повышенное давление газа в полости 3 (во время пуска насоса-компрессора или при падении давления газа в линии нагнетания 7 во время работы насоса-компрессора по вышеуказанным причинам) обеспечивается уменьшением вплоть до минимума проходного сечения щели, образованной верхним торцом поднятого поршня 20 и поверхности бобышки 22. Минимальное сечение щели (независимо от перепада давления между линиями нагнетания 11 и 7) обеспечивается выступом 23. В процессе пуска насоса-компрессора или при падении давления газа по сравнению с давлением жидкости под действием перепада давления между линиями 11 и 7 и соответственно на поршне 20 этот поршень поднимается и упирается в выступ 23. При повышении давления в линии 7 перепад давления на поршне 20 снижается и пружина 19 отодвигает его, гидравлическое сопротивление щели между торцом поршня 20 и бобышкой 22 снижается.

Таким образом, благодаря наличию переменного гидравлического сопротивления в газовой линии нагнетания в процессе пуска насоса-компрессора, с самого начала его работы в газовой полости создается давление, необходимое для предотвращения попадания жидкости из жидкостной полости в газовую, что позволяет предотвратить возможность гидроудара и повысить работоспособность насоса-компрессора. При падении давления газа вследствие увеличения расхода его потребителем или при нарушении работы линии нагнетания (повреждение, разрыв), вызывающем падение давления в линии 7 нагнетания газа, в полости 3 автоматически поддерживается давление газа, препятствующее проникновению большого количества жидкости из полости 4 в полость 3 через зазор между поршнем 2 и цилиндром 1, что также предотвращает гидроудар.

Таким образом, техническая задача изобретения - повышение работоспособности насоса-компрессора путем исключения возможности гидроудара в процессе его пуска и работы при пониженном давлении газа - полностью выполнена.

1. Способ работы поршневого насоса-компрессора, заключающийся в попеременном всасывании, сжатии и подаче потребителю газа из надпоршневой полости и всасывании и нагнетании жидкости в подпоршневой полости и подаче ее потребителю, причем подача сжатого газа потребителю осуществляется через самодействующий нагнетательный клапан и линию нагнетания газа, а подача жидкости потребителю осуществляется через линию нагнетания жидкости, отличающийся тем, что сопротивление линии нагнетания газа изменяют в соответствии с давлением нагнетания жидкости.

2. Способ работы поршневого насоса-компрессора по п. 1, отличающийся тем, что изменение сопротивления линии нагнетания газа осуществляют путем воздействия на газовый нагнетательный клапан.

3. Способ работы поршневого насоса-компрессора по п. 1, отличающийся тем, что изменение сопротивления линии нагнетания газа осуществляют путем изменения проходного сечения линии нагнетания.

4. Поршневой насос-компрессор для реализации способа по п. 1, содержащий цилиндр с установленным в нем поршнем, делящим цилиндр на газовую и жидкостную полости, соединенные соответственно с линиями всасывания газа и жидкости через всасывающие самодействующие клапаны и с линиями нагнетания газа и жидкости через нагнетательные самодействующие клапаны, причем газовый нагнетательный клапан имеет ограничитель подъема, отличающийся тем, что ограничитель подъема газового нагнетательного клапана выполнен в виде сильфона с торцовой частью, обращенной в сторону газового нагнетательного клапана, и внутренняя полость которого подключена к жидкостной линии нагнетания.

5. Поршневой насос-компрессор для реализации способа по п. 1, содержащий цилиндр с установленным в нем поршнем, делящим цилиндр на газовую и жидкостную полости, соединенные соответственно с линиями всасывания газа и жидкости через всасывающие самодействующие клапаны и с линиями нагнетания газа и жидкости через нагнетательные самодействующие клапаны, отличающийся тем, что в линии нагнетания газа установлен подпружиненный поршень, размещенный одним концом в цилиндре, соединенном с жидкостной линией нагнетания, а другой конец которого размещен непосредственно в трубопроводе линии нагнетания газа с возможностью частичного перекрытия этой линии, причем действие пружины направлено против действия давления в жидкостной линии нагнетания.



 

Похожие патенты:

Группа изобретений относится к быстройдействующим предохранительным запорным устройствам для газовых распределительных систем. Отказобезопасный узел фиксирующей заглушки для быстродействующего предохранительного запорного устройства содержит возвратный штифт, фиксирующую заглушку, соединенную с возвратным штифтом в ближней части.

Изобретение относится к элементам систем газотурбинных двигателей (ГТД) и может быть использовано в маслосистемах теплонапряженных авиационных ГТД для регулирования давления сжатого воздуха и горячих газов в системе суфлирования.

Изобретение относится к арматуростроению. Клапан для топливного бака включает корпус, сформированный поплавковой камерой и дисковой камерой, гидравлически связанными через промежуточный проточный канал.

Изобретение относится преимущественно к системам терморегулирования космических объектов. Побудитель циркуляции содержит электронасосные агрегаты (ЭНА) и соединительные трубопроводы с гидроразъемами (ГР).

Группа изобретений относится к области автоматики и предназначена для использования в промышленных и жилищных применениях для контроля давления текучей среды за клапаном.

Автоматически запорный клапан служит для отсечения газа на случай снижения давления в газопроводной трубе ниже минимального уровня. Автоматически запорный клапан, корпус которого с входным и выходным штуцерами снабжен отсечным клапаном, выполненным в виде установленной в корпусе подпружиненной мембраны с запорным органом, взаимодействующим с седлом, проходной канал которого связывает подмембранную полость с входным штуцером.

Изобретение относится к области гидравлики и предназначено для использования в гидроприводах различного назначения. Редукционный клапан содержит золотник, выполненный с двумя рабочими и двумя разделительными кромками.

Изобретение относится к области ракетно-космической техники, а именно к дренажно-предохранительным клапанам (ДПК). Дренажно-предохранительный клапан бака окислителя включает в себя основной и вспомогательный клапаны, соединенные герметичными трубопроводами между собой, с предохраняемой емкостью и с дренажным трубопроводом.

Изобретение может быть использовано в дизельных двигателях. Деталь запрограммированного разрушения (7) предназначена для закрывания канала аварийной продувки (6), проходящего через наружную стенку (3) камеры сгорания (1) дизельного двигателя.

Изобретение относится к области машиностроения, в частности к программируемым гидроприводам механообрабатывающего оборудования с числовым программным управлением.

Изобретение относится к области насосо- и компрессоростроения и может быть использовано при создании гибридных поршневых машин объемного действия преимущественно малой и средней производительности, предназначенных для сжатия и подачи потребителю одновременно или попеременно жидкостей и газов.

Изобретение относится к области насосо- и компрессоростроения и может быть использовано при создании машин для сжатия и подачи одновременно или попеременно жидкостей и газов.

Изобретение относится к области машин объемного действия, предназначенных для сжатия и перемещения жидкостей и газов, в которых предъявляются высокие требования к равномерности подачи жидкости.

Изобретение относится к области поршневых машин объемного вытеснения. Способ работы агрегата заключается в попеременном последовательном сжатии в надпоршневой полости цилиндра газа при ходе поршня в сторону газовых распределительных органов и сжатии жидкости в подпоршневой полости цилиндра при ходе поршня в противоположную сторону, к жидкостным распределительным органам.

Изобретение относится к области гидравлической и пневматической техники. Насос-компрессор состоит из цилиндров 1 и 2 с поршнями 3 и 4.

Изобретение относится к области машиностроения, в частности к поршневым насосам, используемым для нагнетания жидкости с высоким давлением, например, при откачке воды или нефти из глубоких скважин.

Изобретение относится к области насосо- и компрессоростроения и может быть использовано при создании машин, предназначенных для сжатия и подачи потребителю одновременно или попеременно жидкостей и газов.

Изобретение относится к области насосо- и компрессоростроения и может быть использовано в поршневых машинах объемного действия, для одновременной или попеременной подачи жидкостей и газов.

Изобретение относится к области насосо- и компрессоростроения и может быть использовано при создании машин для сжатия и подачи одновременно или попеременно жидкостей и газов.

Изобретение относится к области насосо- и компрессоростроения и может быть использовано при создании поршневых машин объемного действия, предназначенных для сжатия и подачи потребителю одновременно или попеременно жидкостей и газов.

Изобретение относится к области компрессоро- и насосостроения и может быть использовано при создании быстроходных и экономичных машин объемного действия, к которым предъявляются высокие требования по массогабаритным и экономическим показателям. Машина содержит цилиндр 1 с поршнем 2, соединенным с механизмом привода. Над поршнем 2 размещена компрессорная полость 7 с клапанами 8 и 9. Подпоршневая полость 10 с картером 11 выполнена в виде жидкостного насоса с линией всасывания 12 и линией нагнетания 13. Участки линии нагнетания 13 и всасывания 14 выполнены в виде трубопроводов прямоугольного сечения, имеющих на противоположных гранях наклонные в сторону прямого потока жидкости три пары пазов 15 с установленными в них жесткой 16 и гибкой 17 пластинами. Цилиндр 1 окружен жидкостной рубашкой 19, соединенной с картером 11 через отверстие 20. Нагнетательная линия 13 соединена с насосной полостью 10 через рубашку 19, отверстие 20 и картер 11. Благодаря форме канала, по которому двигается жидкость, образуются мощные завихрения, вектор действия которых направлен против потока, а сечение потока сильно сокращается из-за прогнувшихся под действием сил сопротивления потоку пластин 17. Образовавшиеся сильные завихрения потока не только тормозят его, но и отбирают энергию за счет сил трения. Поэтому линия нагнетания 13 в процессе всасывания оказывает обратному потоку большое сопротивление, и он становится очень малым по сравнению с потоком в линии всасывания 12. Благодаря этому основной поток проходит через линию всасывания 12, заполняя полости 10 и 11 жидкостью от источника. Повышается быстроходность машины, улучшаются ее массогабаритные характеристики. 2 з.п. ф-лы, 6 ил.
Наверх