Генератор импульсов

Использование: для формирования высоковольтных импульсов. Сущность изобретения заключается в том, что в генератор импульсов введено, по крайней мере, одно LC-звено, состоящее из индуктивного накопителя и конденсатора, при этом индуктивный накопитель LC-звена одним выводом соединен с нагрузкой и к точке их соединения подключен диод, а другим выводом индуктивный накопитель LC-звена соединен со второй индуктивностью и к точке их соединения одним выводом подключен конденсатор LC-звена, соединенный другим выводом с землей. Технический результат: уменьшение потерь мощности в резонансном контуре и увеличение амплитуды выходного импульса. 3 з.п. ф-лы, 3 ил.

 

Изобретение относится к импульсной технике и может быть использовано для формирования высоковольтных импульсов.

Для формирования высоковольтных импульсов используется способность полупроводниковых приборов (диодов) к накоплению электрического заряда и восстановления непроводящего состояния при отсутствии накопленного заряда.

Известен генератор мощных наносекундных импульсов, включающий ключи, индуктивные накопители, конденсаторы, диод (см. патент RU №1487774, H03K 3/53, 1994).

Недостатком известного устройства является сложность реализации, связанная с большим количеством элементов.

Известен также генератор высоковольтных импульсов, включающий диод, анод которого подключен к земле, а катод подключен к индуктивному накопителю энергии, последовательно соединенному с конденсатором, а также ключ и нагрузку (см. патент US №7901930, H03K 3/00, 2011).

Недостатком известного устройства являются потери мощности в зарядной цепи.

Наиболее близким по технической сущности к заявляемому решению является генератор импульсов напряжения, содержащий ключ, диод, первый резонансный контур, второй резонансный контур, при этом каждый из контуров содержит конденсатор и индуктивный накопитель энергии (см. патент US №8115343, H03K 3/02, 2012).

Генератор импульсов выполнен с возможностью генерирования, по меньшей мере, одного импульса, имеющего длину не более 100 наносекунд и амплитуду, по меньшей мере, 1 кВ.

Недостатком известного устройства является то, что после завершения рабочего цикла ток начинает протекать через нагрузку, конденсаторы и ключ, которые могут обладать значительными паразитными индуктивностями, сопротивлениями и емкостями относительно земли, а также друг относительно друга.

Это приводит к потерям энергии, что сказывается на выходных параметрах устройства, а именно амплитуде выходных импульсов.

Технический результат заявляемого решения заключается в уменьшении потерь мощности в резонансном контуре и увеличении амплитуды выходного импульса.

Для достижения указанного технического результата в генераторе импульсов, включающем диод, выполненный с возможностью резкого восстановления и подключенный к земле, ключ, первый и второй конденсаторы, первую и вторую индуктивности, образующие резонансный контур, в котором ключ одним выводом соединен с землей, а другим выводом - с первым конденсатором, соединенным другим выводом со вторым конденсатором, при этом к точке соединения конденсаторов подключена одним выводом первая индуктивностью, соединенная другим выводом с землей, причем второй конденсатор соединен другим выводом со второй индуктивностью, а нагрузка подключена параллельно диоду, согласно изобретению в него введено, по крайней мере, одно LC-звено, состоящее из индуктивного накопителя и конденсатора, при этом индуктивный накопитель LC-звена одним выводом соединен с нагрузкой и к точке их соединения подключен диод, а другим выводом индуктивный накопитель LC-звена соединен со второй индуктивностью и к точке их соединения одним выводом подключен конденсатор LC-звена, соединенный другим выводом с землей.

Также, согласно изобретению величины емкостей конденсаторов связаны соотношением:

,

где С1 - емкость первого конденсатора;

С2 - емкость второго конденсатора;

С - емкость конденсатора LC-звена.

Также, согласно изобретению величины индуктивностей связаны соотношением:

,

где L1 - первая индуктивность;

L2 - вторая индуктивность;

L - индуктивный накопитель LC-звена.

Также, согласно изобретению при наличии нескольких LC-звеньев индуктивные накопители предыдущего и последующего LC-звеньев соединены между собой, а к точке их соединения подключен конденсатор последующего LC-звена.

Сущность предложения поясняется чертежами, где на фиг. 1 представлена функциональная схема устройства; на фиг. 2 представлены временные графики напряжения, при этом линия 1 - напряжение на первом конденсаторе, линия 2 - напряжение на втором конденсаторе, линия 3 - напряжение на конденсаторе LC-звена; на фиг. 3 представлены временные графики токов, при этом линия 1 - ток, протекающий через ключ, линия 2 - ток, протекающий через диод и индуктивный накопитель.

На чертеже 1 использованы следующие позиции: 1 - первый конденсатор; 2 - второй конденсатор; 3 - первая индуктивность; 4 - вторая индуктивность; 5 - ключ; 6 - диод; 7 - нагрузка; 8 - индуктивный накопитель LC-звена; 9 - конденсатор LC-звена.

Следует учесть, что на чертежах представлены только те детали, которые необходимы для понимания существа предложения, а сопутствующее оборудование, хорошо известное специалистам в данной области, на чертежах не представлено.

Устройство включает первый конденсатор 1 и второй конденсатор 2, первую индуктивность 3 и вторую индуктивность 4, ключ 5, диод 6 с резким восстановлением запирающих свойств (далее - диод) и нагрузку 7.

Элементы генератора импульсов, а именно ключ 5, конденсаторы 1 и 2, индуктивность 2, нагрузка 7 соединены последовательно. При этом ключ 5 одним выводом соединен с землей, а другим выводом для данного примера конкретного выполнения соединен с положительно заряженной обкладкой первого конденсатора 1.

Первый конденсатор 1 другим своим выводом соединен со вторым конденсатором 2, при этом к точке соединения конденсаторов 1 и 2 подключена одним выводом первая индуктивность 3, соединенная другим выводом с землей.

Второй конденсатор 2 соединен другим выводом со второй индуктивностью 4, а нагрузка 6 подключена параллельно диоду 6.

В качестве индуктивностей 3 и 4 может использоваться индуктивность без сердечника, индуктивность с сердечником, обмотка трансформатора, коаксиальная линия, искусственная формирующая линия с постоянным или переменным импедансом, полосковая линия, паразитная индуктивность других элементов схемы, проводник, состоящий из проводящей плазмы в среде газа или жидкости.

В нашем примере конкретного выполнения использована индуктивность без сердечника.

Заявляемый генератор импульсов также содержит, по крайней мере, одно LC-звено, которое включает индуктивный накопитель 8 и конденсатор 9.

Для нашего примера конкретного исполнения в функциональную схему генератора введено одно LC-звено.

Элементы генератора импульсов, а именно конденсаторы 1 и 2, индуктивности 3 и 4, а также LC-звено образуют управляемый резонансный контур, обеспечивающий накопление (накачку) заряда в диоде 6 с последующим расходованием (откачка) заряда.

При этом индуктивный накопитель 8 LC-звена одним выводом соединен с нагрузкой 7 и к точке их соединения катодом подключен диод 6, а другим выводом индуктивный накопитель 8 LC-звена соединен со второй индуктивностью 4 и к точке их соединения одним выводом подключен конденсатор 9 LC-звена, соединенный другим выводом с землей.

В другом варианте конкретного исполнения ключ 5 может быть подключен к отрицательно заряженной обкладке первого конденсатора 1 с целью формирования выходного импульса отрицательной полярности. При этом диод 6 к земле будет подключен катодом, а анодом - к точке соединения индуктивного накопителя 8 LC-звена и нагрузки 7.

Устройство работает следующим образом.

В начальный момент времени рабочего цикла при t=0 энергия содержится только в первом конденсаторе 1 (фиг. 2). Параметры резонансного контура таковы, что к моменту полного расхода заряда диода 6 (конец рабочего цикла t=Tend, Q+=Q-) начальная энергия первого конденсатора 1 переходит в индуктивный накопитель 8 LC-звена (фиг. 2, фиг. 3 линия 2).

При этом из-за полного расходования заряда происходит восстановление диода 6 (фиг. 3), вследствие этого ток индуктивного накопителя 8 LC-звена начинает протекать через нагрузку 7, формируя на ней напряжение импульса.

К моменту времени t=0 первый конденсатор 1 заряжен. Напряжение на втором конденсаторе 2 и конденсаторе 9 LC-звена равно нулю (фиг. 2), токи через первую 3, вторую 4 индуктивности и индуктивный накопитель 8 LC-звена равны нулю (фиг. 3).

В момент времени t=0 вследствие замыкания ключа 5 начинается процесс протекания токов и перераспределения энергии в управляемом резонансном контуре, то есть в первом и втором конденсаторах 1 и 2, первой и второй индуктивностях 3 и 4, а также в LC-звене (фиг. 2, фиг. 3 линия 2).

При этом заряд в диоде 6 сначала накапливается, затем выкачивается по мере протекания тока через индуктивный накопитель 8 LC-звена и диод 6 (фиг. 3 линия 2).

Поскольку диод 6 до конца рабочего цикла (до полного вывода накопленного заряда) сохраняет проводимость много большую, чем нагрузка 7, ток через нагрузку 7 не протекает (фиг. 1).

Рабочий цикл генератора импульсов состоит из двух периодов:

- период накопления заряда в диоде 6 (накачка);

- период вывода заряда из диода 6 (откачка).

За время накачки в диоде D накапливается заряд

.

За время откачки из диода 6 выводится заряд

, равный заряду Q+.

Момент времени, когда выполняется условие равенства накопленного и отданного заряда в диоде 6, а именно Q-=Q+, является концом рабочего цикла генератора импульсов, так как в этот момент времени в диоде 6 начинается процесс резкого восстановления, то есть процесс прерывания тока через диод 6.

Расчетами установлено, что для формирования режима накачки и откачки заряда в диоде 6, при котором к концу рабочего цикла энергия первого конденсатора 1 полностью передается в индуктивный накопитель 8 LC-звена, необходимо обеспечить определенные соотношения величин следующих элементов: первого конденсатора 1, второго конденсатора 2 и конденсатором 9 LC-звена.

То есть, если за 1 принимаем емкость первого конденсатора 1, то необходимо выполнение первого условия:

,

где С1 - емкость первого конденсатора 1;

С2 - емкость второго конденсатора 2;

С - емкость конденсатора 9 LC-звена.

А также, если за 1 принимаем величину первой индуктивности 3, то необходимо выполнение второго условия:

,

где L1 - величина первой индуктивности 3;

L2 - величина второй индуктивности 4;

L - величина индуктивного накопителя 8 LC-звена.

В момент t=Tend происходит восстановление непроводящего состояния диода 6 и ток индуктивного накопителя 8 LC-звена замыкается через нагрузку 7, а также через конденсатор 9 LC-звена.

Ток индуктивного накопителя 8 LC-звена после восстановления диода 6 протекает через нагрузку 7 и конденсатор 9 LC-звена, в результате этого во время протекания тока через нагрузку 7 паразитные параметры элементов генератора импульсов, а именно ключа 5, первого и второго конденсаторов 1 и 2, первой и второй индуктивностей 3 и 4, не оказывают влияния на выходные параметры схемы (амплитуду выходного импульса).

Приводим численный пример конкретного выполнения указанных выше двух условий:

величина емкости первого конденсатора С1 - 10 нФ;

величина емкости второго конденсатора С2 - 23,1 нФ;

величина емкости конденсатора С LC-звена - 14,4 нФ;

величина индуктивного накопителя L LC-звена - 200 нГ;

величина первой индуктивности L1 - 751 нГ;

величина второй индуктивности L2 - 469 нГ.

Таким образом,

и также

При данной конфигурации схемы длина рабочего цикла составляет 304 нс, при начальном напряжении на первом конденсаторе С1 1000 В максимальный рабочий ток индуктивного накопителя L - 224 А. При этих условиях на нагрузке величиной 50 Ом возможно получение высоковольтного наносекундного импульса с напряжением до 11 кВ и полушириной 4-5 нс.

Заявляемое изобретение также позволяет уменьшить максимальный рабочий ток, проходящий через ключ, по сравнению с прототипом на 40%, вследствие этого можно применять более простые и надежные в работе конструкции ключа.

1. Генератор импульсов, включающий диод, выполненный с возможностью резкого восстановления и подключенный к земле, ключ, первый и второй конденсаторы, первую и вторую индуктивности, образующие резонансный контур, в котором ключ одним выводом соединен с землей, а другим выводом - с первым конденсатором, соединенным другим выводом со вторым конденсатором, при этом к точке соединения конденсаторов подключена одним выводом первая индуктивностью, соединенная другим выводом с землей, причем второй конденсатор соединен другим выводом со второй индуктивностью, а нагрузка подключена параллельно диоду, отличающийся тем, что в него введено, по крайней мере, одно LC-звено, состоящее из индуктивного накопителя и конденсатора, при этом индуктивный накопитель LC-звена одним выводом соединен с нагрузкой и к точке их соединения подключен диод, а другим выводом индуктивный накопитель LC-звена соединен со второй индуктивностью и к точке их соединения одним выводом подключен конденсатор LC-звена, соединенный другим выводом с землей.

2. Генератор импульсов по п. 1, отличающийся тем, что величины емкостей конденсаторов связаны соотношением:
где
C1 - емкость первого конденсатора;
C2 - емкость второго конденсатора;
C - емкость конденсатора LC-звена.

3. Генератор импульсов по п. 1, отличающийся тем, что величины индуктивностей связаны соотношением:
, где
L1 - величина первой индуктивности;
L2 - величина второй индуктивности;
L - величина индуктивного накопителя LC-звена.

4. Генератор импульсов по п. 1, отличающийся тем, что при наличии нескольких LC-звеньев индуктивные накопители предыдущего и последующего LC-звеньев соединены между собой, а к точке их соединения подключен конденсатор последующего LC-звена.



 

Похожие патенты:

Изобретение относится к импульсной технике и может использоваться для подачи высоковольтных импульсов на различные приборы и устройства. Техническим результатом является увеличение надежности блока электронных ключей за счет равномерного распределения напряжения, прикладываемого между отдельными ключевыми элементами.

Изобретение относится к управлению энергопотреблением в электронной схеме, в частности к управлению рабочими точками тактовой частоты и источника напряжения в электронной схеме.

Изобретение относится к высоковольтной импульсной технике и может быть использовано для создания наносекундных компактных генераторов. Достигаемый технический результат - уменьшение искажений выходного импульса генератора путем подавления высокочастотных колебаний переходного процесса.

Группа изобретений относится к импульсной технике и может быть использована для систем питания мощных лазеров. Техническим результатом является формирование импульсов напряжения с высокой частотой повторения импульсов.

Изобретение относится к импульсной высоковольтной технике и может быть использовано в составе высоковольтного оборудования. Сущность изобретения: корпус генератора импульсных напряжений, содержащий аппаратуру генератора импульсных напряжений, заполненный диэлектрической жидкостью, выполнен в виде герметичной емкости, на наружной поверхности которой герметично установлены два снабженных обратными клапанами компенсационных бачка, сопряженных с внутренним объемом корпуса и содержащих герметичные газовые полости и гибкие выпуклые мембраны, отделяющие эти полости от полостей, заполненных диэлектрической жидкостью.

Генератор Аркадьева-Маркса относится к высоковольтной импульсной технике и может быть использован в ускорителях заряженных частиц или других импульсных сильноточных устройствах. Сущность изобретения заключается в том, что по сравнению с известным генератором Аркадьева-Маркса, содержащим несколько каскадов с конденсаторами и разрядником в каждом каскаде, а также импульсный зарядный трансформатор, все элементы генератора расположены в металлическом герметичном корпусе, новым является то, что разрядник первого каскада выполнен управляемым и снабжен системой запуска, корпус генератора разделен на две секции с фланцами, в одной секции расположен импульсный зарядный трансформатор и система запуска, каскады генератора установлены в другой секции и закреплены на металлической пластине, причем пластина зажата между смежными фланцами секций корпуса до смыкания торцевых прилегающих поверхностей пластины и фланцев и имеет отверстия, в которых с радиальным зазором относительно краев отверстий установлены диэлектрические держатели высоковольтных выводов импульсного трансформатора и системы запуска. Техническим результатом является повышение качества сборки и надежности работы генератора Аркадьева-Маркса при сохранении масс-габаритных характеристик.

Изобретение относится к импульсной и вычислительной технике и может использоваться при построении самосинхронных комбинационных и вычислительных устройств, систем цифровой обработки информации.

Изобретение относится к технике электроракетных плазменных двигательных установок (ЭРПДУ) и может быть использовано для квалификационных испытаний составных частей ЭРПДУ - плазменных двигателей (ПД) и систем электропитания и управления (СПУ) на устойчивость к воздействию электростатических разрядов, обусловленных объемной электризацией космических аппаратов.

Изобретение относится к электронике и может быть использовано в системах управления (СУ) для контроля прохождения команд в коммутационных схемах. Технический результат заключается в повышении надежности и помехозащищенности схемы.

Изобретение относится к области автоматики и вычислительной техники, криптографического кодирования и передачи информации и может быть использовано для построения генераторов случайных последовательностей импульсов большой неповторяющейся длительности.

Изобретение относится к области электротехники и может быть использовано в электронных устройствах для формирования импульсов напряжения. Достигаемый технический результат - возможность получения импульсов напряжения с заданными параметрами в широком диапазоне по амплитуде от нуля до максимума амплитуды питающего напряжения и заданной длительности импульса. Генератор импульсов переменной амплитуды содержит источник переменного напряжения, диод, конденсатор, нагрузочное сопротивление, при этом между последовательно соединенными с источником переменного напряжения диодом и нагрузочным сопротивлением подключен транзистор, выполняющий функцию ключа, а параллельно источнику переменного напряжения и диоду подключены конденсатор и блок управления транзистором, состоящий из компаратора, источника опорного напряжения, триггера и таймера, при этом первый вход компаратора соединен с положительным выводом конденсатора, второй его вход соединен с выходом источника опорного напряжения, выход компаратора соединен со входом триггера, выход которого соединен с базой транзистора и таймером, а вход сброса триггера соединен с выходом таймера. 2 ил.

Изобретение относится к импульсной технике и может быть использовано в импульсных схемах различного назначения, питаемых от низковольтных источников. Достигаемый технический результат - обеспечение самозапуска генератора и возможность использования низковольтных источников питания. Генератор импульсов на лавинном транзисторе с использованием S-образной вольтамперной характеристики со стороны коллектора содержит накопительный конденсатор, первый резистор, первый диод, включенный встречно-параллельно переходу эмиттер-база лавинного транзистора, второй диод, компенсирующий конденсатор, второй резистор и трансформаторный дроссель. 2 ил.

Изобретение относится к области цифровой техники и может быть использовано для формирования широтно-импульсной последовательности с заданной скважностью с высокой точностью и не зависящей от изменения частоты информационного сигнала. В основу изобретения поставлена задача получения широтно-импульсной последовательности с заданной скважностью с высокой точностью при изменении частоты информационного сигнала. Сравнение предлагаемого изобретения с уже известными способами и прототипом показывает, что заявляемый способ проявляет новые технические свойства, заключающиеся в получении широтно-импульсной последовательности с заданной скважностью, причем значение скважности остается неизменной при изменении частоты информационного сигнала. Такой способ позволяет задавать скважность широтно-импульсной последовательности с более высокой точностью. Использование индикатора позволяет однозначно контролировать частоту и заданное значение скважности широтно-импульсной последовательности. Устройство для формирования широтно-импульсной последовательности с изменяемой частотой повторения и заданной скважностью состоит из высокостабильного опорного генератора, микроконтроллера, генератора, управляемого напряжением, фазового детектора, индикатора, делителя с переменным коэффициентом деления. Микроконтроллер по заданному алгоритму программного кода управляет подключенными к нему устройствами. Преимущество данного способа формирования широтно-импульсной последовательности заключается в возможности получения широтно-импульсной последовательности с заданной скважностью при изменении частоты входного информационного сигнала.

Изобретение относится к электронной технике. Технический результат - уменьшение и подавление на выходе паразитного сигнала, значительное увеличение уровня изоляции переключателя в выключенном состоянии при сохранении малых потерь во включенном состоянии за счет вариантов подключения коммутирующих и компенсирующих МОП транзисторов. Переключатель с высокой изоляцией по первому варианту содержит генератор дифференциального сигнала, выходные порты, две пары МОП транзисторов, коммутирующих сигнал (2-5), и одну пару МОП транзисторов, компенсирующих сигнал 7, 6, причем все МОП транзисторы выполнены с одинаковой шириной канала. Переключатель с высокой изоляцией по второму варианту содержит генератор дифференциального сигнала, выходные порты, две пары МОП транзисторов, коммутирующих сигнал (2-5), при этом они выполнены с одинаковой шириной канала, два МОП транзистора, компенсирующих сигнал (6, 7), причем МОП транзисторы, коммутирующие и компенсирующие сигналы, выполнены с различной между собой шириной канала. 2 н.п. ф-лы, 4 ил.

Изобретение относится к зарядным устройствам емкостных накопителей энергии и может быть использовано в высоковольтных электрофизических установках большой мощности с высоким уровнем накапливаемой энергии. В зарядное устройство емкостного накопителя энергии, содержащее входной трехфазный мостовой выпрямитель, LC-фильтр, зарядный преобразователь с дозирующими конденсаторами, датчик выходного напряжения, введен дополнительный конденсатор фильтра, транзистор, зашунтированный обратным диодом и резистором, драйвер управления транзистором, RS-триггер, логический элемент 2И-НЕ, два компаратора, а также источник задающего напряжения и датчик напряжения обратного диода. Введение этих элементов позволяет повысить надежность работы зарядного устройства и расширить его функциональные возможности. 4 ил.

Использование: для питания импульсных источников света, искровых камер, лазеров и ускорителей. Сущность изобретения заключается в том, что первая ступень умножения состоит из первого накопительного конденсатора, первого дросселя, общего коммутатора и внешнего накопительного конденсатора, соединенных последовательно, при этом один вывод внешнего накопительного конденсатора соединен с общей шиной, а другой подсоединен к выводу дополнительного источника зарядного напряжения с полярностью, противоположной полярности основного источника зарядного напряжения. Технический результат: увеличение максимума выходного напряжения генератора и энергии без увеличения числа ступеней умножения. 2 ил.

Предлагаемое изобретение относится к области измерительной техники и предназначено для преобразования напряжения в частоту импульсов. Достигаемый технический результат - уменьшение неравномерности расстановки выходных импульсов во времени и расширение диапазона входных напряжений, в котором отсутствует эффект слипания выходных импульсов. Преобразователь напряжения в частоту импульсов содержит интегратор, переключатель, источник образцового напряжения, компаратор, источник напряжения смещения, генератор тактовых импульсов, формирователь импульсов, первый вход которого соединен с выходом генератора тактовых импульсов, а второй вход связан с выходом компаратора, а выход соединен с входом управления переключателя. 4 ил.

Изобретение относится к радиотехнике и может быть использовано для решения задач преобразования частоты в напряжение. Техническим результатом изобретения является повышение точности преобразования частоты в напряжение за счет формирования характеристики преобразования частоты в напряжение, близкой к линейной при больших значениях крутизны наклона. Способ формирования характеристики преобразования частоты в напряжение заключается в использовании параллельно включенных избирательных цепей и настройке их добротностей и резонансных частот выше и ниже центральной частоты рабочей полосы частот, при этом используют по меньшей мере две последовательно соединенные избирательные цепи верхних и нижних частот на частотах выше и ниже центральной частоты соответственно, резонансные частоты и добротности которых определяют из условия обеспечения минимального отклонения формируемой характеристики от линейного закона преобразования. 1 ил.

Rs-триггер // 2604682
Изобретение относится к области вычислительной техники, автоматики, связи и может использоваться в специализированных цифровых структурах, системах автоматического управления и передачи цифровой информации. Технический результат: заключается в повышении быстродействия систем обработки информации и создании элементной базы вычислительных устройств, работающих на принципах многозначной линейной алгебры. Такой результат достигается за счет создания RS-триггера, в котором внутреннее преобразование информации производится в многозначной токовой форме сигналов. 2 з.п. ф-лы, 10 ил.

Изобретение относится к генераторам импульсов. Достигаемый технический результат – осуществление управления количеством энергии, отводимой от накопителя энергии для формирования на выходной нагрузке серий производительных электрических импульсов с переменной амплитудой. Способ упрощения генерации импульсов с переменной амплитудой с использованием генератора импульсов c высоковакуумной электронной лампой, содержащего накопитель энергии по меньшей мере один конденсатор-накопитель энергии, характеризуется тем, что регулируют количество энергии, отводимой от накопителя энергии и передаваемой выходной нагрузке, чтобы получить серию производительных электрических импульсов с переменной амплитудой. Устройство упрощения генерации импульсов с переменной амплитудой с использованием генератора импульсов с высоковакуумной электронной лампой содержит конденсатор - накопитель энергии и схему выборочного управления. 2 н. и 28 з.п. ф-лы, 7 ил.
Наверх