Алиасный аналого-цифровой преобразователь

Изобретение относится к области измерительной и вычислительной техники и может быть использовано для преобразования аналоговых электрических сигналов в цифровой код. Техническим результатом является повышение точности преобразования. Устройство содержит блок слежения-хранения, генераторы, управляемые напряжением, аналого-цифровые преобразователи, спецпроцессоры быстрого преобразования Фурье, блоки максимальной амплитуды, блоки вычитания. 7 ил.

 

Изобретение относится к области измерительной и вычислительной техники и может быть использовано для быстрого преобразования аналоговых электрических сигналов в цифровой код в системах, функционирующих в модулярной системе счисления.

Известно устройство (аналог) (авт.св. СССР №1368989, МКИ Н03М 1/28, БИ №3, 1988 г.), содержащее блок определения остатка по наибольшему основанию СОК, аналогово-цифровые преобразователи, сумматоры, шифраторы, блоки коррекции, коммутаторы, одновибратор, регистр, аналоговую входную шину, шину коррекции, шину управления, выходную шину «ядро числа» и выходные шины остатков по соответствующим основаниям СОК. Недостаток - малая точность преобразователя.

Известно устройство (аналог) (авт.св. СССР №1181141, МКИ Н03М 1/28, БИ №35, 1985 г.), содержащее блок определения остатка по наибольшему основанию СОК, аналогово-цифровые преобразователи, блоки коррекции, входную шину, шину коррекции, выходные шины кодов по основаниям СОК, сумматоры, шифраторы, шины кодов оснований СОК. Недостаток - малая точность преобразователя.

Наиболее близким к заявляемому является изобретение (пат. 2433527 Российская Федерация, МПК7 Н03М 1/28, заявл. 12.04.2010; опубл. 10.11.2011), содержащее блоки слежения-хранения, аналогово-цифровые преобразователи, цифроаналоговые преобразователи, блоки вычитания, выходные шины кодов остатков в СОК, вход.

Недостаток прототипа - малая точность преобразователя, обусловленная ростом ошибки от каскада к каскаду в результате уменьшения в геометрической прогрессии единичного интервала квантования по отношению к интервалу неопределенности, формируемого шумом.

Задача, на решение которой направлено заявляемое устройство, состоит в повышении точности представления формы аналогового сигнала в цифровом виде.

Технический результат выражается в реализации иного подхода к аналого-цифровому преобразованию, позволяющему устранить операцию, наиболее негативно влияющую на точность.

Технический результат достигается тем, что в алиасный аналого-цифровой преобразователь, содержащий вход, блок слежения-хранения, n основных аналого-цифровых преобразователей, n выходных шин кодов остатков в системе остаточных классов, где n - число оснований системы остаточных классов, введены основной генератор, управляемый напряжением, n дополнительных генераторов, управляемых напряжением, n дополнительных аналого-цифровых преобразователей, n основных и n дополнительных спецпроцессоров быстрого преобразования Фурье, n основных и n дополнительных блоков максимальной амплитуды, n блоков вычитания и n шин кодов оснований системы остаточных классов, при этом вход устройства объединен с входом блока слежения-хранения, выход которого соединен с входом основного и дополнительных генераторов, управляемых напряжением, при этом выход основного генератора, управляемого напряжением, соединен с входом основных аналого-цифровых преобразователей, а выход i-го дополнительного генератора, управляемого напряжением, соединен с входом i-го дополнительного аналого-цифрового преобразователя, при этом выход i-го основного аналого-цифрового преобразователя соединен с входом i-го основного спецпроцессора быстрого преобразования Фурье, а выход i-го дополнительного аналого-цифрового преобразователя соединен с входом i-го дополнительного спецпроцессора быстрого преобразования Фурье, при этом выход i-го основного спецпроцессора быстрого преобразования Фурье соединен с входом i-го основного блока максимальной амплитуды, а выход i-го дополнительного спецпроцессора быстрого преобразования Фурье соединен с входом i-го дополнительного блока максимальной амплитуды, выход которого соединен с третьим входом i-го блока вычитания, первый вход которого объединен с i-й шиной кодов оснований системы остаточных классов, при этом выход i-го основного блока максимальной амплитуды соединен со вторым входом i-го блока вычитания, выход которого объединен с i-й выходной шиной кодов остатков в системе остаточных классов.

На фиг. 1 представлена структурная схема алиасного АЦП в код СОК.

На фиг. 2 приведена зависимость алиасной частоты в основной ветви от частоты гармоники основного ГУН.

На фиг. 3 приведена зависимость алиасной частоты в дополнительной ветви относительно частоты гармоники основного ГУН.

На фиг. 4 представлена таблица 1 с выборками АЦП в соответствии с номерами.

На фиг. 5 представлены спектры после БПФ в основной ветви и интерполяция к непозиционному представлению по основаниям 3, 5 и 7.

На фиг. 6 представлены спектры после БПФ в дополнительной ветви и формирование на их основе признака четности.

На фиг. 7 представлена таблица 2 опорных напряжений параллельного АЦП и взвешивание на их основе соответствующего входного сигнала.

Сущность изобретения заключается в синтезе гармонического сигнала и естественной трансляции его спектра в первую зону Найквиста при дискретизации на элементарных аналого-цифровых преобразователях (АЦП) с частотами выборок, зависящими от значений оснований применяемой системы остаточных классов (СОК).

Построение прототипа по каскадному принципу приводит к тому, что синтез сигнала шума в первом каскаде, с уменьшением (без учета масштабирования) в разы единичного интервала квантования в следующем каскаде, во столько же раз увеличивает интервал неопределенности, на котором может быть зафиксировано ошибочное значение. Например, если взять основания СОК равными p1=3, р2=5, р3=7, то в одном тракте прототипа диапазон рабочих напряжений может быть разбит на три - в первом каскаде, потом один квант первого каскада - уже на пять - во втором, и один квант из второго каскада - на семь - в третьем каскаде. Таким образом, сгенерированный в первом каскаде уровень шума остается постоянным (для простоты - без учета шума следующих каскадов), а единичный интервал квантования уменьшается в разы. Применение масштабирования приводит к обратной картине - интервал единичного квантования почти не меняется, а ошибка первого каскада растет в геометрической прогрессии. Устранить негативное влияние каскадного построения возможно через иной подход к аналого-цифровому преобразованию.

Если частота отсчетов АЦП меньше удвоенной максимальной частоты сигнала, то возникает эффект биения и наложение спектров (алиасинг, - от английского «aliasing»). Спектр алиасных биений всегда располагается в полосе частот от 0 до fi 12, где fi - частота дискретизации элементарного АЦП. Данный процесс является прямым следствием теоремы Котельникова или (в иностранной литературе) критерия Найквиста (Аналого-цифровое преобразование: [пер. с англ.] / Под ред. Уолта Кестера. - М.: Техносфера. - 2007. - 1016 с.). Полосы частот от (N-1)·fi/2 до N·fi/2 образуют зоны Найквиста, где N - номер зоны. Зависимость алиасной частоты (fa) от линейно изменяющейся частоты входного гармонического сигнала можно представить следующим образом (фиг. 3). Для квантования уровня входного сигнала его сначала необходимо преобразовать в гармонический с частотой

где F - диапазон рабочих гармонических частот, который синтезируется генератором, управляемым напряжением (ГУН), fн - начальная частота ГУН, Е - диапазон рабочих напряжений АЦП, Ubx - преобразуемый уровень входного сигнала. Далее синтезированная гармоника сворачивается по частоте, согласно фиг.3, на i элементарных АЦП, работающих с частотой выборки

где - количество уровней квантования алиасного АЦП, pi - основания применяемой СОК, a n - количество оснований СОК. На этом работа с аналоговым сигналом прекращается и начинается анализ данных в цифровом виде, заключающийся в формировании амплитудно-частотной характеристики, определении частоты с максимальной амплитудой и четности исходной полосы Найквиста, что позволяет реализовать код в СОК. Таким образом устраняется межкаскадная геометрическая прогрессия ошибки и, соответственно, повышается точность преобразования.

Дополнительным эффектом является упрощение конструирования алиасного устройства по сравнению с прототипом, т.к. отпадает необходимость применения специализированных по основаниям СОК элементарных АЦП, место которых могут занимать обычные позиционные. Другим дополнительным эффектом является возможность выбора полосы частот ГУН в зависимости от прикладной области алиасного АЦП, позволяющая отстроиться от электромагнитного излучения внешнего источника, наиболее влияющего в качестве шума.

Показанный на фиг. 1 алиасный АЦП содержит вход 1, блок слежения-хранения 2, основной 3 и дополнительные 4.1-4.n генераторы, управляемые напряжением (ГУН), основные 5.1-5.n и дополнительные 6.1-6.n аналого-цифровые преобразователи (АЦП), основные 7.1-7.n и дополнительные 8.1-8.n спецпроцессоры быстрого преобразования Фурье (БПФ), основные 9.1-9.n и дополнительные 10.1-10.n блоки максимальной амплитуды, шины кодов оснований системы остаточных классов 11.1-11.n, блоки вычитания 12.1-12.n, выходные шины кодов остатков в СОК 13.1-13.n.

Вход устройства 1 объединен с входом блока слежения-хранения 2, выход которого соединен с входом основного 3 и дополнительных 4.1-4.n ГУН, при этом выход основного ГУН 3 соединен с входом основных АЦП 5.1-5.n, а выход i-го дополнительного ГУН 4.1-4.n соединен с входом i-го дополнительного АЦП 6.1-6.n, при этом выход i-го основного АЦП 5.1-5.n соединен с входом i-го основного спецпроцессора БПФ 7.1-7.n, а выход i-го дополнительного АЦП 6.1-6.n соединен с входом i-го дополнительного спецпроцессора БПФ 8.1-8.n, при этом выход i-го основного спецпроцессора БПФ 7.1-7.n соединен с входом i-го основного блока максимальной амплитуды 9.1-9.n, а выход i-го дополнительного спецпроцессора БПФ 8.1-8.n соединен с входом i-го дополнительного блока максимальной амплитуды 10.1-10.n, выход которого соединен с третьим входом i-го блока вычитания 12.1-12.n, первый вход которого объединен с i-й шиной кодов оснований системы остаточных классов 11.1-11.n, при этом выход i-го основного блока максимальной амплитуды 9.1-9.n соединен со вторым входом i-го блока вычитания 12.1-12.n, выход которого объединен с i-й выходной шиной кодов остатков в системе остаточных классов 13.1-13.n.

Работа алиасного АЦП (фиг. 1) начинается с запоминания уровня аналогового сигнала, поступающего на вход 1, в блоке слежения-хранения 2. Далее вычисление остатка по основанию pi осуществляется в i-м основном и дополнительном тракте по аналогичной схеме. Вначале входной уровень преобразуется ГУН в частоту гармонического сигнала по формуле

где F - диапазон рабочих гармонических частот, который синтезируется генератором управляемым напряжением (ГУН), fн - начальная частота ГУН, Е - диапазон рабочих напряжений АЦП, Uвx - преобразуемый уровень входного сигнала. Здесь fн=fmin для основного ГУН 3 и fн=fmin+fi/4 для дополнительных ГУН 4.1-4.n, где для простоты минимальная частота fmin=0. Частота гармоники дополнительных ГУН 4.1-4.n зависит через f0 от частоты выборки дополнительных АЦП 6.1-6.n. Но частота выборки i-го основного 5.i и дополнительного 6.i АЦП одинакова:

где - количество уровней квантования алиасного АЦП, pi - основания применяемой СОК, a n - количество оснований СОК. Далее гармоника сворачивается на основных 5.1-5.n (фиг. 2) и дополнительных 6.1-6.n (фиг. 3) АЦП, при этом алиасную частоту можно определить из выражения

Здесь (и далее) математическая операция в квадратных скобках подразумевает как результат целую часть числа.

Т.к. для БПФ необходимо 2K (K - целое положительное) выборок, при том, что основания СОК pi - взаимно простые, то должно выполняться условие:

Зная алиасные частоты и частоты дискретизации, можно определить значения всех 2K выборок каждого i-го основного (5.1-5.n) и дополнительного (6.1-6.n) АЦП:

где А - амплитуда гармоник от ГУН (3 и 4.1-4.n), Ei - диапазоны измеряемых АЦП (5.1-5.n и 6.1-6.n) напряжений, номер выборки - разрядность АЦП 5.1-5.n и 6.1-6.n. Полученные на АЦП (5.1-5.n и 6.1-6.n) выборки передаются спецпроцессорам БПФ 7.1-7.n и 8.1-8.n, на выходе которых формируется по 2K-1+1 значений, соответствующих линиям амплитудно-частотной характеристики (АЧХ) в первой зоне Найквиста. В блоках максимальной амплитуды 9.1-9.n и 10.1-10.n на основе полученных значений АЧХ производится интерполяция максимума спектра к непозиционному виду: в основных (9.1-9.n) по основанию pi, а в дополнительных (10.1-10.n) по основанию 2. Как результат основной (9.1-9.n) блок выдает число в диапазоне от 0 до pi-1, а дополнительный (10.1-10.n) - «1», если максимум спектра расположен в левой половине первой зоны Найквиста, и «0» - в правой половине, i-я основная и i-я дополнительная ветки сходятся на блоке вычитания 12.i, где в зависимости от признака четности номера зоны Найквиста производится («1» от блока 10.i) или не производится («0» от блока 10.i) операция вычитания полученного в основной ветке числа из pi-1. Значение pi подается по шинам кодов оснований системы остаточных классов 11.1-11.n. Таким образом, на выходной шине 13.1-13.n формируется окончательный код в СОК.

Пример.

Рассмотрим алиасный АЦП по основаниям СОК pi=3, р2=5, р3=7 (т.е. n=3, , . Такой алиасный АЦП содержит вход, блок слежения хранения 2, основной 3 и три дополнительных ГУН 4.1-4.3, по три АЦП, спецпроцессора БПФ и блока максимальной амплитуды в основной (соответственно 5.1-5.3, 7.1-7.3, 9.1-9.3) и дополнительной (соответственно 6.1-6.3, 8.1-8.3, 10.1-10.3) ветке. Плюс к этому алиасный АЦП содержит по три шины кодов оснований СОК 11.1-11.3, блока вычитания 12.1-12.3 и выходных шин кодов остатков 13.1-13.3.

Пусть на вход устройства 1 поступил уровень сигнала Uвх.=3,2 В, который запоминается в блоке слежения-хранения 2. Поскольку частоты гармоник с дополнительных ГУН 4.1-4.3 привязаны к частотам выборки АЦП 6.1-6.3, то рассчитаем сначала частоты выборок по известной формуле. Пусть диапазон рабочих гармонических частот F=1000 кГц, тогда частоты выборок основных 5.1-5.3 и дополнительных 6.1-6.3 АЦП есть:

Теперь можно вернуться к гармоникам ГУН. Пусть диапазон преобразуемых алиасным АЦП напряжений - от 0 до 5 В, т.е. Е=5 В, тогда частоты гармоник ГУН при входном уровне сигнала Uвх.=3,2 В будут равны (по № ГУН):

Рассчитаем алиасные частоты во всех трактах (по № АЦП):

Поскольку для БПФ необходимо 2K (K - целое положительное) выборок, то для выполнения условия достаточно, чтобы K=4, т.к. максимальное основание pn=7. Определим 2K выборок по известной формуле для каждого АЦП 5.1-5.3 и 6.1-6.3 для простоты взяв начальную фазу алиасных биений равной нулю, при амплитуде А=2 В, равенстве всех диапазонов преобразуемых АЦП напряжений Ei=5 В, равенстве разрядности всех АЦП (5.1-5.n и 6.1-6.n) L=5 (таблица 1 на фиг. 4). Покажем для примера расчет v1 для АЦП 5.1:

Полученные на АЦП (5.1-5.3 и 6.1-6.3) выборки передаются спецпроцессорам БПФ 7.1-7.3 и 8.1-8.3, на выходе которых формируется по девять значений, соответствующих линиям АЧХ в первой зоне Найквиста. В блоках максимальной амплитуды 9.1-9.3 и 10.1-10.3 на основе полученных значений АЧХ производится интерполяция максимума спектра к непозиционному виду: в (9.1-9.3) по основанию pi, а в дополнительных (10.1-10.3) по основанию 2. Алгоритм интерполяции может быть разным, но в данном случае удобно исходить из площади фигуры под кривой спектра в соответствующей непозиционной полосе частот, поскольку такой подход нагляден. Согласно фиг. 5, на выходах основных блоков максимальной амплитуды формируются следующие значения: (9.1) - 1, (9.2) - 2, (9.3) - 2. Согласно фиг. 6, на выходах дополнительных блоков максимальной амплитуды формируются значения: (10.1) - 0, (10.2) - 1, (10.3) - 1. Окончательное формирование кода СОК происходит на блоках вычитания (12.1-12.3): α1=1, α2=(5-1)-2=2, α3=(7-1)-2=4. Таким образом, код в СОК по основаниям p1=3, p2=5, p3=7 равен 1, 2, 4.

Проверим полученный результат. Рассмотрим параллельный АЦП (Хоровиц П., Хилл У. Искусство схемотехники: Пер. с англ. - Изд. 6-е. - М.: Мир, 2003. - 704 с, рис. 9.49) (без смещения нуля на 1/2 младшего разряда), состоящего из делителя опорных напряжений, компараторов, количество которых Р=3*5*7=105, и шифратора. Измеряемое напряжение равно 3,2 В. Получив таблицу опорных напряжений (таблица 2 на фиг. 7), кратных Е/105, где Е=5 В, обнаруживаем, что компараторы с 1-го по 67-й установятся в «1», а все остальные в «0». Следовательно, на выходе шифратора установится код, десятичное представление которого равно 67. Целые остатки от деления числа 67 на 3, 5 и 7 соответственно равны 1, 2 и 4.

Алиасный аналого-цифровой преобразователь, содержащий вход, блок слежения-хранения, n основных аналого-цифровых преобразователей, n выходных шин кодов остатков в системе остаточных классов, где n - число оснований системы остаточных классов, отличающийся тем, что введены основной генератор, управляемый напряжением, n дополнительных генераторов, управляемых напряжением, n дополнительных аналого-цифровых преобразователей, n основных и n дополнительных спецпроцессоров быстрого преобразования Фурье, n основных и n дополнительных блоков максимальной амплитуды, n блоков вычитания и n шин кодов оснований системы остаточных классов, при этом вход устройства объединен с входом блока слежения-хранения, выход которого соединен с входом основного и дополнительных генераторов, управляемых напряжением, при этом выход основного генератора, управляемого напряжением, соединен с входом основных аналого-цифровых преобразователей, а выход i-го дополнительного генератора, управляемого напряжением, соединен с входом i-го дополнительного аналого-цифрового преобразователя, при этом выход i-го основного аналого-цифрового преобразователя соединен с входом i-го основного спецпроцессора быстрого преобразования Фурье, а выход i-го дополнительного аналого-цифрового преобразователя соединен с входом i-го дополнительного спецпроцессора быстрого преобразования Фурье, при этом выход i-го основного спецпроцессора быстрого преобразования Фурье соединен с входом i-го основного блока максимальной амплитуды, а выход i-го дополнительного спецпроцессора быстрого преобразования Фурье соединен с входом i-го дополнительного блока максимальной амплитуды, выход которого соединен с третьим входом i-го блока вычитания, первый вход которого объединен с i-й шиной кодов оснований системы остаточных классов, при этом выход i-го основного блока максимальной амплитуды соединен со вторым входом i-го блока вычитания, выход которого объединен с i-й выходной шиной кодов остатков в системе остаточных классов.



 

Похожие патенты:

Способ многоабонентной радиочастотной идентификации относится к области радиотехники и может быть использован при организации идентификации одновременно нескольких объектов. Новым в способе многоабонентной радиочастотной идентификации является включение в состав транспондеров, устанавливаемых на объектах идентификации, управляемых фазовращателей. Антенной устройства считывания трансформированные по частоте и модулированные по амплитуде высокочастотные колебания вторично принимают и смешивают с исходными высокочастотными колебаниями, в результате чего на выходе смесителя получают одновременно несколько сигналов от транспондеров, при этом выделяют эти комбинационные низкочастотные составляющие разности исходных и трансформированных по частоте высокочастотных колебаний.

Изобретение относится к средствам автоматики и вычислительной техники, например, в системе контроля объектов. Технический результат заключается в повышении надежности преобразователя за счет одностороннего расположения элементов приемного и излучающего каналов относительно мультиплексирующего элемента.

Изобретение относится к области обработки изображений. Технический результат - обеспечение уменьшения смещения, включенного в цифровой сигнал, которое возникает вследствие разности между временем, когда потенциал опорного сигнала начинает изменяться во времени, и временем, когда счетчик начинает подсчет синхросигнала.

Изобретение относится к измерительной технике. Технический результат заключается в повышении точности и стабильности ЦПУ.

Изобретение относится к измерительной технике и автоматике и может использоваться в датчиках неэлектрических величин, в информационно-измерительных устройствах при контроле и управлении технологическими процессами в диапазоне частот.

Изобретение относится к области радиотехники и может использоваться в быстродействующих цифроаналоговых преобразователях (ЦАП), в том числе системах передачи информации.

Изобретение относится к аналого-цифровому преобразованию и может быть использовано при построении аналого-цифровых преобразователей для высокоточных исследований быстропротекающих процессов.

Изобретение относится к области вычислительной техники и может использоваться в системах управления технологическими процессами. Техническим результатом является повышение динамической точности интегрирующего аналого-цифрового преобразования.

Изобретение относится к электроизмерительной и вычислительной технике и может быть использовано для высокоточного преобразования быстроизменяющихся электрических сигналов в цифровой код.

Группа изобретений относится к электронике и может быть использована в интегральных схемах (ИС) цифро-аналоговых преобразователей (ЦАП). Техническим результатом является улучшение интегральной нелинейности и дифференциальной нелинейности ИС ЦАП посредством использования автоматической калибровки.

Изобретение относится к области автоматического контроля и регулирования и может быть использовано в современном электроприводе для создания цифрового преобразователя угла. Техническим результатом является повышение быстродействия. Способ основан на программно-аппаратной демодуляции выходных амплитудно-модулированных сигналов (АМС) от датчика угла типа синусно-косинусного вращающегося трансформатора. В способе, за счет интегрирования выпрямленных сигналов несущих составляющих синусного и косинусного АМС, определяют огибающие положительных частей выпрямленных сигналов несущих составляющих синусного и косинусного АМС, а амплитуды этих огибающих преобразуют в цифровой код. По кодам амплитуд огибающих положительных частей выпрямленных сигналов несущих составляющих синусного и косинусного АМС определяют коды амплитуд огибающих несущих синусного и косинусного АМС, а их знак определяют по уровню сигналов от датчиков магнитного поля. 2 ил.

Изобретение относится к радиотехнике, служит для преобразования аналоговых знакопеременных сигналов в прямоугольные импульсы и может быть использовано при построении цифровых средств обработки сигналов и измерении их параметров. Технический результат, достигаемый при использовании настоящего изобретения, состоит главным образом в возможности получения импульсов неискаженной длительности в отсутствие помех и снижения искажений импульсов при наличии помех. Особенностью устройства является наличие задержанной обратной связи, позволяющей блокировать появление коротких ложных импульсов в окрестности фронтов формируемых импульсов. При этом формирование переднего фронта выходного импульса происходит строго в момент первого пересечения сигналом нулевого уровня при переходе от отрицательных значений к положительным, а заднего - при переходе от положительных значений к отрицательным при условии, что напряжение на входе превысило порог возможных помех. Основу устройства составляют два компаратора, два триггера и элемент задержки, в упрощенной версии - один компаратор, один триггер и элемент задержки. 2 н. и 6 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике, в частности к аналого-цифровому преобразованию, и может быть использовано в цифровых преобразователях угла. Техническим результатом является упрощение кодовой шкалы. Устройство содержит первую информационную кодовую дорожку, выполненную в соответствии с символами двоичной последовательности с длиной периода N=2l, вторую и третью информационные кодовые дорожки, выполненные в соответствии с символами двоичной последовательности 0011, причем вторая информационная кодовая дорожка выполнена в соответствии с символами N периодов двоичной последовательности 0011, а третья информационная кодовая дорожка выполнена в соответствии с символами 4N периодов двоичной последовательности 0011, два двухвходовых сумматора по модулю два, l+6 считывающих элементов, первый мультиплексор с тремя входами, второй мультиплексор с l+1 входами, декодер с l выходами. 6 ил., 6 табл.

Изобретение относится к радиолокации и может использоваться в качестве цифрового приемника для преобразования аналогового сигнала на промежуточной частоте (ПЧ) с понижением в цифровой квадратурный код. Достигаемый технический результат - уменьшение частоты дискретизации относительно частоты обрабатываемого сигнала на ПЧ за счет стробоскопического эффекта, повышение идентичности квадратурных составляющих за счет линейной аппроксимации амплитуд дискретных выборок. Способ преобразования аналогового сигнала на промежуточной частоте (ПЧ) с понижением в цифровой квадратурный код характеризуется тем, что частота дискретизации задается равной учетверенной частоте сигнала после деления исходной частоты на стробоскопический коэффициент. Устройство, реализующее способ, содержит аналого-цифровой преобразователь (АЦП), цифровой гетеродин с цифровым управлением (ЦГЦУ), два умножителя (УМН), линию задержки на такт (ЛЗТ), два сумматора (СУМ) и вычитатель (ВЫЧ). 2 н. и 2 з.п. ф-лы, 8 ил.

Изобретение относится к технике связи и может быть использовано для определения неизвестной структуры сверточного кодера со скоростью кодирования, равной , и кодовым ограничением, равным K, на основе анализа принимаемой кодовой последовательности. Технический результат – определение структуры используемого кодера для обеспечения работоспособности декодеров и повышение помехоустойчивости передачи информации. При осуществлении декодирования сверточных кодов необходимо знание структуры используемого кодера и сверточного кода, так как при отсутствии этой информации невозможно производить исправление ошибок. В данном способе повторно кодируют составляющие принимаемой общей кодовой последовательности с различными порождающими полиномами, перебирая их структуру, сравнивают результаты повторного кодирования. Поскольку символы исходной кодовой последовательности взаимно независимы, то результаты сравнения для всех сочетаний вида полиномов будут также случайны, кроме искомого вида полиномов. Для него они всегда будут совпадать. После накопления достаточно большого количества результатов сравнения преобладающая накопленная сумма укажет диагностируемую структуру порождающих полиномов и диагностируемую структуру кода. 3 ил.

Изобретение относится к автоматике и вычислительной технике и может быть использовано в системе контроля энергонасыщенных объектов. Техническим результатом является уменьшение погрешности за счет повышения линейности формируемых сигналов, увеличения их амплитуды и соотношения сигнал/шум. Устройство содержит фотоприемники, нормирующие усилители, компараторы, дешифратор, аналоговый коммутатор, усилитель, аналого-цифровой преобразователь (АЦП), микроконтроллер, кодовую дорожку. 3 ил., 1 табл.

Изобретение относится к вычислительной и измерительной технике и может быть использовано в информационно-измерительных системах и приборах с цифровой обработкой информации. Технический результат заключается в расширении динамического диапазона измерения. Технический результат достигается за счет способа аналого-цифрового преобразования, который включает подачу преобразуемого сигнала на первый вход первого и второго сумматоров и подачу опорных сигналов а0 и b0 на вторые входы сумматоров, при этом подают сигнал с выхода первого сумматора, равный (X+a0), на измерительный вход блока сравнения и формирования выходного кода, а сигнал с выхода второго сумматора, равный (b1X+b0), подают на опорный вход блока сравнения и формирования выходного кода, осуществляют в блоке сравнения и формирования выходного кода регулирование сигнала (b1X+b0) до момента его равенства с сигналом (X+a0). 1 ил.

Группа изобретений относится к вычислительной технике и может быть использована для калибровки АЦП. Техническим результатом является обеспечение автоматической калибровки АЦП. Способ содержит получение значения сигнала напряжения источника опорного напряжения; преобразование значения сигнала напряжения источника опорного напряжения в значение цифрового сигнала в соответствии с заданным значением коэффициента преобразования; сравнение значения цифрового сигнала с целевым значением и корректировку значения коэффициента преобразования в соответствии с результатом сравнения, чтобы разница между значением цифрового сигнала и целевым значением находилась в допустимом пределе погрешности, при этом корректировка значения коэффициента преобразования представляет собой корректировку значения коэффициента усиления. 2 н. и 14 з.п. ф-лы, 9 ил.

Изобретение относится к области измерительной техники и может быть использовано для преобразования аналоговых электрических сигналов эквивалентно позиционному или модулярному представлению. Сущность изобретения заключается в реализации метода вычисления разности фаз гармонического колебания. Наряду с возможностью получения как позиционного, так и модулярного эквивалента входного сигнала положительным эффектом является функционирование преобразователя по произвольному основанию pi не только выбранной, но и произвольной системы остаточных классов. Технический результат выражается в возможности преобразования уровня входного сигнала пропорционально заданному модулю системы остаточных классов, а также сдвига фазы гармонического сигнала пропорционально позиционному и модулярному представлению через реализацию единого метода измерения разности фаз. 5 табл., 5 ил.

Изобретение относится к измерительной технике, в частности к следящим АЦП многоразрядных приращений, и может быть использовано для непрерывного преобразования напряжения в цифровой код для преобразователей сигналов сельсин-код, резольвер-код и магниточувствительных датчиков угла поворота и положения на основе магниторезистивных сенсоров и датчиков Холла. Техническим результатом является повышение скорости сходимости следящего АЦП и повышение его точности. Устройство содержит реверсивный счетчик, который разделен на несколько ступеней малой разрядности, каждая из которых содержит ЦАП с заданной разрядностью, делители, вычитатель, сумматор-вычитатель, дополнительный АЦП, содержащий интегратор, компаратор, элемент ИЛИ, счетчик времени срабатывания компаратора в полутактах эталонной частоты и ПЗУ. 3 ил.
Наверх