Генератор для получения талой питьевой воды

Изобретение относится к устройствам для доочистки водопроводной, артезианской, колодезной и другой условно питьевой воды. Устройство включает расположенные последовательно в одном продольном сосуде зону замораживания воды с кольцевой морозильной камерой, зону вытеснения примесей из фронта льда и концентрации примесей в виде рассола, зону перехода воды из твердого состояния в жидкое с кольцевым нагревательным элементом, раздельные патрубки для вывода примесей в виде рассола и талой питьевой воды, расположенные в нижней части сосуда, приводное устройство перемещения стержня замороженной воды, а также разобщающее устройство в виде трубы с кольцевой режущей частью. Приводное устройство перемещения стержня замороженной воды выполнено в виде поршня со штоком с возвратно-поступательным приводом, при этом в поршне расположены отверстия для подачи воды в зону замораживания, а продольный сосуд имеет крышку, в центре которой находится винтовое соединение со штоком поршня, при этом продольный сосуд имеет дно, в центре которого закреплена труба с кольцевой режущей частью, а патрубки для вывода талой питьевой воды расположены в стенках продольного сосуда в нижней части. Продольный сосуд в зоне замораживания имеет компенсатор расширения льда в виде продольной прорези, заполненной резиновым уплотнителем, с возможностью деформирования стенок продольного сосуда при замораживании воды, при этом стенки продольного сосуда в прорези выполнены параллельными и оканчиваются круглым отверстием рассеивания напряжений. Технический результат - повышение производительности водоочистителя. 1 ил.

 

Изобретение относится к устройствам для доочистки водопроводной, артезианской, колодезной и другой условно питьевой воды.

Известен генератор для получения талой питьевой воды (водоочиститель), включающий расположенные последовательно в одном продольном сосуде зону замораживания воды с кольцевой морозильной камерой, зону вытеснения примесей из фронта льда и концентрации примесей в виде рассола и зону перехода воды из твердого состояния в жидкое с кольцевым нагревательным элементом, раздельные патрубки для вывода примесей в виде рассола и талой питьевой воды, расположенные в нижней части сосуда, приводное устройство перемещения стержня замороженной воды, а также разобщающее устройство в виде трубы с кольцевой режущей частью (патент RU №2312817, C02F 1/22, БИ №35, 2007).

Недостатком известного генератора для получения талой питьевой воды является низкая производительность из-за конструктивного несовершенства приводного устройства перемещения стержня замороженной воды, выполненного в виде роликов с зубчатыми поверхностями (зубья имеют точечный контакт, в связи с чем происходит скалывание льда при его сдвиге роликом и стержень не смещается), что снижает производительность известного водоочистителя.

Наиболее близким по технической сущности и достигаемому результату является генератор для получения талой питьевой воды, включающий расположенные последовательно в одном продольном сосуде зону замораживания воды с кольцевой морозильной камерой, зону вытеснения примесей из фронта льда и концентрации примесей в виде рассола, зону перехода воды из твердого состояния в жидкое с кольцевым нагревательным элементом, раздельные патрубки для вывода примесей в виде рассола и талой питьевой воды, расположенные в нижней части сосуда, приводное устройство перемещения стержня замороженной воды, а также разобщающее устройство в виде трубы с кольцевой режущей частью, при этом приводное устройство перемещения стержня замороженной воды выполнено в виде поршня со штоком с возвратно-поступательным приводом, при этом в поршне расположены отверстия для подачи воды в зону замораживания, а продольный сосуд имеет крышку, в центре которой находится винтовое соединение со штоком поршня, при этом продольный сосуд имеет дно, в центре которого закреплена труба с кольцевой режущей частью, а патрубки для вывода талой питьевой воды расположены в стенках продольного сосуда в нижней части (Патент РФ на полезную модель № 149828, C02F 1/22, БИ №1, 2015).

Недостатком водоочистителя является несовершенство конструкции зоны замораживания, что вызывает большое сопротивление при перемещении замороженного стержня поршнем, так как при замерзании воды происходит расширение замороженного стержня. Это снижает скорость перемещения замороженного стержня, а следовательно, производительность водоочистителя.

Технической задачей, на решение которой направлено изобретение, является повышение производительности водоочистителя.

Указанная задача достигается тем, что в предлагаемом техническом решении, включающем расположенные последовательно в одном продольном сосуде зону замораживания воды с кольцевой морозильной камерой, зону вытеснения примесей из фронта льда и концентрации примесей в виде рассола, зону перехода воды из твердого состояния в жидкое с кольцевым нагревательным элементом, раздельные патрубки для вывода примесей в виде рассола и талой питьевой воды, расположенные в нижней части сосуда, приводное устройство перемещения стержня замороженной воды, а также разобщающее устройство в виде трубы с кольцевой режущей частью, при этом приводное устройство перемещения стержня замороженной воды выполнено в виде поршня со штоком с возвратно-поступательным приводом, при этом в поршне расположены отверстия для подачи воды в зону замораживания, а продольный сосуд имеет крышку, в центре которой находится винтовое соединение со штоком поршня, при этом продольный сосуд имеет дно, в центре которого закреплена труба с кольцевой режущей частью, а патрубки для вывода талой питьевой воды расположены в стенках продольного сосуда в нижней части, согласно изобретению продольный сосуд в зоне замораживания имеет компенсатор расширения льда в виде продольной прорези, заполненной резиновым уплотнителем, с возможностью деформирования стенок продольного сосуда при замораживании воды, при этом стенки продольного сосуда в прорези выполнены параллельными и оканчиваются круглым отверстием рассеивания напряжений.

Достигаемый технический результат совпадает с задачей.

Сущность изобретения поясняется чертежом.

На нем приведена схема работы водоочистителя с основными элементами конструкции устройства.

Генератор содержит продольный сосуд 1 из нержавеющего материала, например стали, бронзы, меди, полимера (полиэтилена, фторопласта и др.) с поверхностью, контактирующей со льдом, а также высокой чистоты шероховатости (гладкой относительно наружной поверхности стенок), в зоне замораживания воды которого установлена кольцевая морозильная камера 2, перед ней смонтировано приводное устройство продольного перемещения замороженного стержня 3, выполненное в виде поршня 4 со штоком 5 с возвратно-поступательным приводом, при этом в поршне 4 расположены отверстия 6 для подачи воды в зону замораживания, а продольный сосуд 1 имеет крышку 7, в центре которой находится винтовое соединение 8 со штоком 5 поршня 4. На крышке 7 выполнена воронка 9 подачи воды в водоочиститель. Продольный сосуд 1 имеет дно 10, в центре которого закреплена труба 11 с кольцевой режущей частью, при этом патрубки 12 для вывода талой питьевой воды расположены в стенках продольного сосуда 1 в нижней части.

Крышка 7 имеет привод вращения (например, посредством понижающего редуктора с электродвигателем, не показан). В зоне вытеснения примесей размещено по центру замороженного стержня 3 разобщающее устройство в виде трубы 11, которая на входе имеет режущую часть в виде зубчатого венца, а на выходе - профиль, образующий выходной патрубок для удаления примесей в виде рассола в канализацию. В зоне перехода воды из твердого состояния в жидкое расположен кольцевой нагревательный элемент 13. Продольный сосуд в зоне замораживания имеет компенсатор расширения льда в виде продольной прорези 14, заполненной резиновым уплотнителем, с возможностью деформирования стенок продольного сосуда при замораживании воды, при этом стенки продольного сосуда в прорези 14 выполнены параллельными и оканчиваются круглым отверстием 15 рассеивания напряжений, возникающих в стенках продольного сосуда при разжатии прорези 14 льдом. Резиновый уплотнитель служит для исключения вытекания воды и для возврата стенок 14 в исходное положение.

Для подачи воды в устройство используют конструкции с регуляторами, которые подают воду в воронку 9.

Принцип работы устройства заключается в производстве талой воды по временной и температурной схеме, повторяющей процесс образования талой воды в природе. Слишком быстрое замораживание не позволит очистить воду от вредных примесей, а слишком быстрое размораживание приводит к нарушению структурирования талой воды, в результате чего свойство биологической активности будет сведено к нулю.

Вода, например водопроводная, подается в сосуд 1 посредством воронки 9, проходит под поршень 4 через отверстия 6 в зону замораживания, где посредством кольцевой морозильной камеры 2 замораживается в медленном темпе, при котором промежутки между ледяными кристаллами заполняются новыми кристаллами, а раствор солей и других вредных веществ в воде (то есть рассол) успевает вытечь из межкристаллических промежутков и сосредоточиться в центральной части замороженного стержня 3. При этом замороженный стержень 3 (после превращения в твердое состояние) посредством поршня 4 надвигают на режущую часть трубы 11, за счет чего происходит механическое отделение примесей в виде рассола (типа утрамбованного снега) от чистого льда. При достижении нижней точки поршень 4 возвращают в исходное верхнее положение и заполняют освободившееся пространство под поршнем 4 водой через воронку 9 и отверстия 6 и процесс повторяют. Поршень 4 обеспечивает надежное смещение замороженного стержня 3 вдоль оси сосуда 1, что повышает производительность водоочистителя. При движении поршня 4 вниз и вверх вода в продольный сосуд 1 не подается. Отделенные примеси по трубе 11 поступают в канализацию. После освобождения замороженного стержня 3 от центральной части он надвигается на кольцевой нагревательный элемент 13, что позволяет производить размораживание льда. По патрубку 12 талая вода поступает в емкости. Благодаря тому, что стенка продольного сосуда в зоне замораживания имеет продольную прорезь 14, заполненную резиновым уплотнителем, с возможностью деформирования стенок продольного сосуда при замораживании воды, происходит расширение диаметра продольного сосуда 1, что исключает дополнительное сопротивление от перемещения замороженного стержня 3 поршнем 4 и повышает производительность генератора для получения талой питьевой воды. Резиновый уплотнитель исключает вытекание воды до ее замораживания. Круглое отверстие 15 исключает растрескивание стенок продольного сосуда при их циклической деформации в процессе замораживания льда и поднятия поршня 4. Параллельное размещение стенок продольного сосуда в прорези исключает перекос поршня 4 и заклинивание замороженного стержня 3.

Температурный режим работы морозильной камеры 2 и кольцевого нагревательного элемента 13 устанавливают экспериментально в зависимости от габаритных размеров водоочистителя. При правильном выборе температурного режима замораживание воды происходит с образованием белой окраски в центральной части стержня 3, что является основным контрольным параметром за правильной работой устройства.

Процентное соотношение массы получаемой талой воды к общей массы воды составляет 60-70%, а весь процесс от начала загрузки сырой воды и выхода этой воды в виде талой занимает не менее 2-2,5 часа.

Предлагаемая конструкция генератора для получения талой питьевой воды позволяет повысить производительность за счет снижения сопротивления при перемещении замороженного стержня поршнем. Кроме того, при использовании водоочистителя технологический процесс полностью становится контролируемый и в случае необходимости может регулироваться температурным режимом.

Генератор для получения талой питьевой воды, включающий расположенные последовательно в одном продольном сосуде зону замораживания воды с кольцевой морозильной камерой, зону вытеснения примесей из фронта льда и концентрации примесей в виде рассола, зону перехода воды из твердого состояния в жидкое с кольцевым нагревательным элементом, раздельные патрубки для вывода примесей в виде рассола и талой питьевой воды, расположенные в нижней части сосуда, приводное устройство перемещения стержня замороженной воды, а также разобщающее устройство в виде трубы с кольцевой режущей частью, при этом приводное устройство перемещения стержня замороженной воды выполнено в виде поршня со штоком с возвратно-поступательным приводом, при этом в поршне расположены отверстия для подачи воды в зону замораживания, а продольный сосуд имеет крышку, в центре которой находится винтовое соединение со штоком поршня, при этом продольный сосуд имеет дно, в центре которого закреплена труба с кольцевой режущей частью, а патрубки для вывода талой питьевой воды расположены в стенках продольного сосуда в нижней части, отличающийся тем, что продольный сосуд в зоне замораживания имеет компенсатор расширения льда в виде продольной прорези, заполненной резиновым уплотнителем, с возможностью деформирования стенок продольного сосуда при замораживании воды, при этом стенки продольного сосуда в прорези выполнены параллельными и оканчиваются круглым отверстием рассеивания напряжений.



 

Похожие патенты:

Изобретение относится к технологии очистки сточных вод от ионов металлов сорбцией. Способ очистки сточных вод включает обработку воды напрягающим цементом, перемешивание и отделение осадка.

Изобретение может быть использовано для очистки природных и сточных вод промышленных предприятий от сероводорода, ионов сульфидов и гидросульфидов. Способ включает обработку исходной воды соединениями железа с последующей их регенерацией кислотой.

Изобретение относится к вариантам способа обработки исходного потока, включающего углеводородную жидкость и жидкость на водной основе. Один из вариантов включает: введение исходного потока во впуск резервуара, содержащего композитную среду, состоящую из однофазных частиц однородной формы, причем каждая частица включает смесь материала на основе целлюлозы и полимера; и контакт исходного потока с композитной средой для получения обработанного потока, причем обработанный поток содержит заданную целевую концентрацию углеводородной жидкости.

Изобретение относится к водоочистным установкам, а именно к оборудованию, применяемому в технологиях подготовки питьевой воды с применением химических реагентов.
Изобретение относится к области химических технологий и может быть использовано для очистки щелочных растворов от сульфидов и меркаптидов на предприятиях нефтяной, нефтеперабатывающей, химической, целлюлозно-бумажной и кожевенной промышленности.

Изобретение относится к магнитному сепаратору, выполненному с возможностью сепарации частиц из потока текучей среды, и может быть использовано для сепарации частиц из воды систем центрального отопления.
Изобретение относится к гидротермическому окислению отходов, содержащихся в сточных водах, и может быть использовано в агропищевой, бумажной, химической, фармацевтической, нефтяной, нефтеперерабатывающей, машиностроительной, металлургической, авиационной и атомной промышленности.

Настоящее изобретение относится к способу синтеза адсорбционного материала, состоящего из однофазного четырехвалентного марганцевого фероксигита (δ-Fe(1-x)MnxOOH), в котором 0,05-25% железа изоморфно замещено атомами марганца.

Изобретение относится к устройствам для электрохимической обработки растворов. Электрохимический реактор выполнен из одной или более помещенных в корпус 1 проточных электрохимических модульных ячеек, каждая из которых содержит вертикально расположенные катод 6, установленный в центре корпуса, смонтированную вокруг него керамическую диафрагму 7, равноудаленные от катода противоэлектроды - аноды 5, расположенные вокруг катода с диафрагмой с образованием электродных пар типа «катод-анод».

Группа изобретений может быть использована для биологической очистки хозяйственно-бытовых и промышленных сточных вод. Для осуществления способа не менее 70% активного ила подвергают обработке пероксидом водорода в течение 2 часов в непрерывном режиме с внесением пероксида водорода в количестве от 2 до 4 (масс.
Изобретение относится к технологиям переработки алюмокремниевого сырья с получением алюмокремниевого флокулянта-коагулянта, с получением сухого продукта. Осуществляют обработку нефелинового концентрата ((Na,K)2O·Al2O3·2SiO2) водным раствором серной кислоты, при этом берут 7-11% серную кислоту, производят перемешивание в течение 30-40 минут. Далее проводят обезвоживание в шнековом реакторе при введении в полученный раствор гидроксида алюминия с одновременным перемешиванием и последующим доукреплением суспензии концентрированной серной кислотой до достижения плотности суспензии 1,3-1,4 г/см3 и самопроизвольной кристаллизацией продукта. Изобретение позволяет получить твердый алюмокремниевый флокулянт-коагулянт с повышенным содержанием активного компонента - до 16% по Al2O3. 5 пр.

Изобретение относится к устройствам для получения дистиллята и может быть использовано для выпаривания морской воды. Установка термической дистилляции содержит систему подвода соленой воды 3, испарительную камеру 1, распылитель 2, сепаратор 7 для отделения потока чистого пара от шлама, газодувку 10, компрессор 12, теплообменник-конденсатор 14. Испарительная камера 1 снабжена в нижней части диффузором 6. Распылитель 2 расположен в верхней части испарительной камеры 1. Вход распылителя соединен с системой подвода соленой воды 3. Сепаратор 7 соединен с верхней частью испарительной камеры 1 над распылителем 2 и снабжен выходом 8 для чистого пара и выходом 9 для шлама. Вход газодувки 10 соединен с выходом сепаратора для чистого пара. Газодувка 10 снабжена двумя выходами для пара. Вход компрессора 12 соединен с первым выходом газодувки 10. Верхний коллектор 13 теплообменника-конденсатора 14 соединен с выходом компрессора 12. Вход внешнего корпуса теплообменника-конденсатора 14 соединен со вторым выходом газодувки 10. Нижний коллектор 15 теплообменника-конденсатора 14 снабжен выходом 18 для дистиллята. Выход внешнего корпуса теплообменника-конденсатора 14 соединен со входом испарительной камеры 1. Изобретение позволяет обеспечить рекуперацию тепла и осуществить непрерывную продолжительную эксплуатацию. 3 з.п. ф-лы, 1 ил.

Изобретение может быть использовано для очистки концентрированных сточных вод с трудноокисляемыми органическими примесями и токсичными соединениями. Способ очистки дренажных вод полигонов твердых бытовых отходов включает стадии: электрохимической очистки 4 с выделением на аноде активного хлора, двухступенчатой фильтрации и обратноосмотического разделения. Электрохимическую очистку 4 дополняют второй ступенью 5 с генерированием на аноде гидроксильных радикалов. Перед стадией фильтрации второй ступени 19 проводят реагентную обработку коагулянтом 8, раствором NaOH 10 и флокулянтом 12 с последующим отстаиванием 14. На стадии фильтрации в качестве второй ступени используют половолоконную ультрафильтрацию 19 с обратноточными пульсирующими промывками. Обратноосмотическое разделение проводят в две ступени по пермеату. Пермеат обратного осмоса первой ступени 28 подвергают отдувке воздухом 29 для удаления не менее 95% углекислого газа. Затем в пермеат добавляют сульфат-ионы 30 и подвергают его дополнительному разделению на второй ступени обратного осмоса 32. Полученный пермеат обратного осмоса второй ступени 32 дополнительно очищают на ионообменных смолах последовательно в Cl-форме 35 и Na-форме 36. Изобретение позволяет повысить степень очистки дренажных вод полигонов твердых бытовых отходов от трудноокисляемых органических примесей и токсичных соединений, снизить эксплуатационные и энергозатраты. 5 з.п. ф-лы, 8 табл., 1 ил.

Изобретение относится к получению сорбентов. Проводят химическую обработку размолотого сырья, выбранного из персиковой, и/или абрикосовой, и/или сливовой косточек, следующего гранулометрического состава (в %): до 0,35 мм 10 от 0,36 до 0,55 мм 55 от 0,56 до 0,75 мм 25 от 0,76 до 1, 25 мм 10 Вначале сырье обрабатывают смесью следующих растворов: 0,5% NH4OH, 0,5% NaOH, 0,5% ЭДТА - натрия, взятых в соотношении 1:1:1, обработку проводят в автоклаве при гидромодуле 1:8, температуре 140-150°C и времени обработки 4-5 часов. Затем твердую фазу промывают обессоленной водой, после чего проводят обработку смесью следующих растворов: 0,5% FeCl3, 0,5% NaClO4, 0,5% СН3СООН, взятых при соотношении 1:1:1, обработку проводят при pH 1,0-3,0 в автоклаве в изотермических условиях в течение 4-6 часов и температуре 140-150°C и гидромодуле 1:10. Изобретение обеспечивает возможность получения сорбционного материала широкого спектра действия, который может быть использован для очистки жидких сред от примесей сложного химического и радиохимического состава. 1 з.п. ф-лы, 6 табл., 4 пр.

Изобретение может быть использовано в области промышленной экологии для очистки сточных вод от токсичных соединений тяжелых металлов. Сущность предложенного технического решения заключается в применении поли (3-оксапентилендисульфида) формулы (-CH2CH2OCH2CH2SS-)n с молекулярной массой 800-2000 ед. и n = (6-15) для эффективного извлечения тяжелых металлов из водных растворов с высокой степенью извлечения даже из концентрированных - до 5 г/л растворов. Полимер используют либо в чистом виде, либо в растворе органического растворителя, смешивающегося или несмешивающегося с водой. Применение данного полимера обеспечивает возможность высокой степени очистки сточных вод от тяжелых металлов, например ртути, кадмия, свинца, меди, никеля. 14 пр.

Изобретение относится к области водоснабжения, а именно к установкам водоподготовки подземных вод, в частности для источников высокоцветной и высокомутной воды, и может быть использовано в системах водоснабжения баз отдыха, коттеджных поселков, садоводческих товариществ и иных потребителей воды питьевого качества. Блочно-модульная станция очистки воды для систем водоснабжения позволяет обеспечить потребителей чистой питьевой водой при одновременном сокращении расхода реагентов на очистку и объема образующихся в результате очистки загрязненных технологических стоков, сбрасываемых в канализацию, за счет того, что содержит размещенные в транспортируемом контейнере блок механической очистки, состоящий из водозаборного узла с системой автоматического управления расходом и давлением воды и механического фильтра, соединенный с блоком аэрации, содержащим компрессор и аэрационную колонну. Блок аэрации последовательно соединен с блоком фильтра-осветлителя, содержащим напорный фильтр обезжелезивания, блоком ионообменного фильтра с узлом регенерации, блоком дозирования реагентов, резервуарами чистой воды, насосной станцией второго подъема с блоком обеззараживания, в качестве которого используют установки ультрафиолетового обеззараживания, и баком-аккумулятором. Узел регенерации блока ионообменного фильтра снабжен двумя баками регенерационного солевого раствора, насосом подачи регенерационного солевого раствора в ионообменный фильтр, на напорной линии которого установлен сетчатый фильтр, и соединен с узлом механического обезвоживания осадка. Технический результат заключается в обеспечении степени очистки воды до нормативов СанПин при одновременном сокращении расхода реагентов на очистку и объема образующихся в результате очистки загрязненных технологических стоков, сбрасываемых в канализацию. 2 з.п. ф-лы, 1 ил.

Изобретение может быть использовано в гидрометаллургии редких металлов и предназначено для извлечения скандия из хлоридных растворов. Для осуществления способа в качестве экстрагента скандия используют смесь трибутилфосфата с элементным йодом, взятым в количестве 12,5-76 г/л, реэкстрагируют металл водой. Извлечение хлоридных солей скандия достигается за счет образования гидрофобных комплексных анионов, входящих в состав экстрагируемых соединений. Специфика взаимодействия хлоридов скандия с элементным йодом обеспечивает высокую селективность извлечения скандия из хлоридных растворов сложного состава при низких реагентных затратах. В этом процессе элементный йод постоянно находится в органической фазе и его потери с водными растворами незначительны. Способ обеспечивает упрощение процесса извлечения и очистки скандия и снижение расхода реагентов. 1 з.п. ф-лы, 4 табл., 5 пр.

Изобретение относится к области переработки отходов спиртового производства. Предложен способ переработки предварительно нейтрализованной известью спиртовой барды из зернового сырья. Переработку спиртовой барды осуществляют путем флокуляции и коагуляции с последующим разделением на осадок и осветленную водную фазу. При этом флокуляцию и коагуляцию одновременно проводят методом электорофлотации-электрокоагуляции на металлических электродах в проточном аппарате. Флотируемые и скоагулированные частички органической фазы собираются в соответствующих приемниках. Изобретение обеспечивает исключение применения органического флокулянта и дополнительного оборудования для приготовления флокулянта, при этом позволяет проведение нейтрализации исходного раствора в широком диапазоне рН. 1 ил.

Изобретение относится к способам и устройствам для обработки загрязненной газообразными соединениями и твердыми веществами технологической воды и может быть использовано для очистки технологической воды из установок мокрой очистки технологического газа, в частности из установок для восстановительной плавки или из плавильного газогенератора. Технологическую воду вводят в резервуар (1) в первой технологической ступени и дегазируют вследствие уменьшения растворимости растворенных газов при перепаде давления 0,1-10 бар. Резервуар (1) на своей верхней стороне имеет газосборную камеру (4), в которой собирают и из которой выводят отделенные газы. Обработанную технологическую воду выводят в области самого низкого места резервуара (1) через закрываемый выпуск, и/или насос, и/или гидроциклон (17), или через шлюзовую систему. Твердые вещества выводят из резервуара через шлюзовое разгрузочное устройство (13). Изобретение позволяет обеспечить возможность простой и надежной очистки технологической воды, а также исключить попадание токсичных газов в окружающий воздух и снизить коррозию оборудования. 2 н. и 20 з.п. ф-лы, 3 ил.

Изобретение относится к использованию магнитных наночастиц для избирательного удаления биопрепаратов, молекул или ионов из жидкостей. Химический состав включает магнитные наночастицы, поверхности которых функционализированы амином и дополнительно веществом, выбранным из веществ, реверсивно вступающих в реакцию и реверсивно соединяющихся с предопределенной мишенью в жидкости на водной основе. Диаметр наночастиц находится в диапазоне от 1 нм до 500 нм. Способ получения химического состава включает взаимодействие магнитной наночастицы с (3-аминоалкил)-триэтоксисиланом. Способ удаления мишени из жидкости на водной основе включает вступление в реакцию химического состава с мишенями и формирование комплекса химический состав-мишень. Магнитным полем воздействуют на жидкость на водной основе, содержащую комплексы химический состав-мишень, так, чтобы комплексы изолировались в отдельной части жидкости на водной основе. Жидкость на водной основе разделяют на первую часть, не содержащую комплексов химический состав-мишень, и вторую часть, содержащую комплексы. Изобретение позволяет повысить эффективность очистки жидкости. 4 н. и 16 з.п. ф-лы, 31 ил., 1 табл., 8 пр.
Наверх